Análisis del riesgo y decisión de Inversión

PREPARACIÓN DEL FLUJO DE CAJA Y DISTRIBUCIÓN DE PROBABILIDAD DE LA TASA INTERNA DE RENTABILIDAD

H. EUGENIO MOLINA ARENAZA
email : lcmolina@terra.com.pe

Profesor de la Facultad de Ciencias Administrativas de la UNMSM, con estudios de postgrado en la maestría de Gestión Pública y Desarrollo Empresarial en la UN San Antonio Abad del Cusco y maestría en Ciencias con mención en Proyectos de Inversión en la Universidad Nacional de Ingeniería, Lima.

RESUMEN

En este trabajo se desarrolla un caso simple de aplicación práctica, relacionado con el tema del análisis del riesgo, cuya discusión y análisis de los resultados serán muy útiles a la hora de tomar una decisión de inversión. En el caso se amplía mas y profundiza el análisis de sensibilidad y se aproxima al campo del riesgo donde se construye una distribución probabilística para la tasa interna de retorno.

ABSTRACT

This is a risk analysis case of capital investment whereas a probabilistic distribution is built in order to test the performance of the internals revenue rate.

EL CASO: Empresa de Concreto Premezclado S.A.

La Empresa de Concreto Premixclado S.A. (ECOPSA) es una firma de la industria de la construcción cuyo negocio es la producción y venta de concreto premixclado, inicio sus actividades hace siete años como subcontratista de una obra de infraestructura cerca de Lima. Posteriormente y con la aportación de capital de los más importantes accionistas, tuvo un periodo de rápido crecimiento, considerándose actualmente como una de las empresas más importantes de su sector.

La empresa dispone de varias plantas situadas en las proximidades de Lima, así como en otras ciudades de la costa.

La producción anual del año pasado ha alcanzado 180 000 m³ de concreto. Aunque la producción en sí no constituye un problema, es importante destacar el elevado porcentaje del costo de transporte en el costo total, tanto de la grava, para lo cual las plantas deben estar situadas cerca de una cantera, como del producto terminado, por lo que la distancia a las obras civiles debe ser la más corta posible.

La empresa dispone de una flota de volquetes, para el transporte de concreto a las diferentes obras.
PROYECTO DE INVERSIÓN

De acuerdo a los planes de desarrollo de la empresa, la administración tiene la propuesta de la implementación de una nueva planta cercana a Lima, en una zona industrial de rápido crecimiento.

Los estudios realizados indican que la demanda de concreto en la región no variará al menos durante los próximos diez años.

La planta costará $180 000, con una vida útil de siete años y un valor residual de $20 000, teniendo una capacidad de producción de 65 m³ de concreto por día. Asimismo, para el transporte de concreto, se requiere cuatro volquetes con un costo de $120 000, cada uno, cuya vida útil se estima en 7 años y un valor residual de $20 000 cada unidad.

Los terrenos que se requieren para la instalación de la nueva planta se tomarán alquilados, por cuyo concepto se pagará $240 000 anualmente.

Con respecto al mercado, se estima que la planta podrá trabajar al 75% de su capacidad instalada, trabajando durante 280 días/año. El concreto se vende en $160,00/m³.

Asumiendo que no hay cambios en el capital de trabajo durante el horizonte temporal y evaluación del proyecto, la administración de la empresa desea un informe acerca de la rentabilidad de dicha inversión.

Cómo una empresa de la industria de la construcción cuyo negocio es la producción y venta de concreto premezclado, después de siete años de pronto inicia un rápido crecimiento logrando posicionamiento en su sector.

INFORMACIÓN ADICIONAL ACERCA DE LA INVERSIÓN

1. Costo de la materia prima

Teniendo en cuenta la ubicación de la planta, se puede considerar el costo de la materia prima puesta en la planta a $95,00/m³ de concreto.

Los impuestos y seguros anuales, tanto de la planta como de cada volquete es de 3% de la inversión inicial. La necesidad de inversión en capital de trabajo inicial se estima en $500 000.

2. Necesidades de manos de obra

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Costo unitario/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Choferes</td>
<td>$25 000</td>
</tr>
<tr>
<td>4 Obreros</td>
<td>$15 000</td>
</tr>
<tr>
<td>1 Jefe de Planta</td>
<td>$40 000</td>
</tr>
</tbody>
</table>

Los impuestos y seguros sobre la planilla son de 12%.

