Moraxella catarrhalis
en las Infecciones Respiratorias Altas

JOSÉ GUEVARA1, JORGE NAVACH1, ROSALUZ ARÓSTEGUI1, WINNI AGURTO1, ALFREDO GOYTENDÍA2, MARIO CHONG1, HERNÁN SÁNCHEZ1, JUAN CHAPARRO1, EDUARDO CABRERA2, LUCÍA REYES1, HÉRCULES ALCALÁ1.

1Laboratorio de Microbiología en el Hospital A. Loayza, Facultad de Medicina U.N.M.S.M.
2Hospital Arzobispo Loayza, Servicio de Otorrinolaringología. 1 Hospital San Bartolomé

RESUMEN
Durante 12 meses se estudiaron las infecciones otorrinolaringológicas en dos hospitales de Lima, tanto en niños como en adultos, con especial énfasis en Moraxella catarrhalis. Se tomaron 318 muestras de igual número de pacientes, de los cuales el 40% resultó negativo a bacterias patógenas. Del 60% restante se identificó Staphylococcus aureus como el causante del 31% de las infecciones, seguido de Streptococcus pneumoniae con el 19%, luego Moraxella catarrhalis con 16% y en cuarto lugar Haemophilus influenzae con 10%

Rinorrea purulenta fue el principal síntoma en todos los casos.

Streptococcus pneumoniae, Moraxella catarrhalis y Haemophilus influenzae se aislaron mayoritariamente en niños menores de 14 años.

El 15% de los S. aureus fueron oxacilino-resistentes, el 11% de S. pneumoniae fueron resistentes a la penicilina, el 70% de M. catarrhalis eran productoras de β-lactamasa y el 5% de H. influenzae también producían β-lactamasa.

Nuestros resultados permiten orientar mejor el tratamiento antibiótico de las infecciones respiratorias altas.

Palabras claves: Bacterias aeróbicas, Microbiología, Infecciones Bacterianas, Enfermedades Respiratorias.

Moraxella catarrhalis IN UPPER RESPIRATORY INFECTIONS

SUMMARY
Otorhinolaryngologic diseases in two Hospitals of Lima, both in children and in adults, were studied looking for Moraxella catarrhalis along 12 months. 318 samples from the same number of patients were obtained; 40% of which were negative for pathogenic bacteria. Of the remaining 60%, 31% showed Staphylococcus aureus as the causative agent, followed by Streptococcus pneumoniae in the 19%, Moraxella catarrhalis in 16% and Haemophilus influenzae in 10%.

The most important symptom was purulent rhinorrhea.

Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae were isolated, in most of cases, from boys younger than 14 years old.

15% of the S. aureus isolated strains were oxacillin-resistant, 11% of the S. pneumoniae isolated strains were penicillin-resistant, and 70% of the M. catarrhalis as well as 5% of the H. influenzae isolated strains were β-lactamase producers.

Our results lead us to achieve a well-oriented antimicrobial treatment to the management of upper respiratory infections.

Key words: Aerobic Bacteria, Microbiology, Bacterial Infections, Respiratory Tract Diseases.

Correspondencia:
Dr. José Guevara Duncan
Instituto de Medicina Tropical "Daniel A. Carrión"
Apartado 101 · 38. Lima 1 · Perú
INTRODUCCIÓN

Moraxella catarrhalis (antes Branhamella) se identifica como diplococos gram negativos, oxidasa positivos, con determinada característica de sus colonias que son descritas como no pigmentadas o grises, opacas, lisas, o con textura friable sin adherirse al agar y de 1-3 mm. de diámetro (4).

Fue considerada no patógena en los años de 1960 y 1970, y desde 1980 es uno de los más importantes patógenos en las infecciones respiratorias (5,6,7). Ha sido encontrada responsable de numerosos cuadros infecciosos como: otitis media y sinusitis maxilar en niños (8,9), laringitis, bronquitis y neumonías (10,11,12), neumonía bacteriémica (13,14), peritonitis (15), infección de herida torácica (16), sepsis (17,18), abscesos subpleurales (19), toxemia persistente en niños (20) y traqueítis (21).

Su importancia clínica ha llevado a desarrollar un medio de cultivo selectivo que ha demostrado efectividad en aislar M. catarrhalis (22), y se han observado el rápido incremento de cepas productoras de β-lactamasas (9).

