EVALUACIÓN DE UNA TÉCNICA FÍSICO-MATEMÁTICA PARA LA ESTIMACIÓN DE LLUVIAS EXTREMAS DURANTE EL PERIODO EL NIÑO DÉBIL A MODERADO 2002

O. Fashé Raymundo *a y J. Rojas Acuña a

*a Laboratorio de Teledetección, Departamento de Física Interdisciplinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Resumen

El presente artículo tiene por objetivo la evaluación una técnica físico-matemática para la estimación de la tasa de lluvias en la costa norte del Perú durante días de lluvia extrema en abril del 2002. Para este propósito se han utilizado imágenes infrarrojas del satélite GOES-8. Los resultados muestran que la técnica utilizada presenta un buen desempeño en la representación de la variabilidad diurna de las lluvias, sin embargo existe una seria deficiencia en el estimado diario de la tasa de lluvia. Las condiciones de orografía y rápida formación de lluvias durante procesos atmosféricos como los que se presentan durante un proceso de El NIÑO explicarían la causa de los resultados encontrados.

PACS: 92.10.am; 92.30.La; 92.40.eg
Palabras claves: EL NIÑO, Satélite GOES-8, Perú, Lluvia convectiva y estratiforme, Técnica Convectiva Estratiforme.

Abstract

The goal of the present paper is the evaluation of a physical-mathematical technique to estimate the rain rate in the Peruvian north coast during days of extreme rainfall the period considered in this work in april 2002. For this purpose infrared GOES-8 satellite images have been used. The results show that the used technique produces a good representation of the diurnal variability of rain; however a serious deficiency exists in the daily rain rate estimation. The orography conditions and rapid rain formation during an atmospheric process similar to EL NIÑO one would explain the cause of the opposing results.

Keywords: EL NIÑO, GOES-8 Satellite, Peru, Convective and Stratiform Rain, Convective Stratiform Technique.

1. Introducción

La lluvia es uno de los parámetros atmosféricos más aleatorios. Su correcta estimación es importante para la elaboración de pronósticos meteorológicos de mediano y largo plazo. La información de las lluvias es especialmente importante en los trópicos [1, 2, 3, 4], debido a que una gran fracción de la lluvia que cae sobre el planeta se produce en las latitudes bajas y están relacionadas a eventos climáticos como El Niño y la Oscilación Sur (EL NIÑO - Southern Oscillation, ENSO) [5]. Trabajos de investigación sobre estimación de lluvias, usando imágenes de satélites, sobre Perú han sido realizados por algunos científicos como parte de los estudios relacionados con el Fenómeno EL NIÑO [6, 7], y estudios de la variabilidad diurna de las lluvias sobre la cuenca del Amazonas [8, 9, 10]. En el presente trabajo se utiliza la técnica convectiva estratiforme (Convective Stratiform Technique, CST) [8]. Esta técnica utiliza dos tasas de lluvia, una asigna una determinada cantidad de lluvia que es asociada con lluvia convectiva y la otra con lluvia estratiforme lo cual hace que, la misma, resulte simple y eficiente durante el proceso de cálculo. El presente artículo tiene por objetivo la evaluación de la técnica CST para la estimación de lluvias. Los resultados muestran que la técnica utilizada presenta un buen desempeño en la representación de la variabilidad diurna de las lluvias, sin embargo existe una seria deficiencia en el estimado diario de la tasa de...

* Corresponding author. e-mail: ofasher@unmsm.edu.pe
lluvia. Las condiciones de orografía y rápida formación de lluvias durante procesos atmosféricos como los que se presentan durante un proceso de El Niño explicarían la causa de los resultados encontrados.

2. Metodología y Región de Estudio

2.1 Técnica Físico-Matemática

La técnica físico-matemática utilizada en el presente estudio, es desarrollado por Adler y Negri [11]. Ésta es una técnica para la estimación de tasa de lluvia convectiva y estratiforme que utiliza imágenes infrarrojas de satélites geostacionarios. Negri y col. [8], realizan una mejora mediante un proceso de re-calibración entre los parámetros de la técnica original (Técnica Convectiva Estratiforme, Convective Stratiform Technique - CST) con estimados de lluvia coincidentes derivados de la aplicación del algoritmo de perfiles Goddard (GPROF) [12] a datos de temperatura de brillo del sensor TMI a bordo del TRMM.

