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Nonlinear Elliptic Equations with Maximal Growth Range

Yony Raúl Santaria Leuyacc 1

Abstract: In this work we are interested in studying the existence of nontrivial weak
solutions for a class of nonlinear elliptic equations defined in a bounded domain in dimen-
sion two, where the nonlinearities possess maximal exponential growth range motivated
by Trudinger-Moser inequalities in Lorentz-Sobolev spaces. In order to study the solv-
ability we use a variational approach. More specifically, we use mountain pass theorem
combined with Trudinger-Moser type inequalities.
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Ecuaciones Eĺıpticas no Lineales con Rango de Crecimiento Máximo

Resumen: En este trabajo nos interesa estudiar la existencia de soluciones débiles
no triviales para una clase de ecuaciones eĺıpticas no lineales definidas en un dominio
limitado en dimensión dos, donde las no linealidades poseen un rango de crecimiento
exponencial máximo motivado por las desigualdades de Trudinger-Moser en espacios de
Lorentz-Sobolev. Para estudiar la solubilidad se utiliza un enfoque variacional. Más es-
pećıficamente, usamos el teorema del paso de montaña junto con desigualdades de tipo
Trudinger-Moser.
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1 Introduction

The aim of this paper is study the following nonlinear elliptic equation:{
−∆u = f(u), x ∈ Ω,

u ∈W 1
0L

2,r(Ω), 1 < r ≤ 2,
(1)

where Ω is a bounded domain in R2 and f has maximal growth range.

In order to study the maximal growth of f in the elliptic problem −∆u = f(u), we recall
some properties of W 1,2

0 (Ω) where Ω is a bounded domain in RN with N ≥ 3. The classical

Sobolev theorem asserts that the following embedding is continuous: W 1,2
0 (Ω) ⊂ Lq(Ω) for all

1 ≤ q ≤ 2∗ = 2N/(N − 2). Thus, using variational methods, the maximal growth of the function f
in W 1,2

0 (Ω) is of type:

|f(s)| ∼ |s|2∗−1.

In dimension N = 2 one has W 1,2
0 (Ω) ⊂ Lq(Ω) for all q ≥ 1 and W 1,2

0 (Ω) * L∞(Ω). In this situation
another kind of maximal growth were established independently by Trudinger [17] and Pohožaev
[15]. The authors proved that the maximal growth allow us to consider in W 1,2

0 (Ω) is of type:

|f(s)| ∼ e|s|2 . (2)

Adimurthi and Yadava [4], Adimurthi et al. [3] and Figueiredo et al. [8] studied the following type
of elliptic equations {

−∆u = f(u), x ∈ Ω,

u ∈W 1,2
0 (Ω),

(3)

where the function f was of type (2).

In this work, in order to improve the growth given by (2), we consider Lorentz-Sobolev spaces
W 1

0L
2,p′(Ω) with p′ = p/(p− 1) which represent a generalization of Sobolev space W 1,2

0 (Ω) (see
Seccion 2 for more details), in these spaces the growth of the nonlinearities can be considered such
as:

f(s) ∼ e|s|p , p > 1. (4)

In our work, we study elliptic equations where the nonlinearity f is of type (4), for p ≥ 2.

We suppose the following assumptions on the function f :

(A1) f is a continuous function and f(s) = o(s) near the origin.

(A2) There exist constants µ > 2 and s0 > 0 such that

0 < µF (s) ≤ sf(s), for all |s| > s0,

where F (s) =

∫ s

0
f(t) dt.

(A3) There exist constants M > 0 and s1 > 0 such that

0 < F (s) ≤M |f(s)|, for all |s| > s1.
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(A4) There exist α0 > 0 and p ≥ 2 such that

lim
|s|→∞

f(s)

eα|s|p
=

{
0, α > α0,

+∞, α < α0.

(A5) There exist constants θ > 2 and Cθ > 0 such that

F (s) ≥ Cθ|s|θ, for all s ∈ R,

where

Cθ >

[
α0(θ − 2)

4π

](θ−2)/2(Sθ,p
θ

)θ
and

Sθ,p := inf
06=u∈W 1

0L
2,p′ (Ω)

‖u‖W 1
0L

2,p′( ∫
Ω |u|θ dx

)1/θ . (5)

In the literature, condition (A4) says that f has critical growth in the Trudinger-Moser sense
(see [2] and also [8]).