3. Costos de operación y mantenimiento

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Costo unitario/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta</td>
<td>$25 000</td>
</tr>
<tr>
<td>Cada volquete</td>
<td>$15 000</td>
</tr>
</tbody>
</table>

4. Legislación tributaria

El impuesto sobre la renta es de 30%.

La actual legislación tributaria permite para los volquetes y el equipo una depreciación del 20% por año.

La tasa de rendimiento mínima exigida que la empresa desea obtener de su capital es de 10% después de impuestos.
PAUTAS DE SOLUCIÓN AL CASO

OPERACIONES PREVIAS

• **VALOR DE LA INVERSIÓN TOTAL**
 - Costo de la Planta: $1,160,000
 - Costo de cuatro volquetes (04 x 120,000): 480,000
 - Capital de Trabajo: 500,000

• **LIQUIDACIÓN DEL VALOR RESIDUAL**
 - Planta: $600,000
 - 04 volquetes (04 x 20,000): 80,000
 - Capital de Trabajo: 500,000

• **VOLUMEN DE VENTAS (V) = (Capac. de Prod.) (Nivel de Empleo) (días de operación) = (65)(0.75)(280) = 13,850 m3 de concreto/año.**

• **DEPRECIACIÓN (D)**
 - D = (180 000 + 480 000) - (20 000 + 80 000) X 20%
 - D = (660 000 - 100 000) X 0.2

Con estas operaciones preliminares elaboramos el estado de resultados en el cuadro Nº1.

CUADRO Nº 1
(EXPREASADO EN $)

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>CANT.</th>
<th>P. UNIT. S</th>
<th>AÑO 1-5</th>
<th>AÑO 6-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INGRESOS POR VENTAS</td>
<td>13,650 m3</td>
<td>160</td>
<td>2184 000</td>
<td>2184 000</td>
</tr>
<tr>
<td>II. COSTOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Materia prima</td>
<td>13,650 m3</td>
<td>95</td>
<td>1296 750</td>
<td>1296 750</td>
</tr>
<tr>
<td>· Mano de obra</td>
<td></td>
<td></td>
<td>200 000</td>
<td>200 000</td>
</tr>
<tr>
<td>· Choferes</td>
<td>04</td>
<td>25 000</td>
<td>100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>· Obreros</td>
<td>04</td>
<td>15 000</td>
<td>60 000</td>
<td>60 000</td>
</tr>
<tr>
<td>· Jefe de Planta</td>
<td>01</td>
<td>40 000</td>
<td>40 000</td>
<td>40 000</td>
</tr>
<tr>
<td>· Imp. y Seg. 12% (M.O.)</td>
<td></td>
<td></td>
<td>24 000</td>
<td>24 000</td>
</tr>
<tr>
<td>· Operación y Mto.</td>
<td></td>
<td></td>
<td>86 000</td>
<td>86 000</td>
</tr>
<tr>
<td>· Seg. Inv. 3% (Inv. Fija)</td>
<td></td>
<td></td>
<td>19 800</td>
<td>19 800</td>
</tr>
<tr>
<td>· Alq. De Terreno</td>
<td></td>
<td></td>
<td>240 000</td>
<td>240 000</td>
</tr>
<tr>
<td>· Depreciación</td>
<td></td>
<td></td>
<td>112 000</td>
<td></td>
</tr>
<tr>
<td>· Costo total</td>
<td></td>
<td></td>
<td>1977 550</td>
<td>1865 550</td>
</tr>
<tr>
<td>· Benef. antes de Imp.</td>
<td></td>
<td></td>
<td>206 450</td>
<td>318 450</td>
</tr>
<tr>
<td>· Impuestos 30%</td>
<td></td>
<td></td>
<td>61 856</td>
<td>96 095</td>
</tr>
<tr>
<td>· Benef. después de Imp.</td>
<td></td>
<td></td>
<td>144 596</td>
<td>222 355</td>
</tr>
</tbody>
</table>

En el cuadro Nº 1, merece la pena destacar que los costos generados disminuyen después de los cinco primeros años porque a pesar que la vida de la inversión es de 7 años (de la planta y los volquetes), estos se pueden depreciar en 5 años ($112,000/año).