En el frotis del especímen coloreado por gram es característica la observación de numerosos polimorfonucleares con diplococos gram negativos intra y extracelulares. Algunas cepas se desarrollan ocasionalmente en Thayer - Martin modificada, es productora de oxidasa y no metaboliza glucosa, maltosa, sacarosa, lactosa y levulosa (29).

MATERIAL Y MÉTODOS

En los consultorios externos de otorrinolaringología del Hospital Docente Materno-Infantil San Bartolomé y del Hospital Nacional Arzobispo Loayza, se seleccionaron los pacientes para ingresar al estudio.

El especialista que atendía al paciente, se encargó de tomar la muestra, la cual fue remitida inmediatamente al laboratorio de microbiología de la Universidad de San Marcos en el Hospital A. Loayza, y llenando los datos clínicos en una ficha creada especialmente para el estudio.

Las muestras fueron procesadas inmediatamente en el laboratorio, comprendiendo el estudio el examen microscópico coloreado con azul de metileno para buscar leucocitos, coloración de gram y cultivo en los medios necesarios para detectar al microorganismo causal de la infección de acuerdo a la metodología estándar, incluyendo el agar selectivo para Moraxella catarrhalis (26). Luego se hicieron las pruebas diferenciales de acuerdo al aislamiento incluyendo la detección de betalactamasas con discos de nitrocefin. El antibiograma fue realizado, según la bacteria aislada, con los antibióticos de interés.

RESULTADOS

Del 15 de junio de 1995 al 15 de junio de 1996 se tomaron 318 muestras por hisopado o aspiración según el caso, de los cuales 160 procedían del Hospital A. Loayza y 158 del Hospital San Bartolomé.

La edad de los pacientes estuvo comprendida de 16 días a 65 años siendo del sexo femenino el 56% y masculino el 44%.

El 45% de las muestras fueron de pacientes menores de 14 años y el 55% de mayores de 14 años.

De las 318 muestras obtenidas, 127 correspondieron a secreción faringó-amigdaliana, 91 a secreción nasal, 84 a secreción otíca, 14 a secreción rinofaringea y 2 a secreción adenoidea. Fueron negativas a géneres patógenos 125 muestras (40%). El resultado de las 193 muestras positivas podemos apreciarlas en la Tabla N° 1.

<table>
<thead>
<tr>
<th>Tabla N° 1.- Diagnóstico Microbiológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Negativos</td>
</tr>
<tr>
<td>2. Staphylococcus aureus</td>
</tr>
<tr>
<td>3. Streptococcus pneumoniae (neumococo)</td>
</tr>
<tr>
<td>4. Moraxella catarrhalis</td>
</tr>
<tr>
<td>5. Haemophilus influenzae</td>
</tr>
<tr>
<td>6. Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>7. Klebsiella pneumoniae</td>
</tr>
<tr>
<td>8. Klebsiella ozaenae</td>
</tr>
<tr>
<td>9. Enterococos</td>
</tr>
<tr>
<td>10. Escherichia coli</td>
</tr>
<tr>
<td>11. Proteus mirabilis</td>
</tr>
<tr>
<td>12. Pseudomonas spp.</td>
</tr>
<tr>
<td>13. Haemophilus spp.</td>
</tr>
<tr>
<td>14. Candida albicans</td>
</tr>
<tr>
<td>15. Aspergillus niger</td>
</tr>
<tr>
<td>16. Corynebacterium spp.</td>
</tr>
<tr>
<td>17. Enterobacter agglomerans</td>
</tr>
<tr>
<td>18. Morganella morganii</td>
</tr>
<tr>
<td>19. Enterobacter aerogenes</td>
</tr>
<tr>
<td>20. Estreptococcus α-hemolítico (sec nasal)</td>
</tr>
<tr>
<td>21. Estreptococcus β-hemolítico</td>
</tr>
<tr>
<td>22. Acinetobacter</td>
</tr>
<tr>
<td>23. Neisseria meningitidis</td>
</tr>
<tr>
<td>24. Enterobacter intermedium</td>
</tr>
<tr>
<td>25. Klebsiella terrigena</td>
</tr>
<tr>
<td>26. Enterobacter gergoviae</td>
</tr>
<tr>
<td>27. Actinobacillus spp.</td>
</tr>
<tr>
<td>28. Edwardsiella hoshiniae</td>
</tr>
<tr>
<td>29. Klebsiella oxytoca</td>
</tr>
<tr>
<td>30. Buddicia aquatica</td>
</tr>
<tr>
<td>31. Klebsiella ornithinolytica</td>
</tr>
<tr>
<td>32. Enterobacter cloaceae</td>
</tr>
<tr>
<td>33. Scopulariopsis</td>
</tr>
<tr>
<td>34. Enterobacter spp.</td>
</tr>
<tr>
<td>35. Vibrio halolfíco H, S</td>
</tr>
<tr>
<td>36. Aeromonas spp.</td>
</tr>
<tr>
<td>37. Citoobacter freundii</td>
</tr>
<tr>
<td>38. Fusarium</td>
</tr>
<tr>
<td>39. Candida spp.</td>
</tr>
<tr>
<td>40. Klebsiella spp.</td>
</tr>
</tbody>
</table>