Example 1.1 Let p > 2, A > 0 and consider the following continuous function defined on R.

f(s) = A|s|p−2s+ p|s|p−2se|s|
p
.

Therefore,

F (s) =

∫ s

0
f(t) dt =

A

p
|s|p + e|s|

p − 1.

The function f satisfies conditions (A1)− (A5) for A sufficiently large.

(a) The following limit holds:

lim
|s|→0

f(s)

s
= lim
|s|→0

A|s|p−2 + p|s|p−2e|s|
p

= 0.

Thus, f satisfies condition (A1).

(b) Observe that
sf(s)− pF (s) = pe|s|

p(|s|p − 1
)

+ p > 0, for all |s| > 0.

Thus, f satisfies condition (A2) with µ = p > 2.

(c) Since,

lim
|s|→∞

F (s)

|f(s)|
= lim
|s|→∞

A|s|p

p
+ e|s|

p − 1

A|s|p−1 + p|s|p−1e|s|p
= 0.

Then, condition (A3) follows.

(d) Note that,

lim
|s|→∞

|f(s)|
eα|s|p

= lim
|s|→∞

A|s|p−1 + p|s|p−1e|s|
p

eα|s|p
=

{
0, α > 1,

+∞, α < 1.

That is, f satisfies condition (A4) with α0 = 1.
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(e) Since e|s|
p − 1 ≥ 0, we have

F (s) =
A

p
|s|p + e|s|

p − 1 ≥ A

p
|s|p, for all s ∈ R.

Thus, taking A sufficiently large f , satisfies condition (A5).

The following theorem contains our main result.

Theorem 1.2 Suppose (A1)− (A5). Then, the equation (1) possesses a nontrivial weak solution.

Observe that, in the case p = 2, we have p′ = 2 and W 1
0L

2,2(Ω) = W 1,2
0 (Ω). Thus, the equation

of our study considered in (1) represents an extension of the equation (3). In order to find solutions
of the equation (1) we use variational methods.

The paper is organized as follows: Section 2 contains some preliminaries results. In Section 3,
we set up the framework to treat equation (1) variationally. In section 4, we show that the energy
functional associated has the pass mountain geometry. In section 5, we estimate Palais-Smale
sequences and minimax levels. Finally, in Sections 6, we present the proof of our main result.

2 Preliminaries

In this section, we present some preliminaries results which will be used throughout this paper.

2.1 Lorentz-Sobolev spaces

We start setting some previous definitions in order to present the Lorentz spaces which were
introduced by G. Lorentz in [13].

Let (Ω,m) be a measure space, where Ω is a measurable subset in RN and m the Lebesque
measure, denote by M(Ω,R) the collection of all extended real-valued measurable functions on Ω
and M0(Ω,R) the class of functions in M(Ω,R) that are finite almost everywhere in Ω. As usual,
any two functions coinciding almost everywhere in Ω will be identified.

Definition 2.1 The distribution function µφ of a function φ ∈M0(Ω,R) is defined by

µφ(t) := m
(
{x ∈ Ω : |φ(x)| > t}

)
, for t ≥ 0,

where m(Ω′) denote the Lebesgue measure of a set Ω′ ⊂ Ω.

Definition 2.2 The decreasing rearrangement of φ ∈M0(Ω,R) is defined by

φ∗(s) := inf{t ≥ 0 : µφ(t) ≤ s}, for s ≥ 0.

Lemma 2.1 Let φ ∈ M0(Ω,R) and G : [0,+∞)→ [0,+∞) be a nondecreasing function such that
G(|φ|) ∈ L1(Ω) and G(0) = 0. Then, G(φ∗) ∈ L1([0,+∞)) and∫ +∞

0
G(φ∗(s)) ds =

∫
Ω
G(|φ(x)|) dx.