"El análisis de sensibilidad permite a las empresas una adecuada elección de alternativas de inversión"

Asumiendo que todas las ventas y pagos que hace el negocio son al contado, no hay inventarios y el impuesto a la renta se paga en el periodo que se devenga, en estas circunstancias, resulta que el flujo de caja neto es igual al flujo de fondos netos sin financiamiento. Con la información disponible y los costos calculados se elabora el flujo de caja sin financiamiento (cuadro Nº 2) a efectos de ver su evolución a través de la vida del proyecto, y luego calcular el valor presente neto (VPN), la tasa interna de rentabilidad (TIR).
CUADRO N° 2
ECOPSA: FLUJO DE CAJA (CON DATOS INICIALES EN $)

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Año</th>
<th>0</th>
<th>1-5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingresos por ventas</td>
<td>0</td>
<td>1365 000</td>
<td>1365 000</td>
<td>1365 000</td>
<td></td>
</tr>
<tr>
<td>Costo de Inversión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>(180,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maquinaria y Equipo</td>
<td>(480,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital de trabajo</td>
<td>(500,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor Residual</td>
<td></td>
<td>600 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano de obra</td>
<td>200 000</td>
<td>200 000</td>
<td>200 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia prima</td>
<td>1296 750</td>
<td>1296 750</td>
<td>1296 750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imp. y Seg.</td>
<td>24 000</td>
<td>24 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo fijo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operación y Mtt.</td>
<td>85 000</td>
<td>85 000</td>
<td>85 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seg. De Inversión</td>
<td>19 800</td>
<td>19 800</td>
<td>19 800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alquiler de terreno</td>
<td>240 000</td>
<td>240 000</td>
<td>240 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciación</td>
<td>112 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganancias gravables</td>
<td>206 450</td>
<td>318 450</td>
<td>318 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impuestos (30%)</td>
<td>61 935</td>
<td>95 535</td>
<td>95 535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benef. después de Imp.</td>
<td>144 515</td>
<td>222 915</td>
<td>222 915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciación</td>
<td>112 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluido de Caja Econ.</td>
<td>(1160,000)</td>
<td>256 515</td>
<td>222 915</td>
<td>822 910</td>
<td></td>
</tr>
</tbody>
</table>

En la determinación del flujo de caja neto (FCN), el valor presente neto (VPN); la tasa interna de rendimiento (TIR) y el análisis de sensibilidad será muy útil el uso software Excel 7.0. En términos matemáticos, el VPN se define de la forma siguiente:

\[
VPN = -I_0 + \sum FCN_t/(1+k)^t
\]

Donde:

- \(I_0 \) = Dimensión o escala de la inversión inicial total

- \(FCN \) = Flujo de Caja Neto

- \(k \) = Tasa de rendimiento mínima exigida o tasa de descuento o costo de oportunidad del capital

- \(t \) = Vida útil del proyecto

Si el \(VPN < 0 \) \[I_0 = \sum FCN_t / (1+k)^t \]

Si la \(TIR > k \) cuándo el proyecto genera flujos de caja netos convencionales, se acepta el proyecto.

La determinación del valor presente del flujo de caja neto en el año \(t \), se realiza según el algoritmo presentado en la figura N°1.
FIGURA Nº 1
ALGORITMO PARA HALLAR EL FLUJO DE CAJA NETO Y SU VALOR PRESENTE
ANÁLISIS DE SENSIBILIDAD

A continuación desarrollamos el análisis de sensibilidad con el propósito de comprender su mecánica operativa y ponderar sus ventajas y desventajas. Para ello usamos los datos de las operaciones previas, del estado de resultados y del flujo de caja que se espera sean los más realistas y precisos posibles. Sin embargo, a pesar que dichos datos sean muy válidos, hay una probabilidad de que experimenten alguna variación o desviación potencial.

