
GLOBAL SOLUTIONS AND DECAY OF A NON LINEAR COUPLED
SYSTEM WITH THERMO-ELASTIC

PESQUIMAT , Revista de la F.C.M. de la

Universidad Nacional Mayor de San Marcos

Vol. XVIII No2, pp. 19 -26, Lima - Perú, Diciembre 2015

Ricardo Fuentes Apolaya 1, Raúl Izaguirre Maguiña2.

(Recibido: 24/07/2015 - Aceptado: 20/08/2015)

Abstract: In this present work, the authors prove the existence of global solutions
and the decay of nonlinear wave equation with thermo-elastic coupling give by the
system of equation:

u′′(x, t) − µ(t)∆u(x, t) +

n∑

i=1

∂θ

∂xi
(x, t) + F (u(x, t)) = 0 in Q = Ω × (0,∞)

θ′(x, t) − ∆θ(x, t) +

n∑

i=1

∂u′

∂xi
(x, t) = 0 in Q = Ω × (0,∞),

where u is displacement, θ is absolute temperature, ∆ denotes the Laplace operator,
µ is a positive real function of t, F : R → R is continuous function such that
s · F (s) ≥ 0, Ω is a smooth bounded open set in R

n with boundary Γ.

Keywords: Weak solutions; Strauss approximation; asymptotic behavior.

1. Introduction

The nonlinear wave equation with thermos-elastic coupling is given by the system of equation

u′′(x, t) − µ(t)∆u(x, t) +

n∑

i=1

∂θ

∂xi
(x, t) + F (u(x, t)) = 0 (1)

θ′(x, t) − ∆θ(x, t) +

n∑

i=1

∂u′

∂xi
(x, t) = 0 (2)

with initial and boundary conditions

u(x, 0) = u0(x), u′(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω, (3)

u(x, t) = 0, θ(x, t) = 0 in Γ × (0,∞), (4)

where u is displacement, θ is absolute temperature, ∆ denotes the Laplace operator, µ is a
positive real function of t, F is a function such that s · F (s) ≥ 0, the temporal partial derivative

is represented by
∂u

∂t
= u′, is Ω is a smooth bounded open set in R

n with C2 boundary Γ, and

Q = Ω × (0,∞).
The non linearity F (v) = |v|ρ v usually appears in relativistic quantum mechanic (see Segal
[13] or Schiff [12]), and has been considered by various authors for hyperbolic, parabolic and
elliptic equations. Lions [6] studied the wave equation with the same non linearity, i.e., |v|ρ v, in
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20 Global solutions and decay of a non linear coupled system with...

a smooth bounded open domain Ω of R
n and proved existence and uniqueness of solution using

both Faedo-Galerkin’s and Compactnesss’ methods.
In [1] investigated the system (1) - (4) with F (v) = |v|ρ v . They established global existence and
strong and weak solutions by Faedo-Galerkin’s method using a basis of the space H1

0 (Ω)∩H2(Ω)
and the exponential stability of total energy associated to the weak solution using Komornik-
Zuazua’s method [4].
Based in the theory developed in the paper [1] and Strauss approximations of F [15], we will
prove that the system (1) - (4) has a unique global strong solution, a unique global weak solution,
and the total energy associated to these solutions is asymptotically stable.
The outline of this chapter is as follows. In Section 2, the basic theory is laid out and global
existence of strong and weak solutions are issued for the Lipschitzian case and general case,
whilst exponential decay in Section 3.

2. Existence of Solution

To obtain the existence and uniqueness of global solution of the mixed problem (1) - (4) we
suppose the additional hypotheses about µ and the function F :

µ ∈W 1,1
loc (0,∞), µ(t) ≥ µ0, ∀t ≥ 0 and µ′(t) ≤ 0 a. e. in (0,∞) (5)

F is continuous and s · F (s) ≥ 0 for all s ∈ R

Let us represent by G the function

G(s) =

∫ s

0
F (r)dr

Now we can present the existence results of the initial and boundary value problem (1) - (4).

