
80

algortimo de prim para la implementaCión de laberintos aleatorios en videoJuegos

Ind. data 15(2), 2012

sistemas e informática

ABSTRACT

The Prim's algorithm, extracted from the graph
theory, is easily adaptable for generating random
mazes in the game development process. This
study provides the theoretical framework of the al-
gorithm, its adaptation to generate two-dimensional
arrays of values, coding in Java and use of libraries
provided by this programming language. It restricts
the creation of the arrays to a minimum size of
11x11 to ensure that generates coherent sizes ma-
zes and its application is for generating orthogonal
called labyrinths (2D view). Finally, the measure-
ment is made of the performance of the proposed
encoding and concludes that in all tests, the avera-
ge response time is less than a tenth of a second to
generate maps of labyrinths.

Keywords: Prim, Mazes, Game, Graph.

PriM alGoritHM For tHe
iMPleMentation oF randoM MaZeS
in VideoGaMeS

RESUMEN

El algoritmo de Prim, extraído de la teoría de gra-
fos, es fácilmente adaptable para la generación de
laberintos aleatorios en el proceso de desarrollo
de videojuegos. Este estudio proporciona el marco
teórico del algoritmo, su adaptación para la gene-
ración de valores en matrices bidimensionales, la
codificación en Java y el uso de librerías propor-
cionados por este lenguaje de programación. Se
restringe la creación de las matrices a un tamaño
mínimo de 11x11 para garantizar que se genere la-
berintos de tamaños coherentes y su aplicación es
para la generación de los denominados laberintos
ortogonales (vista en 2D). Finalmente, se realiza
la medición del rendimiento de la codificación pro-
puesta y se concluye que en todas las pruebas rea-
lizadas, el tiempo promedio de respuesta es menor
a una décima de segundo para generar los mapas
de laberintos.

Palabras clave: Prim, Laberintos, Videojuegos,
Grafos.

Algoritmo de PRIM para la implementación
de laberintos aleatorios en videojuegos

Recibido: 14/09/12 Aceptado: 04/03/13

Félix Melchor Santos López1
Eulogio Guillermo Santos de la Cruz2

Revista de la Facultad de Ingeniería Industrial
15(2): 80-89 (2012) UNMSM
ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico)

INTRODUCTION

The video game industry, today, is one of the fastest growing
globally and one that employs a variety of professionals such
as programmers, designers, sound engineers, test analysts, ex-
perts in physics, mathematical computing professionals, screen-
writers, artists, etc. One of the most important pillars in the de-
velopment of video games is to create the environment in which
it takes place; this is to say the maps by which our character,
machine, ship or other is going to go traveling.

For creating such maps, there are different procedures, the most
popular being fixed maps once are designed in size and sha-
pe. However, more elaborate video game maps with roads and
different in each instance of the game, algorithms for randomly
generating these maps must be applied. This paper presents the
algorithm of Prim extracted from a graph theory. "A graph is a
non-empty set of objects called nodes connected by edges" [2].

This algorithm can generate a minimum spanning tree in this
article is adapted for generating random labyrinths dimensio-
nal matrices. In addition, the study covers the measurement of
performance of this algorithm to generate a number of them at
once. For example: 5, 10, 20, 30, 40 and 50 mazes in each ite-
ration, obtaining results in nanoseconds which are analyzed and
concluding that everyone is on average less than 0.01 seconds.
Therefore, an optimum time is considered appropriate and, be-
cause it is less than one tenth of a second.

I. THE FIRST VIDEO GAME OF HISTORY

Summarizing what was designated by Ramker R. [9] In 1952
Alexander Shafto Douglas presented at the University of Cam-
bridge the doctoral thesis in mathematics showing human-com-
puter interaction by the popular game of noughts and crosses ca-
lled OXO. It was implemented in the machine EDSAC (Electronic
Delay Storage Automatic Calculator) and used the buttons on a
phone to interact with users. In figures 1 and 2 can be seen the
screens of the first video game in history.