193
Staphylococcus aureus (Tabla N°2) fue la bacteria más aislada en 59 cultivos (31% de los positivos). Predominó su aislamiento en pacientes de sexo femenino (58%) de una edad mayor de 14 años en el 56% con discreta ventaja de procedencia del Hospital San Bartolomé, 53%. La muestra de la que se obtuvo mayores aislamientos fue de secreción faringoamigdaliana con el 42% y en segundo lugar de secreción ótica con el 29%. Su aislamiento se produjo en todas las estaciones del año, con discreta ventaja en otoño con el 29%. Los síntomas que predominaron en los pacientes fueron secreción faríngea con el 37%, luego rinorrea purulenta con 34% y otorrea con el 27%. En 12 casos (20%), se podría interpretar su presencia como simple colonizador por las pocas colonias que desarrollaron, mientras que en 16 (27%) estuvo acompañada con otras bacterias patógenas y en 33 (56%) fue el único agente patógeno aislado con significativo desarrollo. De los 59 aislamientos, en 18 no se determinó su susceptibilidad antimicrobiana y en los restantes 41 se encontró un 15% de resistencia a la oxacilina.

<table>
<thead>
<tr>
<th>N° de aislamientos: 59 (31%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
</tr>
<tr>
<td>A. Loayza</td>
</tr>
<tr>
<td>San Bartolomé</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>Edad:</td>
</tr>
<tr>
<td>≤ 14 años</td>
</tr>
<tr>
<td>> 14 años</td>
</tr>
<tr>
<td>Origen de la muestra</td>
</tr>
<tr>
<td>Secreción faringo-amigdaliana</td>
</tr>
<tr>
<td>Secreción de oído</td>
</tr>
<tr>
<td>Secreción nasal</td>
</tr>
<tr>
<td>Secreción rino-faríngea</td>
</tr>
<tr>
<td>Estación del año</td>
</tr>
<tr>
<td>Otoño</td>
</tr>
<tr>
<td>Invierno</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Verano</td>
</tr>
<tr>
<td>Síntomas y signos</td>
</tr>
<tr>
<td>Secreción faríngea</td>
</tr>
<tr>
<td>Rinorrea purulenta</td>
</tr>
<tr>
<td>Otorrea</td>
</tr>
<tr>
<td>Otalgia</td>
</tr>
<tr>
<td>Único agente patógeno aislado</td>
</tr>
<tr>
<td>Cultivo mixto (con otro patógeno)</td>
</tr>
<tr>
<td>Probable colonizador</td>
</tr>
<tr>
<td>Oxacilino resistente</td>
</tr>
</tbody>
</table>

Streptococcus pneumoniae (Tabla N°3) fue la segunda bacteria más aislada con 36 casos (19%) preferentemente en el sexo masculino con el 67%, en 14 casos de los 36% procediendo del Hospital San Bartolomé el 67% de los casos. De secreción nasal se obtuvo el mayor número de aislamientos (55%), siendo las estaciones de invierno y verano en las que se obtuvieron los mayores aislamientos con el 36% y 31% respectivamente.

Rinorrea purulenta presentaron la mayoría de los pacientes con el 72%. En 27 casos (75%) se aisló como único agente patógeno, mientras que en 9 (25%) estuvo acompañado con otras bacterias patógenas.

De 27 aislamientos se probó la resistencia a la penicilina (con discos de oxacilina de 1 μg) encontrándose un 11% de resistencia. De 24 aislamientos se determinó su resistencia a la eritromicina, resultando el 8% resistentes.

