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Abstract 
A delicate feature of the flood propagation simulation performed by the program HEC-1 with the 
option of the modified Puls method with normal flow approximation is constituted by the estimation 
of the quanta parameter NSTPS. While it is recognized to be a parameter that one should calibrate, it 
is usually recommended that it be estimated as the ratio (wave travel time/integration time step). In 
this paper it is shown that numerical experiments conducted with the program FEQ, retained as 
standards, when compared with HEC-1 solution, do not confirm the above estimate. The preliminary 
results presented here  suggest that the ratio (time to peak of outflow hydrograph/time to peak of 
inflow hydrograph) may be a more meaningful, but strongly event dependent,parameter. 
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Uso del HEC-HMS en la simulación de ondas de avenida 
 
Resumen 
Una característica delicada en la simulación de propagación de inundaciones realizada por el programa 
HEC-1 con la opción del método Puls modificado con aproximación de flujo normal está basado en la 
estimación del parámetro de cuantia NSTPS. Si bien se reconoce que es un parámetro que se debe calibrar, 
generalmente se recomienda estimarlo como la relación (tiempo de viaje de onda / intervalo de tiempo de 
integración). En este trabajo se muestra que los experimentos numéricos realizados con el programa FEQ, 
considerados como estándares, cuando se comparan con la solución HEC-1, no confirman la estimación 
mencionada lineas arriba. Los resultados preliminares presentados aquí sugieren que la relación (tiempo al 
pico del hidrograma de flujo de salida / tiempo al pico del hidrograma de flujo de entrada) puede ser un 
parámetro más significativo, pero fuertemente dependiente del evento. 
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Introduction 
 

The program HEC-HMS has been designed to 
simulate the response of a watershed to precipitation 
events. One of the components of the river network  is 
the channel reach or  river reach  where  the  process of 
wave propagation can be simulated by several routing  
methods. One method in particular is the object of this 
research: the modified Puls method (Puls, 1928) with 
normal depth storage vs. outflow relationship, which 
has its basis in hydraulics concepts. We will call this 
method "modified Puls method #2" for short, to 
distinguish it from the homonimous method #1, where 
the storage vs. outflow relationship is given from 
empirical data. In this method one assumes that a river 
reach can be simulated globally and that the inflow 
hydrograph I(t) and outflow hydrograph O(t) are  related  
to the  storage  S(t) in the reach via the continuity 
equation 

 
( ) = 푓(푡)− 푂(푡)          (1) 

 
Since this equation is not sufficient to solve the 

problem of wave propagation through the reach, another 
relationship between S, I, 0 should be found. This can 
be given only by hydraulics (correctly the  de  Saint-  
Venant equations), but other drastic simplifications (as 
the Muskigum method) are  usually  introduced in 
hydrology for the sake of expediency. A method that  
approximates the  dynamic  behavior of the  system.is  
the  one that assumes that S and 0 are indirectly related 
through  the  outflow  cross  section  area A.,  via  the 
momentum equation as written for normal flow. 

 

푂 = . ⁄

⁄ 푆푓   (2) 
 

where Sr is the "energy  slope" at the outflow cross 
section, n  is Manning's friction coefficient, Ao, is  
the outflow cross section area at the depth yo; Po is 
the length of its wetted perimeter, and yo(Ao) is the 
inverse function of A(yo); Ao, is related to Sf either 
via the equation S = LA, where L is the reach  length, 
or via other more sophisticated relationships which 
introduce the inflow water area. The first published 
reference to this method of numerical approach to 
floodwave propagation has been found by the authors 
in (De Marchi, 19 4 5)  who gives credit to (Fantoli, 
19 25)  for the "concetto informatore" (conceptual 
framework). 

It is obvious that this type of routing  has 
considerable  simplifications with  respect to  a strict  
applications  of the full de Saint-Venant equations, but 
one must admit that the application of HEC-HMSis 

sufficiently easy, with respect to full equation programs, 
to warrant a search for the limits within which HEC-
HMS could be used for wave propagation studies of 
hydraulic consequence. 

In the present project we specify the channel cross 
section (via 8 points, which is what the HEC-HMS 
modified Puls method #2 requires), the channel's length, 
and the channel's slope, and  we  will  consider several 
normal How conditions corresponding to normal depths 
varying  from  5 ft to  40 ft at intervals  of   5 ft. We will 
achieve this by varying the "unperturbed" flowrate Qo 
according to the Chezy-Manning Equation (2). We 
superpose then to each unperturbed normal How various 
hydrographs with variable characteristics of peak How 
ΔQi  and time to peak  Tp. By varying  the only HEC-
HMS  parameter NSTPS for the simulation of the 
hydrograph propagation we will explore the region 
within which the results of HEC-HMS applications are 
reliable. In order to do this we need "standard" solutions 
against which to compare the HEC-HMS solutions. We 
will assume that these standard  solutions  are the  
solutions  of  the Full Equation Model (FEQ), developed 
by (Franz, 1 9 8 8) . 

