Alumbrado Público con Diodos Led para la Facultad de Ingeniería Electrónica y Eléctrica de la Universidad Nacional Mayor de San Marcos

Street Lighting with Led Bulbs for the Faculty of Electronics and Electrical Engineering National University of San Marcos

Resumen—El presente proyecto tiene como objetivo diseñar y construir un sistema de iluminación pública con diodos LED (Light-Emitting Diode) cuya finalidad es iluminar el ingreso a la facultad. Los diodos LED son eficientes, requieren menos energía y tienen una vida útil más larga. En este sentido, la propuesta se centra en la creación de un prototipo que mejore la iluminación actual.

El diodo LED es sumamente resistente y difícil de romperse o producir fugas. Además, es adecuado para aplicaciones en interiores y exteriores, produce bajo consumo de energía, reduce la generación de calor (iluminación fría), presenta entre 50,000 a 100,000 horas de vida útil, encendido instantáneo y no produce radiaciones infrarrojas o UV.

En este sentido, el prototipo propuesto será un piloto con gran ahorro de energía, de costos con una iluminación eficiente y de alta calidad, demostrando que se puede dejar de lado el otro tipo de luz artificial como son las lámparas incandescentes y fluorescentes.

Palabras clave: Iluminación led, luminaria eficiente

Abstract—This project concerns the design and construction of public lighting with LED (light Emitting Diode), the purpose is to illuminate the front of the auditorium and the entrance courtyard, which have poor lighting. LED lamps are proposed for use because of its efficiency, since 90% of the electrical energy consumed is converted into light, while other forms of lighting have reached 10% efficiency, the remaining 90% is lost in heat.

In addition, the LED is extremely durable, suitable for indoor and outdoor applications, produces low power consumption, low heat generation (cold light), has between 50,000 to 100,000 hours of life, and is instant, 100% organic without generating mercury vapors do not produce infra-red or ultra violet.

In this sense, the proposed prototype is great energy saving costs with efficient lighting and high quality, showing that you have to let go of the other artificial light such as incandescent and fluorescent lamps.

Keywords—led lighting, energy efficient luminaire

I. INTRODUCCIÓN.

El «Alumbrado Público con diodos led para la Facultad de Ingeniería Electrónica y Eléctrica de la Universidad Nacional Mayor de San Marcos», involucra el diseño, construcción y la aplicación de un prototipo de iluminación que reemplace a las luminarias deficientes que existen en el mercado nacional.

Aproximadamente el 17% del consumo de energía eléctrica total corresponde a iluminación artificial. Debido a que gran parte de la generación de energía eléctrica se lleva a cabo mediante la utilización de recursos naturales no renovables, es necesario hacer eficiente su utilización y fomentar...
El semiconductor tipo P tiene impurezas trivalentes ej. Indio que se sitúan cerca de la Banda de València, con el fotón de luz los electrones de la Banda de Conducción saltan a los átomos de indio formando una línea de nivel Fig. 1, mientras que en la Banda de València van quedando los huecos (cargados positivos por tener un electrón menos), los huecos del tipo P y los electrones del tipo N constituuyen una diferencia de potencial, y si con un conductor se une por fuera el tipo P con el tipo N, circulará una corriente, todo esto ocurre en un Panel Solar la luz produce electricidad. Pero dos semiconductores uno de tipo P y otro de tipo N constituyen también un diodo, éste con ciertas características de emitir Luz es el diodo Led también sistema P-N, aquí el proceso es inverso, si inyectamos una corriente eléctrica al sistema en sentido contrario al anterior tal que la corriente convencional vaya de P a N por dentro del LED, pero los electrones (circular en sentido contrario a la corriente convencional) de la Banda de conducción del tipo N y los del nivel de impurezas, caerán a los huecos del nivel inferior de la Banda de València del tipo P y a los huecos de los átomos de Indio, emitiendo un fotón de luz cuya Energie h = es igual a la diferencia de nivel entre la Banda de conducción del tipo N y la Banda de València del tipo P, así es como se genera la luz en un diodo Led, mediante el paso de la corriente, cuya Energie se convierte en luz con muy poca pérdida como calor.

III. MATERIALES UTILIZADOS

A continuación, se detalla cada uno de los materiales utilizados en la construcción de la luminaria led.

