DETERMINACIÓN DE LA DIGESTIBILIDAD Y UTILIZACIÓN BIOLÓGICA DE PROTEINA DIETARIA SUPLEMENTADA CON ACELGA EN HUMANOS

Rosales Fernández Arturo1, Hernández Fernández Eloisa2

Cátedra de Bromatología Especial y Nutrición. Facultad de Farmacia y Bioquímica. Universidad Nacional Mayor de San Marcos

RESUMEN

El objetivo del presente estudio ha sido evaluar en sujetos humanos el efecto en la dieta con un alimento preparado a base de hojas de acelga (Beta vulgaris L. var Cicla), el cual ejerce un efecto benéfico sobre la dieta diaria en cuanto a proteínas. El suplemento se preparó sobre la base de los requerimientos nutricionales de pro vitamina A. Al inicio y al final del estudio se determinó proteínas séricas, albuminas, y globulinas, según técnicas oficiales descritas por Wiener. La digestión y el nitrógeno retenido se realizaron mediante la técnica del balance nitrogenado. La composición química de las dietas y del suplemento fueron determinadas aplicando las técnicas de la A.O.A.C. Los resultados antes y después fueron las proteínas séricas totales de 6.68% a 7.29%; albuminas de 3.87 a 4.29%. La digestión de las proteínas de 64 a 66%. La retención de nitrógeno mejoró de 3.41 a 5.18 mg/kg de peso corporal/día. Estos cambios fueron significativos (p < 0.05). El estudio permite revalorar las propiedades nutricionales y el uso de la acelga como fuente de micronutrientes para los seres humanos.

Palabras claves: Acelga, suplemento, utilización biológica y digestión.

ABSTRACT

To evaluate, in human beings, the effect of dietary supplementation, with the food based on chard leaves (Beta vulgaris L. var Cicla). The supplement was prepared according to nourishing requirements of pro vitamin A. At the beginning and at the end of the study, it was determined: seric proteins, albumins, globulins according to official techniques described by Wiener. The digestibility and retained nitrogen, by nitrogen balance technique. The chemical composition of diets and supplement, were applied by AOAC techniques. The results before and then were: total seric proteins from 6.68 to 7.29%; albumins: from 3.87 to 4.29%. Protein digestibility from 64 to 66%. The nitrogen retain went up from 3.41 to 5.18 mg/kg of weight/day. The study allows to rvalue the nourishing properties and usage of chard as a source of micronutrients for human beings. These changes were significant (p < 0.05).

Key word: Chard supplement, biological usage, digestibility.

INTRODUCCIÓN

Cuando se incorporan alimentos vegetales como aportadores de nutrientes esenciales a las dietas de escolares, la proteína de la dieta habitual puede experimentar variaciones en su utilización debido al contenido de material indigerible. Uno de los alimentos de uso potencial para suplementar dietas carentes de pro vitamina A y de hierro, lo constituye el grupo de las verduras de hojas de co-
ló vera, aunque su contenido de fibra es bajo (de 0,8 a 2,8%), la ingesta diaria con la dieta habitual podría afectar la utilización de las proteínas. Las evaluaciones realizadas en animales de experimentación o mediante métodos «in vitro», sobre la eficiencia de utilización de las proteínas, a veces no permite extrapolarse los resultados a sujetos humanos. Al presente se desconoce el efecto de esta grupo de alimentos sobre la utilización biológica de las proteínas dietarias tal cual son consumidas por determinados grupos de edad; es decir, en condiciones operativas.

Por tanto, es necesario evaluar el efecto sobre las proteínas dietarias; que podría producirse por la incorporación de un alimento del grupo de los vegetales de hojas verdes. Ambas mediciones deben ser realizadas en condiciones operativas, es decir, en las mismas condiciones en que son consumidas las dietas habituales para que reflejen realmente las variaciones que servirían a nivel biológico, siendo este el objetivo de la presente investigación.