Los datos que pueden experimentar algún grado de variación son los siguientes:

a) Grado de utilización de la capacidad de producción (ventas de concreto)

La estimación inicial se basa en que las ventas alcanzan el 75% de la capacidad de producción; en efecto, ésta es la estimación más probable, pero se estima que existe un 30% de probabilidad de que sea del 65%. Y, además hay un 10% de probabilidad de que el nivel de ventas sea del 80% de la capacidad de producción.

b) Precio de venta del metro cúbico de concreto

La posibilidad de aparición de nuevos competidores en el mercado causaría una disminución del 5% en el precio de venta previsto. Se considera en un 20% la probabilidad subjetiva de entrada de nuevos competidores.

c) Costo de la materia prima

El costo estimado para la materia prima se basa en que nuestro proveedor tradicional de grava está gestionando la obtención de licencia para explotar una cantera próxima a nuestra nueva planta. Por ello, asignamos un 30% de probabilidad de que consiga dicha licencia y ello repercute en un aumento del 10% en el costo de las materias primas.

A continuación se resume el estudio de la sensibilidad del proyecto respecto a cada uno de los factores en juego (ver Cuadro N° 3).

<table>
<thead>
<tr>
<th>CUADRO N° 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOPSA: RESUMEN DE LOS FLUJOS DE CAJA (EN $)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flujo de Caja</th>
<th>Año</th>
<th>0</th>
<th>1 al 5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso base ($A=0)</td>
<td></td>
<td>(1160 000)</td>
<td>256 515</td>
<td>222 915</td>
<td>822 915</td>
</tr>
<tr>
<td>Sin ningún cambio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65% de utilización de capacidad ($A=-5%)</td>
<td></td>
<td>(1160 000)</td>
<td>173 705</td>
<td>140 105</td>
<td>740 105</td>
</tr>
<tr>
<td>Sin otros cambios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80% de utilización de capacidad ($A=+5%)</td>
<td></td>
<td>(1160 000)</td>
<td>298 620</td>
<td>265 020</td>
<td>865 020</td>
</tr>
<tr>
<td>Sin otros cambios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precio de venta $1,520 por m$³ ($A=-5%)</td>
<td></td>
<td>(1160 000)</td>
<td>180 075</td>
<td>146 475</td>
<td>746 475</td>
</tr>
<tr>
<td>Sin otros cambios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precio de la Materia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prima $1,045 ($A=+5%)</td>
<td></td>
<td>(1160 000)</td>
<td>165 742</td>
<td>132 142</td>
<td>732 142</td>
</tr>
<tr>
<td>Sin otros cambios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Sensibilidad de la inversión a una variación en las ventas
Una disminución en la demanda se refleja en lo siguiente:
- **Directamente, en los ingresos.**
- **Indirectamente, en el costo de las materias primas, ya que éstas varían al variar las ventas y, por tanto, la producción.**

2. Sensibilidad de la inversión a una variación en el precio de venta.
Una alteración en el precio de venta afectará solamente a los ingresos.

3. Sensibilidad de la Inversión a una variación en el costo de la materia prima
Una variación en dicho factor afecta solamente a los costos variables, tal como se puede apreciar en el cuadro correspondiente.

A continuación se presenta el resumen del análisis de sensibilidad en los cuadros Nº 4, 5 y 6.

CUADRO Nº 4

SENSIBILIDAD DE INVERSION A LA DEMANDA (VENTAS)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Grado de Utilización</th>
<th>Probabilidad</th>
<th>Valor Presente Neto</th>
<th>TIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservador</td>
<td>65%</td>
<td>30%</td>
<td>42 623</td>
<td>9.2%</td>
</tr>
<tr>
<td>Probable</td>
<td>75%</td>
<td>60%</td>
<td>360 515</td>
<td>17.7%</td>
</tr>
<tr>
<td>Optimista</td>
<td>80%</td>
<td>10%</td>
<td>565 488</td>
<td>22%</td>
</tr>
</tbody>
</table>

CUADRO Nº 5

SENSIBILIDAD DE INVERSION AL PRECIO DE VENTA

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Precio de Venta</th>
<th>Probabilidad</th>
<th>Valor Presente Neto</th>
<th>TIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservador</td>
<td>152</td>
<td>20%</td>
<td>-116 389</td>
<td>9.7%</td>
</tr>
<tr>
<td>Probable</td>
<td>100</td>
<td>80%</td>
<td>360 515</td>
<td>17.7%</td>
</tr>
</tbody>
</table>