 
Model Data 
 

The The geometry of the channel reach to model is 
presented in Figure 1. The bottom slope is S=.0002 and 
the Manning’s “n” values are n = 0.030 for the channel 
and n = 0.80 for the overbanks. The length of the 
channel reach is L = 10 miles. Since the initial 
conditions start from uniform How, we will choose as 
initial flowrates for our experiments, fractions of that 
flowrate which fills the channel in normal How 
conditions (Qo max = 128,046 cfs). The several 
unperturbed normal flowrate that are  the  object  of  our  
investigation  are  the  normal discharges, for the same 
geometry, corresponding to depths that range from 5  ft  
to  40  ft.  They  are presented in column 1 of Table 2, 
paired with the corresponding normaldepths. 

The resulting hydrographs (sum of the unperturbed 
flowrate Qo and of the perturbation hydrograph)  have  
the analytic expression 

 

푄 = 푄 + 훥푄 푒 푡 −          

(3) 
Where: ΔQi is the perturbed hydrograph peak and Tp 
is the perturbation hydrograph. The  resulting  
hydrograph peak is therefore Qo + ΔQi. The values of 
ΔQi have been established so that the normal depth 
corresponding to Q0 + ΔQi has a value between 5 ft 
and 40 ft, at intervals of  5 ft. This is tantamount  to  
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saying  that,  if  we  call  Qoi  the  j-th  value  of  the  
unperturbed  normal  discharge  the  following 
relationship issatisfied 

푄 , + 훥푄 = 푄                        (4) 

This paper reports on the results of the experiments 
conducted with  

푄 , = 10,525푐푓푠 
 
1훥푄 = 10,921푐푓푠, for several values of the 
parameters Δt (time increment of the numerical 
integration scheme), TP (time to peak), and NSTPS  
 

(number of sub-reaches used in the HEC-HM 
Ssimulation).   The simulation deals with a flood 
wave which, starting  from  a  normal  depth  of  10 ft,  
presents  a  peak stage of 15 ft. The values of the 
integration time step Δt used in  the  simulation  are  
presented  in  the following matrix (Table 2), 
juxtapposed to the Tp values to which theyrefer.  
Since the values of Q0 and ΔQi are kept constant 
throughout this presentation, we will refer to  each  
one of the numerical experiments by the triplet Tp, 
Δt, NSTPS. We will denote, e.g., by 
"experiment(Tp= 2 hr, Δt = 15 min, NSTPS = 3)" the 
experiment whose parameters have the values given 
within the parentheses. 

 

Table 2. Parameter for Input Hydrographs 
 

Qoj (cfs)   Qoj+ΔQij (cfs)    

Yoj 
(feet) 

ΔQ1j ΔQ2j ΔQ3j ΔQ4j ΔQ5j ΔQ6j ΔQ17 

3,194 
5 

10,525 
7,331 

21,446 
18,252 

35,866 
32,672 

54,816 
51,622 

76,475 
73,281 

100,936 
97,742 

128,046 
124,852 

10,525 
10 

21,446 
18,252 

35,866 
32,672 

54,816 
51,622 

76,475 
73,281 

100,936 
97,742 

128,046 
124,852 

 

21,466 
15 

35,866 
32,672 

54,816 
51,622 

76,475 
73,281 

100,936 
97,742 

128,046 
124,852 

  

35,866 
20 

54,816 
51,622 

76,475 
73,281 

100,936 
97,742 

128,046 
124,852 

   

54,816 
25 

76,475 
73,281 

100,936 
97,742 

128,046 
124,852 

    

76,475 
30 

100,936 
97,742 

128,046 
124,852 

     

100,936 
35 

128,046 
124,852 

      

128046 
40 

       

 
 

Table 2. Time Step for Simulation 
 

Time 
To Peak 
(Tp) 
(Hours)

 Time Step (Δt) 
(Minutes) 

  

1 15     
2 15 30    
4 15 30 60   
8 15 30 60 120  

      16 15 30 60 120 240 
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Presentation of the results 
 

By inspecting the results of the numerical 
experiments presented in  the  last  column  of  Table  3,  
we discover that the value of Δt does not affect sensibly 
the results of the simulation, as far as the value  of  
NSTPS is concerned. This can be seen clearly in 
comparing the Figures 5, 6, 7 where, for Tp  = 4 hrs,  Δt 
varies from 15 min to 60 min. Notice that in our  
simulations  the value  of  Δt is always  at most  as large  
as  Tp/4, and it is therefore reasonable that the above 
result be expected. 