Theorem 2.1 (Case: F Lipchitzian ) Let F : R → R, be such that s · F (s) ≥ 0, F is
Lipschitzian and derivable except a finite number of points and µ be the function defined by
above hypothesis (5). Given

u0, θ0 ∈ H1
0 (Ω) ∩H2(Ω) , u1 ∈ H1

0 (Ω)

then the system (1) - (4) has a unique strong solution {u, θ} such that

u, θ ∈ L∞(0,∞;H1
0 (Ω))

u′ ∈ L∞(0,∞;L2(Ω)) ∩ L∞
loc(0,∞;H1

0 (Ω)), θ′ ∈ L2
loc(0,∞;H1

0 (Ω))

u′′ ∈ L∞
loc(0,∞;L2(Ω))

Proof: Existence. To show global existence of solution we will use both the Faedo-Galerkin’s
and Compactness’ methods. We consider (wj)j∈N an orthonormal basis of H1

0 (Ω) ∩H2(Ω), and
denote by Vm = [w1, w2, ..., wm] the subspace of H1

0 (Ω) ∩H2(Ω) spanned by the m first vectors
of (wj)j∈N.
In these conditions, the approximated system associated to system (1) - (2) is given by

um(t) =

m∑

i=1

gjm(t)wj , θm(t) =

m∑

i=1

hjm(t)wj

(u′′m(t), v) + µ(t)((um(t), v)) +

n∑

i=1

(
∂θm

∂xi
(t), v

)
+ (F (um(t)) , v) = 0 (6)
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(θ′m(t), w) + ((θm(t), w)) +

n∑

i=1

(
∂u′m
∂xi

(t), w

)
= 0 (7)

where v and w belong to Vm.
Let um(0) = u0m, u

′
m(0) = u1m and θm(0) = θ0m be. Hence u0m, u1m and θ0m belong to Vm and

satisfy
u0m → u0 strongly in H1

0 (Ω) ∩H2(Ω) (8)

θ0m → θ0 strongly in H1
0 (Ω) ∩H2(Ω) (9)

u1m → u1 strongly in H1
0 (Ω) (10)

Under these conditions, the system (6) - (7) has a local solution {um(t), θm(t)} over the interval
[0, tm). This interval will be extended to any interval [0,∞) thanks to the first estimate below.
Estimate I. Substituting v by 2u′m(t) and w by 2θm(t) in (6) and (7) respectively, using Green’s

formula in the term
n∑

i=1

(
∂u′m
∂xi

(t), θ

)
and integrating over [0, t), 0 ≤ t ≤ tm, we get

2(u′′m(t), u′m(t)) + 2µ(t)((um(t), u′m(t))) + 2

n∑

i=1

(
∂θm

∂xi
(t), u′m(t)

)

+2(F (um(t)) , u′m(t)) = 0

2(θ′m(t), θm(t)) + 2((θm(t), θm(t))) + 2
n∑

i=1

(
∂u′m
∂xi

(t), θm(t)

)
= 0

We obtain
d

dt

[∣∣u′m(t)
∣∣2 + |θm(t)|2 + µ(t) ‖um(t)‖2

]
+

+2

∫

Ω
F (um(t)) .u′m(t)dx+ 2 ‖θm(t)‖2 = µ′(t) ‖um(t)‖2

We denote

E1m(t) =
∣∣u′m(t)

∣∣2 + |θm(t)|2 + µ(t) ‖um(t)‖2 + 2

∫

Ω
G(um(t))dx

Integrating de 0 a t < tm, we obtain:

E1m(t) + 2

∫ t

0
‖θm(s)‖2 ds = E1m(0) + 2

∫ t

0
µ′(s) ‖um(s)‖2 ds

We know that
u0m → u0 in H1

0 (Ω) ∩H2(Ω) ⊂ L2(Ω)

Then we have ∫

Ω
G(u0m) dx →

∫

Ω
G(u0) dx

By convergence there is a positive constant K1, independent of m such that

E1m(t) + 2

∫ t

0
‖θm(s)‖2 ds ≤ K1 for all t ≥ 0

Hence, we can extent the approximate solutions {um(t), θm(t)} on the whole interval [0,∞)
independent of m and t.
Estimative II. Make sense take the first derivative of the approximated equation because the
existence theorem implied that u′′m is absolutely continuous on [0, T ]. Derive both sides with
respect to t

(u′′′m(t), v) + µ(t)((u′m(t), v)) +

n∑

i=1

(
∂θ′m
∂xi

(t), v

)
+
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+(F ′ (um(t)) u′m(t), v) = −µ′(t)((um(t), v))

(θ′′m(t), w) + ((θ′m(t), w)) +

n∑

i=1

(
∂u′′m
∂xi

(t), w

)
= 0

We denote
E2m(t) =

∣∣u′′m(t)
∣∣2 + µ(t)

∥∥u′m(t)
∥∥2

+
∣∣θ′m(t)

∣∣2

Take v = 2u′′m(t) and w = 2θ′(t), we get

d

dt
E2m(t) + 2

∥∥θ′m(t)
∥∥2 ≤ 2 β

∣∣u′m(t)
∣∣ .
∣∣u′′m(t)

∣∣+ 2
µ′(t)
µ(t)

∣∣u′′m(t)
∣∣2

2
µ′(t)
µ(t)

n∑

i=1

∫

Ω

∂θm

∂xi
(t)u′′m(t)dx+ 2

µ′(t)
µ(t)

∫

Ω
F (um(t)).u′′m(t) dx (11)

By hypotheses of the µ, and usual inequalities yields applying the Gronwall’s inequality we obtain
and

E2m(t) + 2

∫ t

0

∥∥θ′m(s)
∥∥2
ds ≤ K2 for all t ≥ 0 (12)

The regularity for u and θ is guaranteed by results on elliptic regularity (see, for instance,
Medeiros and Milla Miranda [9] or Nirenberg [11].