<table>
<thead>
<tr>
<th>N° de aislamientos: 36 (19%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
</tr>
<tr>
<td>A. Loayza</td>
</tr>
<tr>
<td>San Bartolomé</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>Edad:</td>
</tr>
<tr>
<td>≤ 14 años</td>
</tr>
<tr>
<td>> 14 años</td>
</tr>
<tr>
<td>Origen de la muestra</td>
</tr>
<tr>
<td>Secreción nasal</td>
</tr>
<tr>
<td>Secreción de oído</td>
</tr>
<tr>
<td>Secreción faringo-amigdaliana</td>
</tr>
<tr>
<td>Secreción rino-faríngea</td>
</tr>
<tr>
<td>Estación del año:</td>
</tr>
<tr>
<td>Invierno</td>
</tr>
<tr>
<td>Verano</td>
</tr>
<tr>
<td>Otoño</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Síntomas y signos:</td>
</tr>
<tr>
<td>Rinorrea purulenta</td>
</tr>
<tr>
<td>Otorrea</td>
</tr>
<tr>
<td>Secreción faríngea</td>
</tr>
<tr>
<td>Único agente patógeno aislado</td>
</tr>
<tr>
<td>Cultivo mixto (con otro patógeno)</td>
</tr>
<tr>
<td>Penicilina resistente</td>
</tr>
<tr>
<td>Eritromicina resistente</td>
</tr>
</tbody>
</table>
Nuestro objetivo principal en el trabajo, *Moraxella catarrhalis* (Tabla N° 4), se asistió en tercer lugar con el 16% de los casos positivos. Discretamente más aislada en el sexo masculino (53%) y los menores de 14 años lo tuvieron en un 83%, procediendo los pacientes del Hospital San Bartolomé en el 83% de los casos. Su mayor aislamiento se produjo de secreción nasal (60%), presentándose el 47% de los casos en primavera. El síntoma que presentaron principalmente los pacientes fue rinorrea purulenta con el 77% de los casos. Se presentó con otras bacterias patógenas en el 40% de los cultivos, siendo el único agente patógeno aislado en el 60% de los casos. El 70% de *Moraxella catarrhalis* fueron productores de betalactamasa.

<table>
<thead>
<tr>
<th>N° de aislamientos : 30 (16%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
</tr>
<tr>
<td>A. Loayza</td>
</tr>
<tr>
<td>San Bartolomé</td>
</tr>
<tr>
<td>17%</td>
</tr>
<tr>
<td>83%</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>53%</td>
</tr>
<tr>
<td>47%</td>
</tr>
<tr>
<td>Edad:</td>
</tr>
<tr>
<td>≤ 14 años</td>
</tr>
<tr>
<td>> 14 años</td>
</tr>
<tr>
<td>83%</td>
</tr>
<tr>
<td>17%</td>
</tr>
<tr>
<td>Origen de la muestra</td>
</tr>
<tr>
<td>Secreción nasal</td>
</tr>
<tr>
<td>Secreción faringuo-amigdalina</td>
</tr>
<tr>
<td>Secreción rino-faringea</td>
</tr>
<tr>
<td>Secreción de oído</td>
</tr>
<tr>
<td>Secreción adenoides</td>
</tr>
<tr>
<td>60%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>13%</td>
</tr>
<tr>
<td>3,5%</td>
</tr>
<tr>
<td>3,5%</td>
</tr>
<tr>
<td>Estación del año</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Invierno</td>
</tr>
<tr>
<td>Verano</td>
</tr>
<tr>
<td>Otoño</td>
</tr>
<tr>
<td>47%</td>
</tr>
<tr>
<td>23%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>Síntomas y signos</td>
</tr>
<tr>
<td>Rinorrea purulenta</td>
</tr>
<tr>
<td>Secreción faringea</td>
</tr>
<tr>
<td>Rinorrea serosa</td>
</tr>
<tr>
<td>Otorrea</td>
</tr>
<tr>
<td>77%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>3,5%</td>
</tr>
<tr>
<td>Único agente patógeno aislado</td>
</tr>
<tr>
<td>Cultivo mixto (con otro patógeno)</td>
</tr>
<tr>
<td>60%</td>
</tr>
<tr>
<td>40%</td>
</tr>
<tr>
<td>Productor de Betalactamasa</td>
</tr>
<tr>
<td>70%</td>
</tr>
</tbody>
</table>

Haemophilus influenzae (Tabla N° 5) ocupó el cuarto lugar con 20 casos (10%), el 70% de los aislamientos se produjo en pacientes del sexo masculino, siendo el 80% de los pacientes menores de 14 años y procedieron el 85% de los casos del Hospital San Bartolomé. El tipo de muestra del que más se aisló fue secreción nasal (55% de los casos), siendo las estaciones de verano e invierno en las que más se aislaron con 40% y 35% respectivamente. La rinorrea purulenta fue el síntoma que presentaron el 70% de los casos. En el 75% de los cultivos se aisló como único agente patógeno. De los 20 aislamientos, a 19 se les hizo la prueba con nitrocefin resultando el 5% productores de β-lactamasa.