The results of the numerical experiment (Tp = 1 hr, 
Δt = 15 min)  for  several  values  of  the  parameter 
NSTPS, compared with the standard solution obtained 
by means of FEQ  (Bueno-Galdo,  1991),  shows 
clearly that the parameter NSTPS affects dramatically 
the outcome of the simulation. The peak  of  the 
response and the time to peak of the response tend to 
increase as the value of NSTPS increases. Notice that 
for NSTPS = 1 the outflow hydrograph cuts the 
inflow hydrograph at the peak of the outflow 
hydrograph (because in this case the routing is 
identical to level pool routing). For this experiment it 
seems that a value of NSTPS = 3 fits best the 
standard solution, albeit  the  HEC-HMS  result  lags 
slightly with respect toit.  

 
The several parameters defining the columns of 

Table 3 are described in detail below. 
 

Columna I      Tp, time to peak of the inflow hydrograph 
Columna II Δt, time step of the HEC-HMSsimulation 
Columna III   T'p, time to peak of the outflow hydrograph    

as simulated by HEC-HMS, where the value  
of NSTPS isoptimal; 

Columna IV   NSTPSc = (T'p - Tp )Δt value of NSTPS  
that one would obtain by the peak travel time  
(from inflow cross section to outflow cross   

section)   byΔt; 
Columna V    NSTPSv, value of NSTPS  that  one  would  obtain   
by  dividing  the  reach  length by the peak outflow   
water velocity multiplied by.Δt; 
Columna VI   NSTPSm, the value of NSTPS found  
experimentally; 
Columna VII  NSTPSp, the value of NSTPS given by the  
formula proposed below 
NSTPSP = n +1 if T'p/Tp >n+.2 
NSTPSP =n if T’h/Tp < n+.2,  
where n is any integer. 

 
 

Conclusions 
 
The preliminary results of the investigation 

presented in this paper tends to  suggest  that  the  
quanta  parameter NSTPS  used  in the  application  of 
the modified  Puls method  #2 to the HEC-HMS 
simulation  of a floodwave propagation depend 
exclusively on the peak delay factor T'p/Tp. If this is  
the  case,  the parameter is not only a characteristic of 
the macro and microgeometry  of  the river  reach,  but  
it  depends also on the characteristics of the inflow 
hydrograph.  This  means  that  NSTPS  is  different  for  
different flood waves. If the floodwave has a large 
value of TP then NSTPS should have the value of 1. If   
Tp  is small, NSTPS should have values larger than 1, 
according to the outcome of Equation (5). Since most 
floodwaves have several peaks, a choice of the value of 
NSTPS can be made to simulate more accurately single 
peaks or overall trends. The arbitrariness by which this 
process is clouded may constitute a major handicap for 
the use of the modified Puls method #2 in the HEC-
HMS simulation of hydraulically meaningful problems. 
 
 

 
Table 3 . Results of Numerical Experiments 

 
Tp ΔT T’p NSTPSv NSTPSv NSTPSm T’p/Tp NSTPSp 

1.00 15 3.5 10 17 3.00 3.50 4.00 
2.00 15 

30 
4.50 
4.50 

10 
5 

16 
8 

3.00 
2.00 

2.25 
2.25 

3.00 
3.00 

4.004 15 
30 
60 

6.75 
6.50 
6.00 

11 
5 
2 

16 
8 
4 

2.00 
2.00 
2.00 

1.63 
1.50 
1.34 

2.00 
2.00 
2.00 

8.00 15 
30 
60 

120 

10.75 
10.30 
11.00 
10.00 

11 
5 
3 
1 

15 
8 
4 
2 

2.00 
2.00 
2.00 
2.00 

1.34 
1.28 
1.38 
1.25 

2.00 
2.00 
2.00 
2.00 
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16.00 15 
30 
60 

120 
240 

18.50 
18.58 
19.00 
18.00 
20.00 

10 
5 
3 
1 
1 

15 
8 
4 
2 
1 

2.00 
2.00 
2.00 
2.00 
1.00 

1.15 
1.15 
1.19 
1.13 
1.25 

1.00 
1.00 
1.00 
1.00 
1.00 

 

 
 

 
___________________________________________ 
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