Proof. See [11, pp. 260–261].
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Definition 2.3 Let 1 < p < +∞, 1 ≤ q ≤ +∞. The Lorentz space Lp,q(Ω) is the collection of all
functions φ ∈M0(Ω,R) such that ‖φ‖p,q < +∞, where

‖φ‖p,q =


(∫ +∞

0

[
φ∗(t)t1/p

]q dt
t

)1/q
, if 1 ≤ q < +∞,

sup
t>0

t1/pφ∗(t), if q = +∞.

(6)

For a function f = (f1, · · · , fN ) : Ω → RN , with fi ∈ M0(Ω,R), we say that f ∈ Lp,q(Ω) if and
only if fi ∈ Lp,q(Ω) for 1 ≤ i ≤ N . In this case, we set

‖f‖p,q :=
( N∑
i=1

‖fi‖2p,q
)1/2

.

Basic properties of distribution functions, decreasing rearrangements and Lorentz spaces can be
found in [10, 6, 1, 12].

Proposition 2.4 Let 1 < p < +∞ and 1 ≤ q ≤ +∞. Then, the map ‖ · ‖ given by (6) is a
quasinorm and Lp,q(Ω) is a vector space.

Proof. See [12, Proposition 2.12].

Remark 2.5 Using Lemma 2.1 for G(s) = sp with p > 1, we have

‖φ‖p,p =
(∫ +∞

0
[φ∗(t)]p dt

)1/p
=
(∫

Ω
|φ(x)|p dx

)1/p
= ‖φ‖p,

this implies that

Lp,p(Ω) = Lp(Ω).

Thus, Lorentz spaces are a generalization of Lp-spaces.

Lemma 2.2 Let 1 ≤ q1 ≤ q2 ≤ +∞ and p > 1. Then, the following embedding is continuous

Lp,q1(Ω) ↪→ Lp,q2(Ω).

Proof. See [10, pp. 254–255].

Proposition 2.6 Let Ω an open subset in RN . Then, the following results holds:

(i) Let 1 < p < +∞. Then, the dual space of Lp,1(Ω) is given by Lp
′,∞(Ω) where 1/p+ 1/p′ = 1.

(ii) Let 1 < p < +∞ and 1 < q < +∞. Then, the dual space of Lp,q(Ω) is given by Lp
′,q′(Ω) where

1/p+ 1/p′ = 1 and 1/q + 1/q′ = 1. Moreover, these spaces are reflexive.

Proof. See [10, pp. 262–263].

Proposition 2.7 Let Ω be an open subset in RN , 1 < p < +∞ and 1 < q < +∞. Then, the
Lorentz space Lp,q(Ω) is uniformly convex.
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Proof. See [9, pp. 198–203].

Definition 2.8 Let Ω be a bounded domain in RN , assume that 1 < p < +∞, 1 < q ≤ +∞, we
define

W 1
0L

p,q(Ω) := cl{u ∈ C∞0 (Ω) : ‖∇u‖p,q < +∞}

with respect to the quasinorm

‖u‖1,(p,q) := ‖∇u‖p,q, (7)

where ∇u = (D1u, · · · , DNu) and Di is the weak derivative with respect to xi for 1 ≤ i ≤ N.

Proposition 2.9 Let Ω be an open domain in RN , assume that 1 < p, q < +∞. Then, W 1
0L

p,q(Ω)
endowed with the quasinorm defined by (7) is a reflexive, uniformly convex quasi-Banach space.

Proof. To prove that W 1
0L

p,q(Ω) is a quasi-Banach space we can proceed as in [1, Theorem 3.3]
where is applied Hölder’s inequality in Lorentz spaces (see [12, Lemma 2.18]). On the other hand,
let consider the following isometry

J : W 1
0L

p,q(Ω) → Lp,q(Ω)N

u 7→ ∇u.

Since, W 1
0L

p,q(Ω) is a quasi-Banach space, J
(
W 1

0L
p,q(Ω)

)
is a closed subset in Lp,q(Ω)N . By Propo-

sitions 2.6 and 2.7, we get that J
(
W0L

p,q(Ω)
)

is a uniformly convex and reflexive space. Finally,
since J

(
W 1

0L
p,q(Ω)

)
and W 1

0L
p,q(Ω) are isometrically isomorphic the same properties holds for

W 1
0L

p,q(Ω). �

Lemma 2.3 Let Ω ⊂ RN be a bounded domain and 1 ≤ q < +∞. Then, the following embeddings
are compact

W 1
0L

N,q(Ω) ↪→ Lr(Ω), for all r ≥ 1.