MATERIAL Y MÉTODOS

Sujetos. Quince sujetos de 11 a 16 años de edad, de género masculino que vivían en el hogar Las Palomitas. El examen clínico aseguró incluir sólo a aquellos que se encontraban en buen estado de salud. Ninguno había sufrido de enfermedades en los últimos 15 días previos al estudio y no ingerían ningún tipo de producto dietético o terapéutico.

La presente investigación se realizó en:

- La unidad metabólica: La Casa – estancia «Las Palomitas», ciudad de Lima, que era el hogar donde vivían todos los participantes y que funciona bajo la administración del Instituto de Bienestar Familiar (INABIF).
- Los laboratorios del Instituto de Microbiología de la Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos.

Dieta Básica

Es la dieta (desayuno, almuerzo y comida) que cada uno de los participantes venía consumiendo diariamente en el Hogar Estancia donde vivían. Era preparada con los alimentos que habitualmente se acostumbra consumir en la mayoría de los hogares (leche, carne y preparados, huevos, cereales, granos, verduras, leguminosas, frutas, incluidos aque-

llos que provenían de donaciones internacionales como trigo, harina de soya, leche en polvo, sardinas, aceite vegetal, etc.);

Dieta Experimental

Estuvo constituida por la dieta básica adicional

da de 65 g del suplemento alimenticio, a base de hojas de acelga, (Beta vulgaris L. var. cicla) ofrecido bajo la forma de fritada con el desayuno.

El suplemento fue preparado a diario con los siguientes componentes:

- Hojas de acelga: 800 g
- Harina de trigo, a granel, no integral: 200 g
- Clara de huevo: 592 g
- Sal: c.s.p
- Aceite vegetal: c.s.p.

Material Biológico

1. Suero sanguíneo: A cada participante se le tomaba una muestra de sangre por punción de la vena cubital. En el suero se determinó el contenido de proteínas totales, albuminas y globulinas, antes de iniciar y al terminar el periodo experimental.

2. Orina: Fue recolectada individualmente durante cada periodo de balance (3 días), en frascos de polietileno, y en los cuales se colocaba ácido clorhídrico (2,5 ml al 1%) como preservante. El volumen total era medido y en una alícuota se determinó nitrógeno.

3. Heces: Se recolectaban individualmente durante cada periodo de balance (3 días), en bolsas de polietileno. Se registraba el peso neto, cada día, y se separaba una alícuota, guardándola a temperatura de congelación a –4°C, para la posterior determinación de nitrógeno (1).

El inicio y el final de los periodos de balance (3 días) se marcó mediante la ingestión de una cápsula de carmín.

Métodos

Diseño del estudio. El presente es un estudio de cohorte, en dos bloques que determinan los dos periodos de estudio: Periodo basal y experimental, en los cuales cada uno de los participantes, actúa como su propio control,
Determinación de la digestibilidad y utilización biológica de proteína dietaria

Período basal
Consta de 8 días. Durante este período los sujetos ingerían la dieta básica ya descrita. Diariamente se colectó el total de alimentos en el desayuno, almuerzo y cena. Los componentes fueron pesados en balanza con precisión de 0,5 g y los datos registrados en formatos previamente diseñados. Las dietas diarias eran homogeneizadas y licuadas; se extraía una muestra de aproximadamente 500 g para desecación a 56°C y posterior análisis (2).

Período experimental
Consta de 23 días. Durante este período, cada uno de los participantes ingirió la dieta suplementada (dieta basal + 65 gramos de fritada). Las dietas eran sometidas al mismo proceso de recolección, pesaje, registro, estabilización a 65°C descrito para las dietas basales.

Datos antropométricos
Al inicio del período basal se determinó el peso y talla de acuerdo a las normas de la O.M.S.(3), empleando una balanza Detecto. Asociando ambas variables se determinó el Indice de Masa Corporal:

\[IMC = \frac{Peso (kg)}{Talla (m^2)} \]

Métodos analíticos
Los análisis se realizaron en los laboratorios del Instituto de Microbiología de la Facultad de Farmacia y el Laboratorio de Bioquímica y Nutrición de la Facultad de Medicina Veterinaria.