1 Informatics Engineer, PUCP. Postgraduate Diploma in Audit and Security of Information
Technology, UNMSM. J2EE Analyst at SUNAT.

 E-mail: fsantos@pucp.edu.pe
2 Industrial Engineer, UNMSM. Professor at Faculty of Industrial Engineering, UNMSM.
 E-mail: esantosd@unmsm.edu.pe

81

félix melChor santos lópez / eulogio guillermo santos de la Cruz

Ind. data 15(2), 2012

sistemas e informática

II. ORTHOGONAL MAPS AND ISOMETRIC

Within the video games world a very common pat-
tern is the use of maps for their development. This is
to say maps where the main character is moving and
avoiding or facing obstacles that the game provides.

There are two types of maps: orthogonal and iso-
metric. The maps are those classic orthogonal in 2D
view and the player appreciates it in a direct view.
Examples of orthogonal maps can be seen in the
classic games Sokoban ® and Pac man ® illustra-
ted in figures 3 and 4 respectively.

 Figure 4. Map of Pac man ®

Source: Taken from Epifania A. [4]

 Figure 1. OXO Start Figure 2. End of the OXO start

Source: Taken from Ramker R. [9] Source: Taken from Ramker R. [9]

Figure 3. Map of Sokoban ®

Source: Taken from Eugenia M. [5]

In this way began a new charge of industry information technology innovation globally, both in algorithm deve-
lopment needs, graphical interfaces, application of mathematics and physics, as well as in the development of
increasingly powerful graphics cards, microprocessors, RAM and communication buses.

82

algortimo de prim para la implementaCión de laberintos aleatorios en videoJuegos

Ind. data 15(2), 2012

sistemas e informática

Furthermore, the maps are those that allow to simulate an isometric 3D scene. These maps have the particu-
larity of placing images on an inclination angle of 45 degrees. Figure 5 shows an isometric game map.

Figure 5. Isometric map

Source: Taken from Jongart D. [7]

III. IMPLEMENTATION OF THE MAPS

In game development, the maps are the central core
of the development of these applications for enter-
tainment, because it is the stage on which is based
the entire project. There are a variety of ways and
algorithms for generating the labyrinths. The most
basic are the manually generated maps, namely al-
gorithms are applied but not simply as templates in
the case of figures 3 and 4, where the labyrinths are
always the same for the game or a fixed there with
labyrinths sizes and shapes are pre-established.

The implementation is based on mazes of dimen-
sional matrices with allocation of certain securities
by developers. For example, figure 6 shows a ma-
trix of a labyrinth generated. The value 8 represents
the start or entry to the labyrinth, the value 5 repre-

sents the end or output values 1 represent walls or
blocks in which the character cannot be positioned
and 0 values represent the possible displacements
of the video game character.

The matrix was generated with a genetic algorithm
that provides the artificial intelligence field in chap-
ters and evolutionary computation theory. Palma J
[8] points out in his book that genetic algorithms are
expressed by binary strings of bits, which in con-
junction with a structure (chromosome) give rise to
the necessary components for the use of these al-
gorithms. It requires an initial population is called
"parents" and then a "crossover" and "mutation"
are generated the following generations and it is
iterated for a certain number of times, resulting in
a matrix with binary values that are used for imple-
menting maps.

83

félix melChor santos lópez / eulogio guillermo santos de la Cruz

Ind. data 15(2), 2012

sistemas e informática

Figure 6. Matrix for generating the labyrinth

Source: Taken from Buckland M. [1]

Figure 7. Labyrinth generated

Source: Taken from Buckland M. [1]

Figure 7 shows the implementation of the labyrinth
graph based on the values of the matrix in figure 6.

IV. MATHEMATICAL DEFINITION PRIM'S ALGO-
RITHM

Prim's algorithm is a special case of the minimum
spanning tree generic providing graph theory. It de-
fines a graph "as a set of objects called nodes or
vertices and the vertices of pairs of bonding lines
for calls edges, which can be oriented or not" [6].
Also, it must be a related type; this is to say all pairs
of vertices must be connected by an edge. Next,
in figure 8, shows an illustration of related and not
related graphs.