Proof. See [12, Lemma 2.38].

Proposition 2.10 Let (un) be a sequence in W 1
0L

p,q(Ω) and u ∈W 1
0L

p,q(Ω) such that

un → u in W 1
0L

p,q(Ω).

Then, there exists a subsequence (unk) and a function h ∈W 1
0L

p,q(Ω) such that

|unk(x)| ≤ h(x), for all k ≥ 1 and almost everywhere in Ω.

Proof. See [12, Proposition 2.44].

2.2 Trudinger-Moser inequalities for Lorentz-Sobolev spaces

Let Ω be a bounded domain in R2. A famous result obtained independently by Pohožaev [15]
and Trudinger [17] states that eαu

2 ∈ L1(Ω) for all u ∈ H1
0 (Ω) and α > 0. Furthermore, Moser [14]

showed that there exists C = C(α,Ω) > 0 such that

sup
u∈H1

0 (Ω),‖∇u‖2≤1

∫
Ω
eαu

2
dx ≤ C, if α ≤ 4π. (8)
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Moreover, inequality (8) is sharp, in the sense that for any α > 4π the corresponding supremum
become infinity.

We present the following versions of Trudinger-Moser inequalities which will be used throughout
this paper.

Proposition 2.11 Let Ω be a bounded domain in R2, p > 1 and denote p′ = p/(p− 1). Then,∫
Ω
e|u|

p
dx < +∞, for all u ∈W 1

0L
2,p′(Ω) and for all α > 0.

Proof. See [7, Theorem 7].

Proposition 2.12 Let Ω be a bounded domain in R2, p > 1 and denote p′ = p/(p − 1). Then, if
α ≤ α∗p = (4π)p/2, there exists a positive constant C = C(α,Ω) such that

sup
u∈W 1

0L
2,p′ (Ω), ‖∇u‖2,p′≤1

∫
Ω
e|u|

p
dx ≤ C.

Moreover, if α > α∗p the corresponding supremum become infinity.

Proof. See [5, Lemma 2.38].

3 Variational Setting

In this section, we describe the functional setting that allows us to treat (1) variationally. The
natural functional associated to (1) is given by

J : W 1
0L

2,p′(Ω) → R

u 7→
∫

Ω
|∇u|2 dx−

∫
Ω
F (u) dx.

(9)

From now on, we use the following notation E := W 1
0L

2,p′(Ω) and ‖u‖ := ‖∇u‖2,p′ .

Lemma 3.1 The functional J given by (9) is well defined. Furthermore, J belongs to the class
C1(E,R) and

J ′(u)φ =

∫
Ω
∇u∇φ dx−

∫
Ω
f(u)φ dx, for all u, φ ∈ E.

Proof. Let u ∈ E = W 1
0L

2,p′(Ω), that is, ∇u ∈ L2,p′(Ω), since p ≥ 2, we have p′ = p/(p − 1) ≤ 2.
By Lemma 2.2, we get L2,p′(Ω) ↪→ L2,2(Ω) = L2(Ω) continuously. Consequently,∫

Ω
|∇u|2 dx < +∞. (10)

By assumption (A4), we have

lim
|s|→∞

|f(s|
e(α0+1)|s|p = 0.

Then, there exist positives constant M1 and C1 > 0 such that |f(s)| ≤ C1e
(α0+1)|s|p for all |s| ≥M1.

On the other hand, by continuity of f , we have |f(s)| ≤ C2 for all |s| ≤M1. Thus,

|f(s)| ≤ Ce(α0+1)|s|p , for all s ∈ R, (11)

PESQUIMAT 20(1): 1–17 7
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where C = max{C1, C2}. Therefore,

|F (u)| ≤
∫ |u|

0
|f(s)| ds ≤ C

∫ |u|
0

e(α0+1)|s|p ds ≤ C|u|e(α0+1)|u|p ≤ C

2
|u|2 +

C

2
e2(α0+1)|u|p .