- En suero (4)
 1. Proteína sérica total.- Se empleó el método colorimétrico de Biuret.
 2. Albúminas método colorimétrico de la Bromoresolsulfonfólate.
 3. Globulinas. Por diferencia entre proteína total y albúmina.

- En orina y heces
 1. Nitrogeno total urinario y fecal mediante la técnica del micro Kjeldahl (5).

- En las dietas y suplemento dietario (5, 6):
 1. Humedad: Método gravimétrico
 2. Materia seca: Método gravimétrico
 3. Proteína cruda: Método de Kjeldahl
 4. Extracto etéreo: Método de Goldfich
 5. Fibra cruda y cenizas: Mediante los métodos descritos por la A.O.A.C.
 6. Carbohidratos: Se calcula por diferencia de proteína, grasa, fibra y cenizas.

Digestibilidad (8).
Con los datos de nitrógeno de las dietas y nitrógeno de las excretas se determinó la Digestibilidad aparente (D%).

Utilización Biológica (9).
Con los datos de nitrógeno de las dietas y de las excretas se determinó, a través de la capacidad de las mismas para mantenimiento del balance nitrogenado.

Análisis estadístico (10).
Los parámetros determinados antes y después de la experimentación, fueron sometidos a la prueba «t».

RESULTADOS

- En el cuadro N.°1 se presentan datos de I.M.C de los participantes, el promedio ± desviación estándar fue de 20,0 ± 1,98 Kg/m².

- En el cuadro N.°2 el aporte de nutrientes de 65 g de suplemento fritada, la composición de las dietas basales y la composición de las dietas suplementadas. El promedio de energía en las dietas basales fue de 1 855 ± 302,5 Kcal. Y en las dietas suplementadas fue a 1 894,57 ± 211,69 Kcal.

- En el cuadro N.° 3 se categoriza a los sujetos según sus niveles de proteínas y albúminas séricas, antes y después de la suplementación, observándose que al inicio del estudio, el 40%, en cuanto a proteínas, se ubicaban en el nivel de «aceptable» y después de la suplementación, el 93% se ubicó en el nivel «alto». En cuanto a globulinas, antes de la suplementación ningún sujeto se ubicó en el nivel «alto» mientras que el 47% categorizó en este nivel después de la suplementación.

- En el cuadro N.° 4 se presentan los valores de nitrógeno ingerido, urinario, fecal y absorbido antes y después de la suplementación. Los valores promedio de nitrógeno ingerido y urinario se elevan en aproximadamente 10 mg / Kg / día, mientras que el nitrógeno fecal sufre una disminución. El nitrógeno absorbido así como la digestibilidad de la dieta aumentan.
Cuadro N.° 1
Índice de masa corporal de 15 sujetos de sexo masculino
Lima - Perú

<table>
<thead>
<tr>
<th>EDAD (Años/meses)</th>
<th>PESO Kg</th>
<th>TALLA Cm</th>
<th>IMC Kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>13,56</td>
<td>44,05</td>
<td>147,90</td>
</tr>
<tr>
<td>Desv. Estánd.</td>
<td>1,74</td>
<td>6,73</td>
<td>8,91</td>
</tr>
<tr>
<td>Error Estánd.</td>
<td>0,55</td>
<td>2,12</td>
<td>2,81</td>
</tr>
<tr>
<td>Coef. Variac. %</td>
<td>12,8</td>
<td>15,27</td>
<td>6,00</td>
</tr>
</tbody>
</table>

Cuadro N.° 2
Micronutrientes aportados por los 65 gramos de suplemento tortilla (n=5) por dietas basales (n = 8) y por dietas suplementadas (n = 23)