Figure 8. Types of graphs

Source: Taken from Chartrand G. [2]

Initially, the algorithm begins with the following
equation:

Where:

• A : Represents the graph equation

• v : Represent each vertex

• vt : The minimum weight vertex connects to
the other vertex.

• R : Represents the path of minimal spanning
tree to grow.

• V : Represents all nodes in the graph.

• Q : Represents the lowest priority queue.

When the algorithm terminates the queue of the
lowest priority Q is null and it´s expressed by the
following equation:

The central idea of the equation is to make itera-
tions, where the node is always looking for that
edge results in the lower value. These iterations are
performed until the lowest priority Q queues zero.

This is followed by an example to explain the appli-
cation of Prim algorithm on a graph.

In figure 9 (a) can be seen the nodes from the let-
ter "a" to "i" and their values in each of the edges
bound. From this graph, it is necessary to select
a node at random, in this case the node "a". After
the connection is evaluated next vertices and the
values assigned to the edges, selecting the lowest
value. In this case it selects the edge of value 4 co-
rresponding to node "b", as shown in graph (b).

Next, the new nodes to be evaluated are "a" and
"b" and proceeds to re-select the next node whose
edge is the next lower value. It will be appreciated
that the following edges: "bc" with a value of 8, "ah"

84

algortimo de prim para la implementaCión de laberintos aleatorios en videoJuegos

Ind. data 15(2), 2012

sistemas e informática

with a value of 8 and "bh" with a value of 11. Thus,
it appears that the less valuable are the edges "bc"
and "ah" with value 8, then select one of them ran-
domly, for example "bc" as is shown in the graph (c).

The above steps are repeated until all nodes are
connected. It connects the edges "ci", "cf", "fg",

Figure 9. Prim graph algorithm

Source: Taken from Cormen T. [3]

"gh", "cd" and "of" as seen in the graphs (d), (e), (f),
(g), (h) and (i) respectively of figure 9.

Finally, the graph (i) shows the final result of the
implementation of Prim algorithm, making all nodes
interconnected through by at least one edge.

85

félix melChor santos lópez / eulogio guillermo santos de la Cruz

Ind. data 15(2), 2012

sistemas e informática

V. ADAPTATION OF THE PRIM ALGORITHM FOR
GENERATING MAZES

As noted in previous sections, two-dimensional
arrays are required to generate mazes. It is therefo-
re necessary to specify the possible values as de-
velopers that have each one of the elements of the
matrix.

• B à Block or wall where the character can-
not be positioned.

• à Blank box where the character can be po-
sitioned and / or move.

• O à Box candidate to be added to the low
priority Q queue.

• F à Box border considered the current ge-
nerated box in blank.

The following restrictions apply to the maze:

• The edges of the labyrinth will be the type of
B cells, i.e. block or wall where the charac-
ter does not move.

• The labyrinth has a width of a box for the
displacement of the character.

• The minimum size 11 x 11.

• Labyrinth dimensions are always odd num-
bers. For example, 27x33.

• The algorithm allows the generation of or-
thogonal labyrinths.

.

Being the labyrinth one dimensional array indica-
tes the orientation of the ordinate abscissa i j as is
shown in figure 10.

Figure 10. Orientation

Source: Own elaboration

Figure 11. Iteration start

Source: Own elaboration

Here are the steps to generate random mazes with
Prim's algorithm:

1. Random numbers whose values M and N are
greater than or equal to 11 are obtained.

2. It creates a two-dimensional array of M x N with
all its elements with the value of B (or block
wall).

3. With the matrix created, it proceeds to load the
O values, this is to say boxes candidates for the
path of the labyrinth. Applies the constraint that
the edges of the map cannot contain the value
of O, so the positions [i, 0], [0, j], [i, N] and [M,
j] do not take the value of O. Furthermore, it is
restricted to only the positions i and j values for
the pair take the value O.