Consequently, ∣∣∣ ∫
Ω
F (u) dx

∣∣∣ ≤ C

2

∫
Ω
|u|2 dx+

C

2

∫
Ω
e2(α0+1)|u|p dx.

By Lemma 2.3, we have E ↪→ L2(Ω) and using Proposition 2.11, we obtain∫
Ω
F (u) dx < +∞, for all u ∈ E. (12)

Thus, combining (10) with (12), we conclude that f is well defined.
Define the functionals J1, J2 : E → R defined by

J1(u) =

∫
Ω
|∇u|2 dx and J2(u) =

∫
Ω
F (u) dx.

Since J1 is a quadratic form, we have that J1 belongs to the class C∞(E,R) and

J ′1(u)(φ) =

∫
Ω
∇u∇φ dx, for all φ ∈ E. (13)

Now, fixing u and φ in E, for given x ∈ Ω consider h : R→ R defined by

h(t) = F
(
u(x) + tφ(x)

)
.

Let (tn) be any sequence in R such that tn → 0, we can assume that 0 < |tn| ≤ 1 for all n ≥ 1. For
any n ≥ 1, by the Mean value theorem there exists θn = θ(tn, x) ∈ (0, 1) such that

F (u+ tnφ)− F (u) = h(tn)− h(0) = h′(θntn)tn = f(u+ θntnφ)tnφ.

Set

ξn(x) :=
F (u+ tnφ)− F (u)

tn
= f(u+ θntnφ)φ.

Since f is continuous and tn → 0, we have

lim
n→∞

ξn(x) = f(u)φ, for all x ∈ Ω.

Note that |u+ θntnφ| ≤ |u|+ |φ| = w ∈ E, from (11), we have

|ξn(x)| = |f(u+ θntnφ)φ|
≤ Ce(α0+1)|u+θntnφ|p |φ|
≤ Ce(α0+1)|w|p |φ|

≤ C

2
|φ|2 +

C

2
e2(α0+1)|w|p .

By Lemma 2.3 and Proposition 2.11, we get

C

2
|φ|2 +

C

2
e2(α0+1)|w|p ∈ L1(Ω).

8 PESQUIMAT 20(1): 1–17
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Using Dominated convergence theorem, we obtain

J ′2(u)φ = lim
n→+∞

J2(u+ tnφ)− J2(u)

tn

= lim
n→+∞

∫
Ω

F (u+ tnφ)− F (u)

tn
dx

= lim
n→+∞

∫
Ω
ξn(x) dx

=

∫
Ω
f(u)φ dx.

Now, we prove the continuity of the derivative. Let (un) be a sequence in E such that un → u in
E. By Proposition 2.10, there exists a subsequence (not renamed) (un) and û ∈ E such that

|un(x)| ≤ û(x) almost everywhere in Ω

and
un(x)→ u(x) almost everywhere in Ω. (14)

Thus,

|f(un)− f(u)|2 ≤ 2|f(un)|2 + 2|f(u)|2

≤ 2Ce2(α0+1)|un|p + 2Ce2(α0+1)|u|p

≤ 2Ce2(α0+1)|û|p + 2Ce2(α0+1)|u|p .

By Proposition 2.11, we obtain

2Ce2(α0+1)|û|p + 2Ce2(α0+1)|u|p ∈ L1(Ω).

Moreover, using (14) and the continuity of f , we have

|f(un)− f(u)|2 → 0, almost everywhere in Ω.

By Dominated convergence theorem, we get

‖f(un)− f(u)‖2 → 0, (15)

which implies

|〈J ′2(un)− J ′2(u), φ〉| ≤
∫

Ω
|f(un)− f(u)φ| dx

≤ ‖f(un)− f(u)‖2‖φ‖2
≤ C‖f(un)− f(u)‖2‖∇φ‖2,p′ .

Using (15), we obtain

sup
‖∇φ‖2,p′≤1

|〈J ′2(un)− J ′2(u), φ〉| ≤ C‖f(un)− f(u)‖2 → 0.

That is, J2 belongs to C1(E,R). Consequently, J ∈ C1(E,R). �
We say that u ∈ E is a weak solution of the equation (1) if∫

Ω
∇u∇φ dx =

∫
Ω
f(u)φ dx, for all φ ∈ E.