<table>
<thead>
<tr>
<th>Fritada de 65 gramos</th>
<th>Agua (g)</th>
<th>Proteína (g)</th>
<th>Lípidos (g)</th>
<th>Carbohidratos (g)</th>
<th>Fibra (g)</th>
<th>Minerales (g)</th>
<th>Energía (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>40,78</td>
<td>1,52</td>
<td>9,45</td>
<td>9,90</td>
<td>1,54</td>
<td>1,77</td>
<td>130,91</td>
</tr>
<tr>
<td>Desv. estándar</td>
<td>0,58</td>
<td>0,07</td>
<td>0,6</td>
<td>0,6</td>
<td>0,06</td>
<td>0,15</td>
<td>0,06</td>
</tr>
<tr>
<td>Error estándar</td>
<td>0,26</td>
<td>0,03</td>
<td>0,3</td>
<td>0,3</td>
<td>0,03</td>
<td>0,066</td>
<td>0,066</td>
</tr>
<tr>
<td>Coef. Variación (%)</td>
<td>1,44</td>
<td>4,82</td>
<td>6,8</td>
<td>6,8</td>
<td>3,95</td>
<td>8,72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietas basales</th>
<th>Agua (g)</th>
<th>Proteína (g)</th>
<th>Lípidos (g)</th>
<th>Carbohidratos (g)</th>
<th>Fibra (g)</th>
<th>Minerales (g)</th>
<th>Energía (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>89,9</td>
<td>39,7</td>
<td>40,4</td>
<td>323,5</td>
<td>5,6</td>
<td>5,35</td>
<td>1 1 5 4,7</td>
</tr>
<tr>
<td>Desv. estándar</td>
<td>1,4</td>
<td>6,6</td>
<td>17,9</td>
<td>44,6</td>
<td>0,9</td>
<td>1,28</td>
<td>302,5</td>
</tr>
<tr>
<td>Error estándar</td>
<td>0,5</td>
<td>2,1</td>
<td>5,6</td>
<td>15,7</td>
<td>0,28</td>
<td>0,40</td>
<td>106,9</td>
</tr>
<tr>
<td>Coef. var. (%)</td>
<td>1,6</td>
<td>17,3</td>
<td>44,3</td>
<td>13,7</td>
<td>16,0</td>
<td>5,23</td>
<td>16,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietas suplementadas</th>
<th>Agua (g)</th>
<th>Proteína (g)</th>
<th>Lípidos (g)</th>
<th>Carbohidratos (g)</th>
<th>Fibra (g)</th>
<th>Minerales (g)</th>
<th>Energía (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>87,39</td>
<td>52,19</td>
<td>46,0</td>
<td>317,7</td>
<td>11,55</td>
<td>9,7</td>
<td>1894</td>
</tr>
<tr>
<td>Desv. estándar</td>
<td>3,03</td>
<td>12,6</td>
<td>13,0</td>
<td>51,6</td>
<td>6,75</td>
<td>2,6</td>
<td>211</td>
</tr>
<tr>
<td>Error estándar</td>
<td>0,63</td>
<td>2,5</td>
<td>2,7</td>
<td>10,7</td>
<td>1,35</td>
<td>0,5</td>
<td>44</td>
</tr>
<tr>
<td>Coef. var. (%)</td>
<td>3,47</td>
<td>24,0</td>
<td>28,4</td>
<td>16,2</td>
<td>56,5</td>
<td>27,0</td>
<td>11</td>
</tr>
</tbody>
</table>

Cuadro N.° 3
Proteínas y albúminas séricas antes y después de suplementación

<table>
<thead>
<tr>
<th>CATEGORIAS</th>
<th>NIVEL %</th>
<th>N° ANTES</th>
<th>N° DESPUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteínas</td>
<td>Deficiente</td>
<td>< 6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
<td>6 - 6,4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Aceptable</td>
<td>6,5 - 6,9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>> 7</td>
<td>4</td>
</tr>
<tr>
<td>Albúminas</td>
<td>Deficiente</td>
<td>< 2,8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
<td>2,8 - 3,51</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aceptable</td>
<td>3,52 - 4,24</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>> 4,25</td>
<td>0</td>
</tr>
</tbody>
</table>
Cuadro N.º 4
Nitrógeno ingerido y excretado; digestibilidad aparente y balance de nitrógeno en 15 sujetos consumiendo su dieta habitual y suplementada con tortilla de acelga