4. With the values O loaded, this is to say boxes
candidates to be added to the low priority Q
queue, we proceed to select a random target
and place. In figure 11 shows that the position
[6, 2] is selected as a target.

5. Next, with the box blank will be selected to
add to the neighbors next to the lowest priority
queue, this is to say to mark them as a border
in the matrix. In figure 11 can be seen the posi-
tions [4.2], [8.2] and [6.4] marked with a F.

6. Borders are added to the low priority queue. Q
= {[4, 2]; [8.2]; [6, 4]}.

7. In the low priority Q queue we proceed to select
a random value. For example [4, 2] and mark
target position.

8. Then we see that the values of the positions
[4.2] and [6.2] are marked with white and pro-
ceeds to join them, this is to say to place the
target value in the [5,2].

9. F borders are added to the [4,2] and add those
that are new to the lowest priority Q queue.

10. It is removed the position [4.2] of the low priority
Q queue.

11. Steps 7), 8), 9) and 10) are repeated until the
lowest priority queue is empty.

By applying the steps of the algorithm proceed to
obtain a map of random size and shape as is illus-
trated in figure 12.

 Source: Own elaboration

IMPLEMENTATION IN JAVA

86

algortimo de prim para la implementaCión de laberintos aleatorios en videoJuegos

Ind. data 15(2), 2012

sistemas e informática

VI. IMPLEMENTATION IN JAVA

As discussed in the previous section, we proceed to
implement the algorithm in the Java programming
language in its Standard Edition.

In figure 13 depicts the Source code of this algo-
rithm. Then we proceed to explain some important
lines of code.

• The name of the public class is Maze as it is
displayed on line 9.

• These are created to use as constant values in
the matrix elements (O, , F, B) as shown on li-
nes 11, 12, 13 and 14.

• In lines 18 and 19 are created by the function
Math.random() M and N dimensions of the lab-
yrinth.

• In line 25 the function iniciarLaberinto initializes
the array of size MxN generated, establishing
the walls (B) and the boxes candidates (O)
to the lowest priority Q queue. Moreover, this
function is responsible for validating that the

maze is at least 11x11.

• In lines 27 through 33 shows the implementa-
tion of the first box blank to select at random.

• In line 40 the function evaluarVecinos marks
borders (F) in the matrix maze [] [], further
adding them to the lowest priority queue instan-
tiated on line 36.

• In lines 43 through 58 we proceed to enter a
“While” loop until the low priority list Q contains
elements.

• Within the loop, proceed to obtain a random
element of lowest priority list Q as is shown
in line 48. After 50 to 53 lines is necessary to
assess whether there are close neighbors and
existence, that element is interconnected with
randomly chosen.

• Finally, in line 55 evaluarVecinos method is
again invoked to update the priority queue with
borders F minimum found for the item chosen
randomly. Then proceed to remove that item
from the list Q as it is displayed on line 57.

Figure 12. Labyrinth generated

87

félix melChor santos lópez / eulogio guillermo santos de la Cruz

Ind. data 15(2), 2012

sistemas e informática

VII. ALGORITHM PERFORMANCE

To take a measurement of the performance of this
algorithm is necessary to place a line in the Source
Code. In line 17 and line 58 of figure 12 we add the
following Java functions respectively:

Long tiempo_ini = System.nanoTime();

Long tiempo_fin = System.nanoTime();

Figure 13. Code Java

The function nanoTime() provided by Java allows a
numerical value of the current date expressed in na-
noseconds. Therefore, to calculate the processing
time simply apply the following subtraction:

Long time = tiempo_fin – tiempo_ini;

Additionally, minimal changes are made to the algo-
rithm to generate a given amount of labyrinths each
time it runs. Simply enclose the entire code for the

Source: Own elaboration

88

algortimo de prim para la implementaCión de laberintos aleatorios en videoJuegos

Ind. data 15(2), 2012

sistemas e informática

main () of figure 12 in a loop a specified number of
iterations. This change is necessary to make runs
by changing the amount of generated mazes in the-
se. Table 1 shows the results of 10 runs for the ge-
neration of 5, 10, 20 30, 40 and labyrinth 50.