El objetivo de la re-calibración fue la de determinar parámetros de manera que la CST fuera capaz de reproducir el volumen total de lluvia, el área de lluvia, y la división entre lluvia convectiva y estratiforme observada por el TMI. Negri y col. utilizaron un algoritmo mejorado para la división entre lluvia convectiva y estratiforme para el GPROF descrita por Olson y col. [13]. La calibración fue realizada sólo sobre Sudamérica, desde 12° norte hasta 18° sur y desde 82° oeste hasta 34° este. El ajuste del CST se realizó sobre una base estadística en un periodo de cuatro meses de calibración (enero a abril de 1999), sin restricciones explícitas en el estimado instantáneo de lluvia.

La re-calibración toma la siguiente forma:

Determinación de centros convectivos sobre las imágenes digitales

Negri y col. [8], identificaron los puntos o pixeles de temperatura local mínima (Tmin) para luego calcular la desviación de la Tmin con respecto a la temperatura de fondo, definida como la temperatura promedio de los ocho pixeles circundantes al Tmin. La figura 1 muestra el análisis de la Tmin en un espacio bi-dimensional definido por la temperatura infrarroja y la desviación de la Tmin del fondo. Los puntos son definidos por las correspondientes tasas de lluvia obtenidas a partir del TMI como convectiva (C) y no convectiva (N). Los datos mostrados en la figura 1 representan el 1? de un subconjunto aleatorio del total de datos usados para determinar la línea discriminante. La línea discriminante resultante esta definida por:

\[ 1,25xT_{min} - 3,16xDesviación \leq 254,7 \]
\[ Desviación \leq 2,23 \]

Determinación del área de la lluvia convectiva asignada a cada Tmin

Como parte de la recálculo Negri y col. [8] calcularon la constante de proporcionalidad α entre el área convectiva total hecha por los datos TMI y el parámetro Σ(Tmin - Tmin). Dado un ΣTmin convectivo, α(Tmin - Tmin) es el número de pixeles para los que se asigna una tasa de lluvia convectiva centrada en Tmin. El umbral comúnmente usado para las nubes convectivas es Tmin = 253 K. Basados en el área de lluvia determinada de los estimados de área convectivo realizadas con el TRMM, α = 0.61. Por ejemplo, para Tmin = 203 K serían asignados 32 pixeles (4 km por 4 km) a la tasa de lluvia convectiva.

![Fig. 1. Análisis discriminante de la temperatura mínima (Tmin) en un espacio bi-dimensional definido por la temperatura de brillo infrarroja y la desviación de la Tmin del fondo. [8]](image)

Determinación de la tasa promedio de lluvias convectivas

Negri y col. [8], establecieron una tasa de lluvia convectiva de 18.9 mm h\(^{-1}\) que es igual a la obtenida por el algoritmo GPROF. Esto permite que el total del volumen de lluvia convectiva derivada del CST/TMI sea igual a la calculada sólo por el TMI.
Determinación de la temperatura umbral para definir el área de lluvia estratiforme

Se escoge un umbral de manera que la temperatura de brillo total de nubes sea mas fria que dicho umbral (excluyendo a aquellos pixeles ya asimilados como lluvia convectiva), el cual es igual al área de lluvia estratiforme obtenida por la TMI/GPROF. Este umbral es igual a 219 K [8].

Determinación de la tasa promedio de la lluvia estratiforme

Como en el caso de la determinación de la tasa promedio de la lluvia convectiva, se usa el valor calculado por la TMI/GPROF [13] para la tasa promedio de la lluvia estratiforme que es 2.6 mm/h [8]. Esto fuerza a que CST/TMI sea igual a la de la TMI sola, integrada sobre el periodo de calibración de cuatro meses.

2.2 La CST y el entorno de trabajo

El código fuente CST:

El código fuente de la técnica convectiva estratiforme fue desarrollado inicialmente en el lenguaje de programación FORTRAN [11]. El código actual se presenta en el lenguaje de programación C [14]. Este consiste de un programa principal que enlaza una serie de subprogramas encargados de rutinas específicas. Se presenta en la figura 2 el esquema básico de trabajo del este código fuente para la obtención de una imagen clasificada de lluvia convectiva y estratiforme.