Theorem 2.2 (Weak Solution) Given u0, θ0 ∈ H1
0 (Ω), G(u0) ∈ L1(Ω)and u1 ∈ L2(Ω) then

system (1.1)-(1.4) has a unique weak solution {u, θ} such that

u, θ ∈ L∞(0,∞;H1
0 (Ω))

u′ ∈ L∞(0,∞;L2(Ω)), θ′ ∈ L2(0,∞;L2(Ω))

and equations (1.1) and (1.2) are given in the sense of L∞(0,∞;L2(Ω)).

Proof: We use arguments of density.

Theorem 2.3 (General Case) Let F : R → R, be continuous such that s · F (s) ≥ 0.
Consider

G(s) =

∫ s

0
F (σ) dσ

Given
u0, θ0 ∈ H1

0 (Ω), G(u0) ∈ L1(Ω) and u1 ∈ L2(Ω)

then there exists {u, θ} : Q→ R such that:

u, θ ∈ L∞(0,∞;H1
0 (Ω))

u′ ∈ L∞(0,∞;L2(Ω)), θ′ ∈ L2(0,∞;L2(Ω))

and {u, θ} satisfies the equations

u′′(x, t) − µ(t)∆u(x, t) +
n∑

i=1

∂θ

∂xi
(x, t) + F (u(x, t)) = 0, in L∞

loc(0,∞, L2(Ω))

θ′(x, t) − ∆θ(x, t) +

n∑

i=1

∂u′

∂xi
(x, t) = 0, in L∞

loc(0,∞, L2(Ω))

and initial conditions
u(0) = u0, u′(0) = u1, θ(0) = θ0
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Proof: We first approximate u0 by a sequence of functions (u0j)j∈N of H1
0 (Ω) ∩ L∞(Ω) .

In fact, let us consider

βj(s) =





s, if |s| ≤ j
j, if s > j
−j, if s < −j

Use the notation βj(u0) = u0j . Then u0j ∈ H !
0(Ω) (see Brezis-Cazanave [2]) and u0j → u0 ∈

H1
0 (Ω).

Let F and G be as above and represent by Fk the Strauss approximation of F , that is, Fk , k ∈ N,
is a continuous function defined by:





Fk(s) = −(k)

[
G

(
s− 1

k

)
−G(s)

]
if − k ≤ s ≤ −1

k

Fk(s) = k

[
G

(
s+

1

k

)
−G(s)

]
if

1

k
≤ s ≤ k

Fk(s) is linear by parts if − 1

k
< s ≤ 1

k
with Fk(0) = 0

Fk(s) appropriate constants for |s| > k.

(13)

It follows by Strauss [15], that Fk is Lipschitz for each k,
s Fk(s) ≥ 0 and (Fk) converges to F uniformly on the compacts subsets of R.
Represent by

Gk(s) =

∫ s

0
Fk(r) dr, Gk(0) = Fk(0) = 0, s.Gk(s) ≥ 0

for all k ∈ N.
Approximations of u0j , θ0 and u1 by elements of D(Ω).
Let ϕνj ∈ D(Ω), χν ∈ D(Ω) and ψν ∈ D(Ω) such that

ϕνj → u0j in H1
0 (Ω)

χν → θ0 in H1
0 (Ω)

ψν → u1 in L2(Ω)

Then, by Theorem above, Lipschitz case, there exists a unique {uνjk, θνk} in the conditions:

uνjk ∈ L∞(0,∞;H1
0 (Ω)) ∩ L∞

loc(0,∞,H1
0 (Ω) ∩H2(Ω))

θνk ∈ L∞(0,∞;L2(Ω)) ∩ L2(0,∞,H1
0 (Ω))

u′νjk ∈ L∞(0,∞;L2(Ω)) ∩ L∞
loc(0,∞,H1

0 (Ω))

θ′νk ∈ L∞
loc(0,∞;L2(Ω)) ∩ L2

loc(0,∞,H1
0 (Ω))

u′′νjk ∈ L∞
loc(0,∞;L2(Ω))

(u′′νjk(t), v) + µ(t)a(uνjk(t), v) +

n∑

i=1

(
∂θνk

∂xi
(x, t), v) + (F (uνjk(t)) , v) = 0

(θ′νk(t), w) + a(θνk(t), w) +

n∑

i=1

(
∂u′νjk

∂xi
(t), w) = 0

uνjk(0) = ϕνj , u′νjk(0) = ψν , θνk(0) = χν .