As a result, the table 2 shows the average time to
generate 5, 10, 20, 30, 40 and 50 based labyrinths

 # of mazes
Run 5 10 20 30 40 50

1 25100354 37383187 66987288 92819763 89280761 96249970

2 39245483 44996200 76434120 81207293 96203893 95426656

3 24432231 52134360 93389011 94756613 89914005 92501380

4 30888190 53493324 90121673 82727208 96911053 91012823

5 27527099 53009192 77247834 89248122 92009248 86443799

6 33279737 50209668 86170855 86339805 84164886 98480565

7 25106754 57479661 82021326 81133056 105141952 91453119

8 27646452 43775788 83331973 85521610 89377075 95432096

9 28601918 60932588 70575248 84874287 87789964 100370700

10 32442023 50192710 82701929 94108649 95315943 96362924

Table 1. Time in nanoseconds of the algorithm

Source: Own elaboration

5 10 20 30 40 50

Average time 0,0294 0,0504 0,0809 0,0873 0,0926 0,0944

Table 2. Average times in seconds

Source: Own elaboration

data in table 1, expressed in seconds rounded to
four decimal places.

Finally, a figure 14 show in a graph depicts the in-
crease in nanoseconds before a higher number of
mazes generated. In other words, we see a reaso-
nable increase in processing time with the increase
in the number of mazes in each iteration.

89

félix melChor santos lópez / eulogio guillermo santos de la Cruz

Ind. data 15(2), 2012

sistemas e informática

Figure 14. Graph Prim algorithm performance

 Source: Own elaboration

VIII. CONCLUSIONS

1. It shows that you can adapt the Prim algorithm,
which provides graph theory, to generate ran-
dom mazes games by two-dimensional arrays.

2. The performance of this algorithm is quite effi-
cient, because tests showed generally not take
more than a tenth of a second to generate con-
siderable as 50.

3. The Java programming language provides li-
braries and functionality quite useful for coding
the Prim algorithm used in this case were Math.
random() to generate random numbers and
System.nanoTime() for performance measure-
ment.

BIBLIOGRAPHY

[1] Buckland M. LaMothe A. (2002). A1 Techni-
ques for Game Programming. Premier Press.
USA.

[2] Chartrand G. Lesniak L. (2000). Graphs & Di-
graphs. CRC Press. USA.

[3] Cormen T. Leiserson C. Rivest R. (2009). In-
troduction to Algorithms. Third Edition. The
MIT Press, Cambridge, Massachusetts. USA.

[4] Epifania A. (2009). “Soko-ban”: Cuando del
SGA podía ser tolerable.http://www.epimundo.
com/2009/11/soko-ban-cuando-el-cga-podia-
ser-olerable.html. (visited 13-01-2013).

[5] Eugenia M. (2008). Los juegos más influ-
yentes (1ª parte).http://www.kamegame.
com/2008/03/17/los-juegos-mas-influyentes-
1%C2%AA-parte/. (visitado el 12-01-2013).

[6] Gonzáles R. (2011). Algoritmo de Prim. http://
esteban-gzz.blogspot.com/2011/07/algoritmo-
de-prim.html. (visited 12-01-2013).

[7] Jongart D. (2008). Isometric Map_Jungle.
http://jongart.deviantart.com/art/Isometric-
Map-Jungle-75169895 (visited 26-02-2013).

[8] Palma J. Marín R. (2008). Inteligencia Artifi-
cial. Técnicas, métodos y aplicaciones. Mc
Graw Hill. España.

[9] Ramker R. (2011). Historia de los Videojuegos:
El origen y los inicios. http://www.otakufreaks.
com/historia-de-los-videojuegos-el-origen-y-
los-inicios. (visited el 12-01-2013).