![Diagrama de trabajo del código CST](http://ferret.pmel.noaa.gov)

Fig. 2. Esquema de trabajo del código fuente CST.

2.3 Región de estudio.

Las tablas 1 y 2 muestran la ubicación en latitud y longitud de las estaciones pluviométricas que sirven para la evaluación del modelo físico matemático en la región de estudio.

| Tabla 1. Ubicación geográfica de las estaciones pluviométricas [17] |
|----------------------|-----------------|---------------|
| Estación            | Latitud (°)    | Longitud (°)  | Altitud (m) |
| Chulucanas          | -5.10          | -80.17        | 90           |
| El Cizuelo          | -4.30          | -80.15        | 250          |
| Paraje Grande       | -4.63          | -79.92        | 555          |
| Piura               | -5.20          | -80.60        | 29           |
| Presa Ejidos        | -5.14          | -80.64        | 32           |
| Presa Pochos        | -4.65          | -80.51        | 90           |
| Puente Sullana      | -4.88          | -80.70        | 65           |
| Puente Internacional| -4.38          | -79.95        | 408          |
| San Lorenzo         | -4.68          | -80.20        | 260          |
| Tambo Grande        | -4.93          | -80.35        | 55           |

| Tabla 2. Coordenadas geográficas sección de análisis del ciclo diurno |
|-------------------|-------------|-------------|
|                   | Latitud (°) | Longitud (°) |
| Esquina superior  | -3.0        | -82.0       |
| izquierda         |             |             |
| Esquina inferior  | -6.0        | -79.5       |
| derecha           |             |             |

![ imagen clasificada GOES8 de lluvia Convectiva y Estratiforme ]

3. Resultados

Las mediciones estadísticas usadas entre los estimados de tasa de lluvia con las imágenes IR GOES8 contra los datos de pluviómetros son: la lluvia promedio medida en pluviómetros, la lluvia promedio estimada con satélite, el error de sesgo.
(BIAS), el RMSD y el coeficiente de correlación “r” [11,15] (ecuaciones (2)).

\[
G = \frac{\sum G_i}{N}, \quad S = \frac{\sum S_i}{N}, \quad \text{BIAS} = S - G, \quad \text{RMSD} = \frac{1}{N} \sum_{i=1}^{N} (S_i - G_i)^2,
\]

\[
\hat{r} = \frac{\frac{1}{N-1} \sum_{i=1}^{N} (S_i - \bar{S})(G_i - \bar{G})}{\left[ \frac{1}{N-1} \sum_{i=1}^{N} (S_i - \bar{S})^2 \right]^{1/2} \left[ \frac{1}{N-1} \sum_{i=1}^{N} (G_i - \bar{G})^2 \right]^{1/2}}
\]

(2)

donde \(G_i\) representan los datos de lluvia mensual medida en pluviómetros, y \(S_i\) representan los datos coincidentes, en latitud y longitud, de lluvia estimada en una imagen de lluvia mensual GOES. \(N\) es el número de datos utilizados para el estimado mensual de lluvia.

3.1 Eventos de lluvias en abril del 2002.

A fines de marzo e inicios de abril del año 2002 se produjeron intensas lluvias en la costa norte del Perú [16,17]. Los principales procesos de lluvia se debieron a lluvias convectivas. Takahashi [18] realiza un análisis de estos procesos y considera que los días de lluvia intensa están asociados con flujos de bajo nivel de vientos provenientes del oeste intensificados sobre la tierra, que pueden ayudar a la formación de convección por el levantamiento orográfico sobre la ladera oeste de los Andes en dicha región. Se presenta un análisis del área de estudio, comprendida en la tabla 2, cubierta por las lluvias convectivas y estratiformes que abarcan los días 6 y 7 de abril del 2002. Para ello se ha contado con un total de 60 imágenes digitales GOES-8, tomadas entre las 13:15 GMT del 5 de abril del 2002 y las 12:45 GMT del 7 de abril del 2002. El porcentaje del área total de estudio que ha sido cubierta por lluvias clasificadas como convectivas y estratiformes se muestra en la figura 4. Se observa, en los dos días de estudio, que las áreas máximas de precipitación se generan entre las 19:00 GMT a las 22:00 GMT.