CUADRO Nº 6

SENSIBILIDAD DE INVERSION A UNA VARIACIÓN EN EL COSTO DE LA MATERIA PRIMA

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Costo de la Materia</th>
<th>Probabilidad</th>
<th>Valor Presente Neto</th>
<th>TIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservador</td>
<td>104.5</td>
<td>30%</td>
<td>-81 404</td>
<td>8.20%</td>
</tr>
<tr>
<td>Probable</td>
<td>95</td>
<td>70%</td>
<td>360 512</td>
<td>17.70%</td>
</tr>
</tbody>
</table>

CONCLUSIONES DEL ANALISIS DE SENSIBILIDAD

Naturalmente, lo que probablemente no sea muy realista en el análisis de este caso es el supuesto de que sólo una de las variables, en forma aislada, experimenta variaciones sin otros cambios (*Ceteris paribus*).

Según lo que hemos visto en nuestro cuadro inicial del flujo de caja, la TIR (Tasa Interna de Rentabilidad o Tasa de Retorno) del proyecto asciende a 17.70%.

Para el análisis de la sensibilidad de la rentabilidad (TIR) del proyecto ante posibles y razonables variaciones de diferentes factores o variables, tenemos que:

- **Sensibilidad a la demanda**
 El caso inicial se basa en un grado de utilización del 75% de la capacidad instalada de producción. Sin embargo, si las ventas descienden a un 75% de la capacidad instalada, la TIR baja a 9.20%. Además, si las ventas suben al 80% de la capacidad instalada, la TIR aumenta hasta el 22%.

- **Sensibilidad al precio de venta**
 En el caso base se ha supuesto un precio de venta de $160/m³; pero si dicho precio baja en un
5% ($152 / m³), entonces la TIR disminuye del 17,70% a 9,70%.

• Sensibilidad al costo de la materia prima

Si se inicia con un precio de costo de la materia prima de $95/m³, y luego se incrementa en un 10% ($104,5/m³) la TIR disminuye hasta el 8,20%.

• Decisión ante las diferentes alternativas

La gerencia de la empresa, consciente de que el proyecto implica un riesgo considerable (o sea existe la probabilidad de que la tasa interna oscile; de una TIR del 17,70%, muy superior al 10% exigido, puede llegar a descender hasta el 8,20%) antes de decidir la ejecución de la construcción de la nueva planta; debe estudiar otras alternativas frente al proyecto, así como la elaboración de una distribución de probabilidades de la rentabilidad del proyecto.

CONSTRUCCION DE LA
DISTRIBUCION DE PROBABILIDAD
DE LA TASA INTERNA DE RETORNO

Para iniciar el análisis, en un entorno de incertidumbre, veremos como se construye una distribución de probabilidad de la TIR, para el caso propuesto. Con este fin y a efectos didácticos se establece un cuadro para los posibles valores alternativos de las variables y sus correspondientes probabilidades (Cuadro N° 7)

CUADRO N° 7
ECOPSA - VALORES ALTERNATIVOS Y PROBABILIDADES

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>CLAVE</th>
<th>VALORES ALTERNATIVOS</th>
<th>PROBABILIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel de Empleo de la capacidad instalada</td>
<td>C₁, C₂, C₃</td>
<td>80% de la capacidad</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75% de la capacidad</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65% de la capacidad</td>
<td>0,30</td>
</tr>
<tr>
<td>Precio de Venta</td>
<td>P₁, P₂</td>
<td>$160 / m³</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$152 / m³</td>
<td>0,20</td>
</tr>
<tr>
<td>Precio de Materia Prima</td>
<td>M₁, M₂</td>
<td>$95 / m³</td>
<td>0,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$104,5 / m³</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Combinando los diferentes valores alternativos que puedan presentarse para cada una de las variables, llegamos al cuadro de valores probables de la tasa interna de retorno y la asignación de probabilidades. Para obtener tal cuadro tendríamos que calcular el Cuadro de los Flujos de Caja y su correspondiente tasa interna de retorno para cada una de las doce posibles combinaciones de valores de las variables que hemos elegido como aleatorias o inciertas (Ver cuadros N° 8-A, 8-B y 8-C)
CUADRO Nº 8-A
VALORES PROBABLES DE LA TASA INTERNA DE RENTABILIDAD Y ASIGNACIÓN DE PROBABILIDADES