<table>
<thead>
<tr>
<th>N° de aislamientos : 20 (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
</tr>
<tr>
<td>A. Loayza</td>
</tr>
<tr>
<td>San Bartolomé</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>85%</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>70%</td>
</tr>
<tr>
<td>30%</td>
</tr>
<tr>
<td>Edad:</td>
</tr>
<tr>
<td>≤ 14 años</td>
</tr>
<tr>
<td>> 14 años</td>
</tr>
<tr>
<td>80%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>Origen de la muestra</td>
</tr>
<tr>
<td>Secreción nasal</td>
</tr>
<tr>
<td>Secreción de oído</td>
</tr>
<tr>
<td>Secreción faringuo-amigdalina</td>
</tr>
<tr>
<td>Secreción rino-faringea</td>
</tr>
<tr>
<td>Secreción adenoides</td>
</tr>
<tr>
<td>55%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>5%</td>
</tr>
<tr>
<td>5%</td>
</tr>
<tr>
<td>Estación del año</td>
</tr>
<tr>
<td>Verano</td>
</tr>
<tr>
<td>Invierno</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Otoño</td>
</tr>
<tr>
<td>40%</td>
</tr>
<tr>
<td>35%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>Síntomas y signos</td>
</tr>
<tr>
<td>Rinorrea purulenta</td>
</tr>
<tr>
<td>Secreción faringea</td>
</tr>
<tr>
<td>Otorrea</td>
</tr>
<tr>
<td>70%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>15%</td>
</tr>
<tr>
<td>Único agente patógeno aislado</td>
</tr>
<tr>
<td>Cultivo mixto (con otro patógeno)</td>
</tr>
<tr>
<td>75%</td>
</tr>
<tr>
<td>25%</td>
</tr>
<tr>
<td>Productor de Betalactamasa</td>
</tr>
<tr>
<td>5%</td>
</tr>
</tbody>
</table>
Pseudomonas aeruginosa (Tabla N° 6) ocupó el 5° lugar con 15 aislamientos (8%) procediendo el 80% de pacientes del sexo femeni-no y el 66% fueron pacientes mayores de 14 años. El 67% de los casos fueron del Hospital Loyaza. Su mayor aislamiento se produjo de muestras de oído con el 80%. Se aisló en todas las estaciones del año siendo en verano discretamente mayor con el 33% de los casos. El 80% de los pacientes tenían otorrea y también en el 80% de los casos fue el único agente aislado. A 14 de los 15 aislamientos se probó su resistencia a cefazidime encontrándose 14% de resistencia y 7% de resistencia a ciprofloxacina.

<table>
<thead>
<tr>
<th>N° de aislamientos : 15 (8%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
</tr>
<tr>
<td>A. Loyaza</td>
</tr>
<tr>
<td>San Bartolomé</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>Edad:</td>
</tr>
<tr>
<td>≤ 14 años</td>
</tr>
<tr>
<td>> 14 años</td>
</tr>
<tr>
<td>Origen de la muestra</td>
</tr>
<tr>
<td>Secreción de oído</td>
</tr>
<tr>
<td>Secreción nasal</td>
</tr>
<tr>
<td>Estación del año</td>
</tr>
<tr>
<td>Verano</td>
</tr>
<tr>
<td>Otoño</td>
</tr>
<tr>
<td>Invierno</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Síntomas y signos</td>
</tr>
<tr>
<td>Otorrea</td>
</tr>
<tr>
<td>Rinorrea purulenta</td>
</tr>
<tr>
<td>Único agente patógeno aislado</td>
</tr>
<tr>
<td>Cultivo mixto (con otro patógeno)</td>
</tr>
<tr>
<td>Ceftazidime resistente</td>
</tr>
<tr>
<td>Ciprofloxacina resistente</td>
</tr>
</tbody>
</table>

DISCUSIÓN

En los últimos años se ha despertado un especial interés por **Moraxella catarrhalis** por encontrarlo como agente patógeno principalmente en el tracto respiratorio, aunque ha sido encontrado en la flora normal respiratoria alta de niños desde el 33% hasta el 54% (5,6,9,20), mientras que en adultos sanos sólo del 2,4% al 11,7% (5,6,8,25,26) y en personas mayores de 60 años 26,5% (8).