<table>
<thead>
<tr>
<th>Nº</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Determinación de la digestibilidad y utilización biológica de proteina dietética
DISCUSIÓN

Los sujetos participantes en este estudio, presentaron un promedio de L.M.C. de 20, que es ligeramente superior al valor referencial aceptable como normal el de 19. (11, 3, 12, 9). La eficiente utilización biológica de las proteínas dietarias que son absorbidas puede evidenciarse a través de la capacidad para mantener adecuados niveles de proteínas séricas. Como factor determinante, en el mejoramiento de la utilización biológica de las proteínas, se ha citado a la interacción con los nutrientes minerales (13, 14, 15). Los valores aquí obtenidos, antes y después de la suplementación, revelan un mejoramiento significativo de la digestibilidad proteica.

El balance nitrogenado fue indicado como la técnica que mejor define la calidad de la proteína en sujetos en crecimiento (9); considerando que entre el grupo de los sujetos participantes, los requerimientos difieren, los datos de balance de nitrógeno se analizan por separado, en el grupo de 11 a 13 años y en el grupo de mayores de 14 años. Los resultados se resumen como sigue:

<table>
<thead>
<tr>
<th>BN inicial</th>
<th>BN final</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg N / Kg de peso / día)</td>
<td></td>
</tr>
<tr>
<td>+ 8,58</td>
<td>+ 9,71</td>
</tr>
<tr>
<td>- 2,60</td>
<td>- 1,60</td>
</tr>
</tbody>
</table>

Los resultados de 11 a 13 años y sujetos mayores de 14 años e indican que a semejanza de lo observado en digestibilidad, hay una tendencia a la mejor utilización del nitrógeno, lo que puede atribuirse al aporte de hierro (2,4 mg) y al de precursores de vitamina A (176 equiv. retinol) presentes en las hojas de acelga, ya que son nutrientes que están asociados a una más eficiente utilización de las proteínas dietarias (1).

La concentración de albúminas es muy sensible a variaciones en las ingestas de proteínas y de su utilización biológica; por ejemplo, la alimentación de niños durante un período de 10 días, con proteínas de pobre calidad, producía una caída inmediata de la síntesis de albúmina. En el presente estudio, la concentración promedio de proteínas totales (7,29%) y de albúmina (4,29%) después que los sujetos consumieron su dieta habitual suplementada, con el alimento «tortilla» a base de acelga, dio valores significativamente mayores (t Student = 3,84 y 3,69 respectivamente) que los valores iniciales. Esta es una evidencia de que las proteínas de las dietas diarias suplementadas, que eran absorbidas y retenidas a nivel orgánico, estaban siendo eficientemente utilizadas.

A juzgar por estos resultados, el alimento acelga (Beta vulgaris L. Var. cicla), cuando es ingerido bajo la forma del preparado «tortilla» induce al mejoramiento de la utilización de las proteínas de la dieta diaria cuando ésta es evaluada en condiciones operativas y en función de las proteínas séricas y del balance nitrogenado.

Se concluye que, bajo las condiciones de estudio, las hojas de acelga no sólo pueden aportar nutrientes esenciales a las dietas, también mejoran significativamente la digestibilidad y la utilización de las proteínas dietarias.

REFERENCIAS BIBLIOGRÁFICAS

11. Araya, Hector; Vera, Gloria; Ruiz, Manuel; Pak, Nelly. «Índice de Calidad Nutricional. Vol. (ICNV): Un nuevo indicador para evaluar la calidad nutricional de preparaciones y dietas».