A. LED de alta potencia

- Potencia nominal: 10 w
- Ángulo de visión: 140 grados
- Intensidad luminosa: 900 Lm
- Temperatura de funcionamiento: -30°C a 80°C
- Temperatura de color: 6500k 7500k
- Máximo pulso voltaje: 12V
- Rango de Voltaje: 9 a 11 V
- Garantía: 50 000 a 100 000 horas

B. Transformador

Consta de 2 bobinas un primario y un secundario los conductores rectangulares que la forman en capas (platinas) están en múltiples capas protegidas con papel especial. La forma cilíndrica de las bobinas asegura una buena resistencia a los esfuerzos de cortocircuitos complementada con un sistema racional de apoyo y prensado de sus
extremos. El transformador es fabricado en el Perú, con una eficiencia cercana al 90%, el primario es para 220V y 9 V de salida hecho para 2 A por seguridad.

C. Pantalla Solar

Es un ingrediente activo o mezcla de éstos que previenen o minimizan el bronceado, reflejando el rango de las radiaciones visibles de 290 a 770 nanómetros de longitud de onda y no las ultravioletras. La función de una pantalla es que ningún tipo de radiación llegue a la piel.

D. Reflector Led

Los Reflejores LEDs son ideales para iluminación de detalle en fachadas, columnas e iluminación arquitectónica.

E. Panel Solar de 85W


F. Batería 65 A

Voltaje: 12 VDC
Capacidad: 65 Amp/H
Resistencia interna: 5.7 mΩ
Float charging voltaje: 13.5 a 13.8 V
Terminales: En cobre
Dimensiones aproximadas: 28x18x22 cms

G. Fotocélulas

La ventaja principal de su uso es su producción de energía constante, su larga vida y su mínimo mantenimiento.

Las fotocélulas las podemos encontrar en diferentes tamaños y se catalogan por su producción de watts por hora de sol efectiva, su función es conectar el circuito a los Diodos Led cuando oscurece y desconectar cuando hay luz.

II. Resistencias

Se opone al paso de una corriente eléctrica. La resistencia de un circuito eléctrico determina según la llamada ley de Ohm cuánta corriente fluye en el circuito cuando se le aplica un voltaje determinado. La unidad de resistencia es el ohmio, que es la resistencia de un conductor si es recorado por una corriente de un amperio cuando se le aplica una tensión de 1 voltio. La abreviatura habitual para la resistencia eléctrica es R, y el símbolo del ohmio es la letra griega omega, Ω.

Nuestra utilidad es para disminuir la tensión en circuitos serie y limitar la intensidad de corriente (por la ley de Kirchhoff)

I. Diodos Puente

El puente rectificador es un Arreglo de 4 Diodos rectificadores usado en la conversión de corriente alterna a corriente continua, porque por el circuito Diodos Led debe circulando corriente continua y no altera.

En el Puente se usaron Diodos Diodos de 1A de las siguientes características

- Plástico D0-204A1
- D Peso 0,4 g
- Material de la carcasa UL94V-0
- Carga sólo en un sentido, R-TA=100/ C IFM 0,75 A 1
- Pico de corriente periódico a f= 15 Hz IFM 10 A 1
- Corriente en curso, 60hz medio ciclo TA=25 / CA IFSM

J. Condensador Eléctrolítico

Tienen el dieléctrico formado por papel impregnado en electrolito. Siempre tienen polaridad, y una capacidad superior a 1000 μF. El es de 4700 μF, con una tensión máxima de trabajo de 25v. (Inscripción: 4700 μF / 25 V).

Tipo de condensador que usa un líquido iónico conductor como una de sus placas. Tipicamente con más capacidad por unidad de volumen que otros tipos de condensadores, son valiosos en circuitos eléctricos con relativa alta corriente y baja frecuencia. Este es especialmente el caso en los filtros de alimentadores de corriente, donde se usan para almacenar la carga, y moderar el voltaje de salida y las fluctuaciones de corriente en la salida rectificada. También son muy usados en los circuitos que deben conducir corriente continua pero no corriente alterna.