![Fig. 4. Área de lluvia convectiva y estratiforme sobre todo el Perú para los días (a) 6 y (b) 7 de abril del 2002.](image)

4. Discusión


Entre los días 6 y 7 de abril del 2002 produjeron precipitaciones extremas sobre la costa norte de Perú [17,18]. Las imágenes de la tasa de lluvia estimada sobre todo el Perú se muestran en las figuras 5 y 6 para el 6 y 7 de abril del 2002, respectivamente. En cada imagen se presenta un recuadro rojo que indica una región de estudio utilizada para el análisis diurno de las lluvias sobre la costa norte del Perú (tabla 2).

Takahashi [18] presenta los datos de lluvias precipitada sobre tres estaciones pluviométricas ubicadas en la costa norte del Perú durante las fechas en referencia. En la figura 7 se puede apreciar la intensidad de las lluvias producidas.

![Fig. 5. Lluvia estimada para el día 6 abril del 2002 en (mm/día).](image)
Influencia del sistema tierra y brisa de mar:

Una brisa de mar, circulación local diurna producida por el calentamiento del sol sobre la tierra y el mar. Diversos trabajos han demostrado que la interacción “tierra – brisa de mar” puede determinar la dinámica de las lluvias en áreas costeras [6]. Horel y Cornejo-Garrido [21] observaron una intensificación adicional de procesos convectivos y la propagación de frentes de brisa de mar hacia los Andes que en ocasiones se debía a un acoplamiento de la brisa de mar inducida por acción del calor y de sistemas de vientos que sobrepasaban los Andes. Dada la topografía del norte del Perú (figura 3), el flujo de aire sobre tierra puede forzar [6] al aire a sobrepasar (trasvasar) las laderas de las montañas, que se encuentran aproximadamente hasta 130 km tierra adentro, y el asociado levantamiento activa la convección [18]. Este mecanismo puede explicar la distribución espacial de la lluvia que tiende a ser grande en las laderas de los Andes, y explica la temporalidad de las lluvias, que tienden a iniciarse al medio día y a observar su pico desde el anochecer hasta la mañana.

Trasvases de la actividad convectiva sobre los Andes desde la cuenca Amazónica:

movimiento de vientos que mueven a las nubes (Cloud Motion Winds, CMW) para el evento El Niño de los años 1991/92.

Utilizando las imágenes de satélite GOES-8 se ha realizado un análisis sobre un total de diez estaciones pluviométricas ubicadas en la costa norte del Perú (figura 3 y tabla 1). Los resultados muestran una pobre correlación considerando la toma del dato de lluvia estimada de forma puntual, y presenta una mejor correlación entre lo medido y estimado cuando se realiza un promedio sobre 3 pixeles por 3 pixeles alrededor de la ubicación de la estación (tabla 3 y tabla 4). Sin embargo se muestra una adecuada representación del ciclo diurno de las lluvias (figura 9), en una región de estudio que abarca las coordenadas mostradas en la tabla 2.1. Diversos trabajos que utilizaron la técnica convectiva estratiforme para la estimación diaria y mensual de lluvia muestran diversos valores de correlación. Negri y col. [8] obtienen utilizando la técnica convectiva estratiforme una alta correlación (0.77), usando un total de 72 estaciones con registros mensuales de lluvia sobre el estado de Ceará al norte de Brasil (38S-8S y 41W a 38W). Ba y Gruber [15] utilizando un algoritmo multiespectral de lluvias y una modificada técnica convectiva estratiforme obtienen, en promedio, correlaciones mayores a 0.77 en el estimado diario de lluvias sobre Norteamérica. Reudenbach y col. [22] utilizan una mejorada técnica convectiva estratiforme y la aplican sobre el oeste de Europa en tiempo de verano, obteniendo una correlación de 0.73. En los casos citados, la orografía de las regiones citadas no presenta una configuración como la existente en la costa norte peruana (figura 3), propicia para la activación de procesos convectivos como los registrados en las fechas del 6 y 7 de abril del 2002.

![Mapa de la distribución espacial de las anomalías de la precipitación (%)](image)

Fig. 8. Mapa de la distribución espacial de las anomalías de la precipitación (%) para abril del 2002. [17].

![Área de lluvia convectiva y estratiforme sobre la costa norte del Perú para los días](image)

Fig. 9. Área de lluvia convectiva y estratiforme sobre la costa norte del Perú para los días (a) 5 y 6, y (b) 6 y 7 de abril del 2002.