Hence, critical points of the functional J correspond to the weak solutions of the equation (1).

PESQUIMAT 20(1): 1–17 9
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4 The geometry of Pass Mountain

This section is devoted to set the geometry of the pass mountain theorem of the functional J
given by (9).

Lemma 4.1 Suppose (A1) and (A4) holds. Then, there exist σ > 0 and ρ > 0 such that J(u) ≥ σ
for all u ∈ E, satisfying ‖u‖ = ρ.

Proof. From (A1), we have f(s) = o(s). Thus, given ε > 0 there exists δ > 0 such that

|f(s)| ≤ ε|s|, for all |s| < δ.

By (A4), there exist constants C1 > 0 and M > 0 such that

|f(s)| ≤ C|s|2e2α0|s|p , for all |s| ≥M.

Note also that

|f(s)| ≤
max

δ≤|s|≤M
|f(s)|

|δ|2e2α0|δ|p
|s|2e2α0|s|p , for all δ ≤ |s| ≤M.

From these estimates, we get a constant C > 0 such that

|f(s)| ≤ ε|s|+ C|s|2e2α0|s|p , for all s ∈ R.

Then,
|F (s)| ≤ ε|s|2 + C|s|3e2α0|s|p , for all s ∈ R.

By Hölder’s inequality and Proposition 2.12, we obtain∫
Ω
|u|3e2α0|u|p dx ≤

(∫
Ω
|u|6 dx

)1/2(∫
Ω

(e4α0|u|p dx
)1/2

≤ C‖u‖36
(∫

Ω

(
e4α0|u|p dx

)1/2

≤ C‖u‖36,

provided that ‖u‖ ≤ ρ1 for some ρ1 > 0 such that 4α0ρ
p
1 < α∗p. Thus,∫

Ω
F (u) dx ≤ ε‖u‖22 + C‖u‖36.

Using Lemma 2.3, we obtain a positive constant C such that∫
Ω
F (u) dx ≤ εC‖u‖2 + C‖u‖3.

Hence,

J(u) ≥ ‖u‖2 −
∫

Ω
F (u) dx ≥ (1− εC)‖u‖2 − C‖u‖3.

Then,
J(u) ≥

(
1− εC − Cρ

)
ρ2, if ‖u‖ = ρ.

Therefore, taking ε > 0 and ρ > 0 sufficiently small, such that 1− εC − Cρ ≥ 1/2, we obtain

J(u) ≥ ρ2

2
= σ, for all u ∈ E, ‖u‖ = ρ.

�
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Lemma 4.2 For each θ > 2 and p > 1, the positive constant Sθ,p defined by (5) is attained for a
function uθ ∈ E\{0}.

Proof. Observe that,

Sθ,p = inf
06=u∈E

‖u‖
‖u‖θ

= inf
0 6=u∈E
‖u‖θ=1

‖u‖.

Let (un) be a sequence in E\{0} such that ‖un‖θ = 1 for all n ∈ N, and

‖un‖ → Sθ,p.

In particular (un) is a bounded sequence in E and using the fact that this space is reflexive, we can
suppose that there exists uθ ∈ E\{0} such that

un ⇀ uθ weakly in E, (16)

and
un → uθ in Lθ(Ω) (17)

By (17), we have

1 =

∫
Ω
|un|θ dx→

∫
Ω
|uθ|θ dx

Thus, ‖uθ‖ = 1, which implies
Sθ,p ≤ ‖uθ‖. (18)

From (16), we have
‖uθ‖ ≤ lim inf

n→∞
‖un‖ = Sθ,p. (19)

Combining (18) with (19), the lemma follows. �

Lemma 4.3 Suppose that (A1)− (A2) hold. Then, there exists e ∈ E such that

J(e) < 0 and ‖e‖ > ρ,

where ρ > 0 is given by Lemma 4.1.

Proof. It follows from [16, Remark 2.13] that the assumption (A2) guarantees the existence of
positive constants a and b such that

F (s) ≥ a|s|µ − b, for all s ∈ R.