K. Dremel 481

Para vástago de 2.4 mm. Fabricada en aluminio con anillos de reconocimiento alrededor del vástago para reconocer el tamaño de la pinza. Debe utilizarse el tamaño de pinza adecuado a cada medida de vástago o broca.
L. Disipador de Aluminio.
Un disipador extrae el calor del componente que refrigera y lo evaúa al exterior, normalmente al aire. Para ello es necesaria una buena conducción de calor a través del mismo, por lo que se suelen fabricar de aluminio por su ligereza, pero también de cobre, mejor conductor del calor, cabe aclarar que el peso es importante ya que la tecnología avanza y por lo tanto se requieren disipadores más ligeros y con eficiencia suficiente para la transferencia de calor hacia el exterior.

IV. METODOLOGÍA DE INVESTIGACIÓN.
El alumbrado público con focos LED para la facultad de Ingeniería Electrónica y Eléctrica de la universidad nacional mayor de san marcos, involucra etapas de diseño, fabricación y aplicación.
Para el Desarrollo de la parte experimental, se tuvo en cuenta los siguientes materiales:

- Transformador
- Leds de 10 w
- Pantallas solar starlux
- Reflector led
- panel solar de 85 w
- Batería de 65A
- Fotoceldas
- condensador de 4700
- Condensador 470
- KSD 301
- Resistencias
- Diodos puente.
- condensador electrolíteico.
- Diodos de 1A
- Dremel 481
- Disipador de aluminio.
- Cable mellizo

Equipos:
- Máquina de soldar.

3.1. Actividades de Gabinete.
Abarcan actividades de determinación de las definiciones teóricas y el establecimiento de variables de operación del diseño y fabricación del prototipo.

3.1.1. Diseño de Prototipo de Luminaria Led
Para mayor detalle, Ver Figura N° 1 y 2.

IDEA INICIAL DE PROTOTIPO DE LUMINARIA LED

DISEÑO PRELIMINAR DE LA LUMINARIA LED

CONSTRUCCIÓN DEL PROTOTIPO

Fig. 1. Diseño preliminar del prototipo de luminaria LED

CONSTRUCCIÓN DEL PROTOTIPO DE LUMINARIA LED

REALIZACIÓN DE PRUEBAS DE RECORRIDO CON EL PROTOTIPO DE LUMINARIA LED

ESTABLECIMIENTO DE LOS PARÁMETROS Y VARIABLES DE OPERACIÓN ÓPTIMOS DEL PROTOTIPO DE LUMINARIA LED

Fig. 2. Diseño del prototipo de iluminación LED

3.2. Experimentos Realizados.
Para realizar las pruebas experimentales del presente estudio, se requirieron las instalaciones del área del taller de electrónica del Dr. Werner Pacheco y su oficina en el pabellón nuevo, contando además con el apoyo de los Almaceneros de la Facultad para proveer los equipos necesarios.

3.2.1. Pruebas Experimentales de Fabricación del Prototipo de Luminaria LED.
Fabricada la luminaria, se verificó con instrumentos: la potencia, la corriente, la tensión y la temperatura de los diodos LED tal que cumpla con las especificaciones dadas por el fabricante, para asegurarnos que no sufrieran daño durante su funcionamiento. Se armaron diferentes modelos dependiendo el tipo de diodos LED que se encontraron en el mercado, utilizando los materiales y sus características ya mencionados.
V. DISCUSIÓN DE RESULTADOS

Este trabajo, permitió verificar que el Ahorro de energía es muy significativo y que se obtiene una buena iluminación con luz blanca y totalmente ecológica.

VI. CONCLUSIONES

Se instaló dos luminarias LED importantes, una de ellas ubicada en la explanada de la entrada al pabellón antiguo de la facultad y la otra ubicada en la Loza Deportiva de la facultad que incrementará la práctica del deporte en San Marcos, ver las fotos de la figura 3 y 4.

Se puede generalizar esta obra en todo San Marcos, además la patente presentada de la Luminaria Dual Solar y a 220V dará prestigio a San Marcos, porque estas luminarias Solares serán muy útiles en todos los lugares del país donde no hay Electricidad.

VII. REFERENCIAS

[1] MOTOTAXI DE A SOL http://www.youtube.com/watch?v=I617ROqC8I4
[5] blog.led.com/led-de-alta-potencia/

Fig. 3 Reflectores Led en el Pabellón Antiguo de Electrónica y eléctrica

Fig. 4 Loza Deportiva de la FHE con iluminación LED