Los resultados obtenidos indican la ineficacia de la técnica utilizada cuando se presentan las condiciones de alta orografía. Las fechas en las que se realiza el estudio presentan condiciones meteorológicas que propician procesos de convección de rápida formación y de tiempo de...
vida relativamente corto. La técnica utilizada, sin embargo, presenta buenos resultados cuando se realizan análisis de tasa de lluvia acumulada para periodos mensuales [14]. El análisis del estimado de la tasa de lluvia presentada en la figura 4, muestra que las lluvias se incrementan entre las 15:00 GMT y las 23:00 GMT. Con ello, se demuestra que existe una buena representación de la variabilidad diurna de las lluvias en toda la región de estudio (tabla 1). La variabilidad de la lluvia en los trópicos fue analizada por diversos autores [6, 8, 9, 10]. Negri y col. [10] presentan un análisis de la variación diurna de las lluvias sobre Perú y Sudamérica como parte de su estudio climatológico regional con datos imágenes del SSM/I. Negri y col. [10] muestran que durante el periodo de enero a mayo de 1989 – 1990 y 1992 las lluvias generadas tienen una preferencia de máximas precipitaciones durante las horas de la mañana (06:30 del tiempo local) sobre la región nororiental de Sudamérica. Negri y col. [2000] observan que las lluvias generadas en horas de la mañana presentan los valores máximos de precipitación a lo largo de las laderas orientales de los Andes, como resultado de la circulación local. En la sección 3.1 se muestra que las lluvias producidas sobre Perú se incrementan entre las 10:00 y las 18:00 horas del tiempo local (15:00 GMT y 23:00 GMT). Si bien los resultados fueron obtenidos haciendo solo un análisis de dos días en particular, se presenta la posibilidad de realizar un análisis mensual o anual a fin de observar el comportamiento de las lluvias tanto sobre la región oriental como ocidental de la cordillera de los Andes.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Media GAUGE</th>
<th>Media GOES</th>
<th>BIAS (mm)</th>
<th>RMSD (mm)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 abril 2002</td>
<td>47.59</td>
<td>1.88</td>
<td>-45.7</td>
<td>57.34</td>
<td>-0.41</td>
</tr>
<tr>
<td>7 abril 2002</td>
<td>90.46</td>
<td>10.45</td>
<td>-80.0</td>
<td>87.67</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Tabla 3. Estimados de la tasa de lluvia diaria con el GOES-8 y mediciones en pluviómetros en la costa norte del Perú.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Media GAUGE</th>
<th>Media GOES</th>
<th>BIAS (mm)</th>
<th>RMSD (mm)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 abril 2002</td>
<td>47.59</td>
<td>1.8</td>
<td>-45.79</td>
<td>57.26</td>
<td>-0.42</td>
</tr>
<tr>
<td>7 abril 2002</td>
<td>90.46</td>
<td>9.6</td>
<td>-80.86</td>
<td>87.82</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Tabla 4. Estimados de la tasa de lluvia diaria con el GOES-8 y mediciones en pluviómetros en la costa norte del Perú. Análisis sobre una cuadrícula de 12 km x 12 km alrededor de la estación meteorológica.

5. Conclusiones

Durante el mes de abril del 2002, se produjeron intensas lluvias sobre el norte del Perú. Se observó que, durante los dos días de estudio, las tasas de precipitación máximas se produjeron entre las 19:00 GMT y 24:00 GMT, coincidiendo con los reportes sobre variabilidad diurna de las lluvias en Sudamérica. Estos resultados coinciden con los reportes de evento, que indicaban que fue producido por vientos provenientes del océano pacífico y que se intensificaron en tierra debido a la orografía de la región. Los resultados del análisis de estimados GOES-8 y mediciones en pluviómetros muestran la ineficacia de la técnica utilizada cuando se presenta situaciones atmosféricas y geográficas como las existentes para el estudio en particular.

Agradecimientos

Los autores agradecen al Concejio Nacional de Ciencia y Tecnología (CONCYTEC) del Perú, por el apoyo brindado. The authors wish also to thank to Andrew J. Negri from Laboratory for Atmospheres (NASA, GSFC), and to Dr. Liming Xu Department of Hydrology and Water Resources (University Arizona) for providing the CST source code.

Bibliografía