<table>
<thead>
<tr>
<th>Alternativas</th>
<th>Claves</th>
<th>C</th>
<th>P</th>
<th>M</th>
<th>TIR</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1P1M1</td>
<td>80</td>
<td>160</td>
<td>95</td>
<td>22,0</td>
<td>0,056</td>
</tr>
<tr>
<td>2</td>
<td>C1P1M2</td>
<td>80</td>
<td>160</td>
<td>104,5</td>
<td>11,5</td>
<td>0,024</td>
</tr>
<tr>
<td>3</td>
<td>C1P2M1</td>
<td>80</td>
<td>152</td>
<td>95</td>
<td>12,0</td>
<td>0,014</td>
</tr>
<tr>
<td>4</td>
<td>C1P2M2</td>
<td>80</td>
<td>152</td>
<td>104,5</td>
<td>3,3</td>
<td>0,006</td>
</tr>
<tr>
<td>5</td>
<td>C2P1M1</td>
<td>75</td>
<td>160</td>
<td>95</td>
<td>17,7</td>
<td>0,336</td>
</tr>
<tr>
<td>6</td>
<td>C2P1M2</td>
<td>75</td>
<td>160</td>
<td>104,5</td>
<td>8,2</td>
<td>0,144</td>
</tr>
<tr>
<td>7</td>
<td>C2P2M1</td>
<td>75</td>
<td>152</td>
<td>95</td>
<td>9,7</td>
<td>0,084</td>
</tr>
<tr>
<td>8</td>
<td>C2P2M2</td>
<td>75</td>
<td>152</td>
<td>104,5</td>
<td>Negat.</td>
<td>0,036</td>
</tr>
<tr>
<td>9</td>
<td>C3P1M1</td>
<td>65</td>
<td>160</td>
<td>95</td>
<td>9,2</td>
<td>0,168</td>
</tr>
<tr>
<td>10</td>
<td>C3P1M2</td>
<td>65</td>
<td>160</td>
<td>104,5</td>
<td>0,1</td>
<td>0,072</td>
</tr>
<tr>
<td>11</td>
<td>C3P2M1</td>
<td>65</td>
<td>152</td>
<td>95</td>
<td>2,0</td>
<td>0,042</td>
</tr>
<tr>
<td>12</td>
<td>P3P2M2</td>
<td>65</td>
<td>152</td>
<td>104,5</td>
<td>Negat.</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

CUADRO Nº 8-B
DISTRIBUCIÓN DE PROBABILIDAD (%)

<table>
<thead>
<tr>
<th>T.I.R. Rango de Valores</th>
<th>Simple</th>
<th>Acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 0</td>
<td>5,4</td>
<td>---</td>
</tr>
<tr>
<td>De 0 a 2,4</td>
<td>11,4</td>
<td>16,8</td>
</tr>
<tr>
<td>De 2,5 a 4,9</td>
<td>0,6</td>
<td>17,4</td>
</tr>
<tr>
<td>De 5 a 7,4</td>
<td>---</td>
<td>17,4</td>
</tr>
<tr>
<td>De 7,5 a 9,9</td>
<td>39,6</td>
<td>57,0</td>
</tr>
<tr>
<td>De 10 a 12,4</td>
<td>4,0</td>
<td>61,0</td>
</tr>
<tr>
<td>De 12,5 a 14,9</td>
<td>---</td>
<td>61,0</td>
</tr>
<tr>
<td>De 15 a 17,4</td>
<td>---</td>
<td>61,0</td>
</tr>
<tr>
<td>De 17,5 a 19,9</td>
<td>33,6</td>
<td>94,6</td>
</tr>
<tr>
<td>De 20 a 22,4</td>
<td>5,4</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

O, alternativamente:

CUADRO Nº 8-C
DISTRIBUCIÓN DE PROBABILIDAD (%)