El interés por **M. catarrhalis** ha llevado a desarrollar numerosos estudios con métodos rápidos para su diagnóstico (27,28). Se están desarrollando métodos de marcaje epidemiológico: un esquema de xenogrupado y el estudio de la respuesta inmune (29). Se han demostrado características fenotípicas entre diferentes cepas que colonizan la mucosa del tracto respiratorio y las que causan enfermedad invasiva, lo cual sugiere que no sólo son necesarios factores en el huésped sino también factores de virulencia en la bacteria que llevan a la producción de enfermedad (29). Han demostrado la presencia de cápsula en cepas aisladas de pacientes con infección respiratoria empleando microscopía electrónica, lo cual sería un factor de virulencia (29). OMPBI es un importante antígeno de la membrana externa de **M. catarrhalis** que se puede emplear para detectar su anticuerpo en pacientes con infección por esta bacteria (30). Se ha demostrado en pacientes que tenían infección a este microorganismo un significativo título de anticuerpos mediante una prueba de EIA (31).

En nuestro estudio, **Moraxella catarrhalis** ocupa el tercer lugar como agente productor de infecciones respiratorias altas, después de **Staphylococcus aureus** y **Streptococcus pneumoniae**, y delante de **Haemophilus influenzae**. Infecta a ambos sexos pero preferentemente a niños menores de 14 años.

Se ha reportado su mayor aislamiento en la estación de invierno y en la primavera (3,29) para nosotros ha sido mayor en primavera. También han reportado que la diseminación nosocomial ocurre en los meses de invierno (32). Su principal aislamiento lo hemos realizado de secreción nasal (60%) y en pacientes que presentaron rinorrea purulenta (77%), lo cual hace pensar que sería la simptitis y/o adenitis la principal infección causada por esta bacteria.

Un hecho importante a mencionar en **Moraxella catarrhalis** es la producción de β-lactamasas, la cual se ha incrementado en los últimos años (25,34,35,36,37,38). La presencia de **M. catarrhalis** productora de β-lactamasas puede hacer fracasar a los antibióticos β-lactámicos contra otras bacterias patógenas sensibles (39,40). **M. catarrhalis** contiene dos β-lactamasas similares, BRO-1 y BRO-2, las cuales están presentes en el 75% a 85% de los aislamientos clínicos (41), habiéndose demostrado que predomina la enzima BRO-1 (93,10%) sobre la enzima BRO-2 (6,9%) como causante de la resistencia a la ampicilina (41) y no parece estar asociada a plasmídeos (42). En los aislamientos de **M. catarrhalis** se ha reportado que producían β-lactamasas del 41,9% al 90% (5,6,17,13,15,46,48), y nosotros hemos encontrado en nuestros aislamientos que el 70% son productoras de β-lactamasas lo cual está dentro de los hallazgos de investigadores de otros países.

En conclusión, con el empleo del medio selectivo que permite desarrollar a **M. catarrhalis** e inhibir a las especies de Neisseria, se ha facilitado tremendamente su aislamiento. **M. catarrhalis** ocupó el tercer lugar como causante de infecciones respiratorias altas después de **Staphylococcus aureus** que ocupó el primer lugar y **Streptococcus pneumoniae** que ocupó el segundo lugar, y delante de **Haemophilus influenzae** que estuvo en el cuarto lugar.

Staphylococcus aureus presentó un 15% de resistencia a la oxacilina, **Streptococcus pneumoniae** un 11% de resistencia a la pe.
nicolina, el 70% de las M. catarhalis fueron productoras de β-lactamasa y el 5% de los H. influenzae producen β-lactamasa.

Llama la atención el aislamiento de Streptococcus pyogenes (beta hemolítico) en un solo caso.

Estos resultados permiten orientar mejor el tratamiento antibiótico de las infecciones respiratorias altas.

AGRADECIMIENTOS

A la Bgl, María Hurtado por su colaboración en la parte técnica-microbiológica. A CONCYTEC y a la Universidad Nacional Mayor de San Marcos por su apoyo financiero. Al Sr. Paco Paulino, por su colaboración en el tratamiento informático del presente trabajo.

BIBLIOGRAFÍA