By similar arguments used to obtain estimates, we find

∣∣u′νjk(t)
∣∣2 + |θνk(t)|2 + µ(t) ‖uνjk(t)‖2 + 2

∫

Ω
Gk(uνjk(t))dx+ 2

∫ t

0
‖θνk(s)‖2 ds ≤
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≤ |ψν |2 + |χν |2 + µ(0) ‖ϕνj‖2 + 2

∫

Ω
Gk(ϕνj)dx

By the above convergences of (ψν) , (ϕνj) and (χν) we obtain that the second member of the

preceding inequality is bounded except
∫

Ω
Gk(ϕνj)dx.

Therefore the behavior of Estimative I depends on the behavior of the term
∫

Ω
Gk(ϕνj) dx as

ν → ∞. We must estimate independent of j and k too.
We divide the proof in three parts.

First Part We prove that
∫

Ω
Gk(ϕνj)dx→

∫

Ω
Gk(u0j(x))dx, ν → ∞

By convergence there exists a subsequence of (ϕνj) , still denoted by (ϕνj) , and a function
vj ∈ L2(Ω) such that

ϕνj(x) → u0j(x) a.e. in Ω, ν → ∞
|ϕνj(x)| ≤ vj(x) a.e. in Ω,

By continuity of Gk(s), we obtain

Gk(ϕνj(x)) → Gk(u0j(x)), ν → ∞

Let ck be the Lipschitz constant of Fk(s). We have

0 ≤ Gk(ϕνj(x)) ≤ ck |ϕνj(x)| ≤ ckvj(x) a.e. in Ω

The above two convergences and Lebesgue Theorem of Dominated Convergence imply first part.

Second Part We show that
∫

Ω
G(u0j(x))dx→

∫

Ω
G(u0(x))dx, j → ∞

In fact, by the continuity of G(s) and convergence,

G(u0j(x)) → G(u0(x)) a.e. in Ω, j → ∞

By construction of u0j we find

G(u0j(x)) ≤ G(u0(x)) a.e. in Ω, ∀j

Noting that G(u0) ∈ L1(Ω), the last two expressions and Lebesgue Theorem of Dominated
Convergence, give convergence of second part.

Third Part We prove that
∫

Ω
Gk(u0j(x))dx→

∫

Ω
G(u0j(x))dx, k → ∞

In fact, for j fixed we obtain
|u0j(x)| ≤ j, a.e. in Ω

We note that
G′

k(s) = Fk(s) → G′(s) = F (s) uniformly in [−j, j]
Also

Gk(0) = 0 → G(0) = 0
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Then
Gk(s) → G(s) uniformly in [−j, j]

In particular
Gk(u0j(x)) → G(u0j(x)) uniformly in Ω, k → ∞

This implies convergence third part.
Uniqueness: We use arguments of density, Strauss approximation and energy inequality.

3. Asymptotic Behavior of Solutions

In order to obtain the decay of solutions we introduce an internal damping in the problem, more
precisely, we consider the following system:

u′′(x, t) − µ(t)∆u(x, t) +
n∑

i=1

∂θ

∂xi
(x, t) + F (u(x, t)) + γu′(x, t) = 0, in Q = Ω × (0,∞)

θ′(x, t) − ∆θ(x, t) +

n∑

i=1

∂u′

∂xi
(x, t) = 0, in Q = Ω × (0,∞)

(14)

where γ is a positive constant.
We make the supplementary hypothesis

sF (s) ≥ C0G(s), ∀s ∈ R(C0 positive constant) (15)

With the same hypothesis on F(s) and initial data u0, u1, θ0 and by similar arguments used to
obtain Theorem (3.1) and Theorem (4.1) .
We get, respectively, strong solutions and weak solutions of the mixed problem for system (14).
Consider the energy

E(t) =
∣∣u′(t)

∣∣2 + |θ(t)|2 + µ(t) ‖u(t)‖2 + 2

∫

Ω
G(u(t))dx, t ≥ 0 (16)

associated to system (14).
By applying a Lyapunov functional, we obtain the follwing result:

Theorem 3.1 (Asymptotic Behavior) Assume hypotheses of Theorem (4.1) and hypotheses
(15). Let {u, θ} be the solution given by Theorem (4.1) for system (14). Then

E(t) ≤ 3E(0)e−ηt, t ≥ 0 (17)

where η = mı́n {ǫ1, ǫ3} > 0
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