<table>
<thead>
<tr>
<th>T.I.R. Rango de Valores</th>
<th>Simple</th>
<th>Acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 0</td>
<td>5,4</td>
<td>5,4</td>
</tr>
<tr>
<td>De 0 a 4,9</td>
<td>12,0</td>
<td>17,4</td>
</tr>
<tr>
<td>De 5 a 9,9</td>
<td>39,6</td>
<td>57,0</td>
</tr>
<tr>
<td>De 10 a 14,9</td>
<td>4,0</td>
<td>61,0</td>
</tr>
<tr>
<td>De 15 a 19,9</td>
<td>33,6</td>
<td>94,6</td>
</tr>
<tr>
<td>De 20 a 24,9</td>
<td>5,4</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>
Este caso simple que hemos realizado, en base a las hipótesis establecidas, nos permite deducir las conclusiones siguientes:

- Hay una probabilidad de 57% de que la TIR del proyecto sea inferior al 10% exigido como mínimo por la empresa.

- Hay una probabilidad de 39% (100% - 61%) de que la TIR supere el 15% y solamente una pequeña probabilidad de (5,40%) de que la TIR supere el 20%, punto que se hace atractiva la inversión.

- Tal como podemos apreciar, una TIR de 17% puede disminuir hasta el 8,20%; lo cual nos permite tener un mayor conocimiento del proyecto de inversión a la hora de tomar decisiones, teniendo como referencia el "período de probabilidades de la TIR". Pero el caso ensayado resulta a todas luces demasiado simplificado, en el que sólo se ha considerado tres variables (demanda, precio de venta y precio de la materia prima) con sólo tres y dos valores alternativos cada una. Es obvio que si tomamos un número mayor de variables con mayor número de valores alternativos cada una, el método resultará inviable, debido al enorme número de operaciones (derivado de todas las combinaciones posibles) generadas, lo cual haría al método muy costoso y sin utilidad práctica.

- Por ejemplo: si en el caso estudiado, cada una de las tres variables seleccionadas permite cinco valores alternativos, obtenemos 125 (5^3 = 125) combinaciones posibles, lo cual implica calcular 125 flujos de caja y 125 TIRs. Es más, si se afronta un problema más real donde la rentabilidad es afectada por cinco valores inciertos (o sea cinco variables de acción) cada una con 05 valores alternativos, obtenemos 3125 (5^5 = 3125) combinaciones posibles. En consecuencia, en tales casos, es necesario contar con un método que supere tales inconvenientes sin que ello signifique perder precisión o alcance en las conclusiones. En el tratamiento de tales casos será ventajoso el enfoque y aplicación de los modelos de simulación.

- Antes de terminar es preciso mostrar una de las formas de presentar el análisis de sensibilidad que permite a las empresas una adecuada elección de alternativas de inversión (ver Cuadro Nº 9).

CUADRO Nº 9
ESQUEMA PARA PRESENTAR EL ANALISIS DE SENSIBILIDAD

<table>
<thead>
<tr>
<th>Анализ SENSIBILIDAD</th>
<th>Tasa Interna de rentabilidad (TIR)</th>
<th>Periodo de recuperación (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Variación</td>
</tr>
<tr>
<td>Precios de venta</td>
<td>28.23</td>
<td>+1.50</td>
</tr>
<tr>
<td>± 5%</td>
<td>25.11</td>
<td>-1.52</td>
</tr>
<tr>
<td>Coste de la Planta</td>
<td>25.5%</td>
<td>-0.09</td>
</tr>
<tr>
<td>± 5%</td>
<td>25.5%</td>
<td>-0.08</td>
</tr>
<tr>
<td>Coste de Inversión</td>
<td>24.57%</td>
<td>-1.96</td>
</tr>
<tr>
<td>Fija</td>
<td>26.53%</td>
<td>+1.07</td>
</tr>
<tr>
<td>± 5%</td>
<td>27.70%</td>
<td>-0.03</td>
</tr>
<tr>
<td>Coste de Fabricación</td>
<td>25.14%</td>
<td>-0.49</td>
</tr>
<tr>
<td>± 5%</td>
<td>25.16%</td>
<td>-0.53</td>
</tr>
<tr>
<td>Benef. Bruto</td>
<td>26.63%</td>
<td>+1.05</td>
</tr>
<tr>
<td>± 5%</td>
<td>25.59%</td>
<td>-1.04</td>
</tr>
</tbody>
</table>

El cuadro expresa como un cambio en 5%, arriba/abajo en una serie de parámetros, influye en la escala del TIR y el periodo de recuperación de la inversión.