Now, taking 0 6= uθ ∈ E given by Lemma 4.2, we obtain

J(tuθ) = t2‖uθ‖2 −
∫

Ω
F (tuθ) dx

≤ t2‖uθ‖2 −
∫

Ω

(
a|tuθ|µ − b

)
dx

≤ t2‖uθ‖2 − atµ‖uθ‖µµ + b|Ω|.

Since, µ > 2, we get J(tuθ) → −∞ as t → +∞. Therefore, we can take e = t0uθ with t0 > 0
sufficiently large such that J(e) < 0 and ‖e‖ > ρ. �
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5 On Palais-Smale sequences

By Lemmas 4.1 and 4.3 in Pass mountain theorem (see [16, Theorem 2.2]), there exists a Palais-
Smale sequence at level c ≥ σ, where σ is given by Lemma 4.1, that is, there exists a sequence
(un) ⊂ E such that

J(un)→ c and J ′(un)→ 0, (20)

and c > 0 can be characterized as
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)), (21)

where
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

Lemma 5.1 Let (un) be a Palais-Smale sequence given by (20). Then, ‖un‖ ≤ C, for every n ∈ N
and for some positive constant C.

Proof. Observe that

J(un)− 1

µ
J ′(un)un =

(1

2
− 1

µ

)
‖un‖2 −

1

µ

∫
Ω

(
µF (un)− f(un)un

)
dx. (22)

Since f and F are continuous functions, there exists K > 0 such that

K = max
|s|≤s0

∣∣µF (s)− f(s)s
∣∣.

Then, ∣∣∣ ∫
|un|≤s0

(
µF (un)− f(un)un

)
dx
∣∣∣ ≤ ∫

|un|≤s0

∣∣µF (un)− f(un)un
∣∣ dx ≤ K|Ω|. (23)

Using (A2) and (23), we have∫
Ω

(
µF (un)− f(un)un

)
dx =

∫
|un|≤s0

(
µF (un)− f(un)un

)
dx+

∫
|un|>s0

(
µF (un)− f(un)un

)
dx

≤
∫
|un|≤s0

(
µF (un)− f(un)un

)
dx

≤ K|Ω|.

Replacing last inequality in (22), we obtain(1

2
− 1

µ

)
‖un‖2 ≤

1

µ
K|Ω|+

∣∣∣J(un)− 1

µ
J ′(un)un

∣∣∣. (24)

Since (un) satisfies (20), we have
∣∣J(un)

∣∣ ≤ c + 1 and ‖J ′(un)‖E−1 ≤ 1, for n sufficiently large.
Thus, ∣∣∣J(un)− 1

µ
J ′(un)un

∣∣∣ ≤ |J(un)|+ 1

µ
|J ′(un)un|

≤
∣∣J(un)

∣∣+
1

µ
‖J ′(un)‖E−1‖un‖ (25)

≤ c+ 1 +
1

µ
‖un‖.
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Combining (24) with (25), we obtain(1

2
− 1

µ

)
‖un‖2 ≤

1

µ
K|Ω|+ d+ 1 +

1

µ
‖un‖, for n sufficiently large,

which implies that (un) is a bounded sequence. �

Lemma 5.2 Let (un) be a Palais-Smale sequence satisfying (20). Then,∫
Ω
f(un)un dx ≤ C,

for every n ∈ N and for some positive constant C.

Proof. By Lemma 5.1, the sequence (un) is bounded in E. Since J ′(un) → 0 in E−1, we obtain
J ′(un)un → 0, that is,

J ′(un)un = ‖un‖2 +

∫
Ω
f(un)un dx→ 0.

Using again Lemma 5.1, we have that the sequence
(∫

Ω
f(un)un dx

)
is bounded. �

Lemma 5.3 Let Ω be a bounded subset in RN , f : Ω×R→ R a continuous function and (un) be a
sequence of functions in L1(Ω) converging to u in L1(Ω). Assume that f(x, u(x)) and f(x, un(x))
are also L1(Ω) functions. If ∫

Ω
|f(x, un)un| dx ≤ C,

then, f(x, un) converges in L1(Ω) to f(x, u).

Proof. See [8, Lemma 2.1].

Lemma 5.4 Assume (A1) − (A4), let (un) be a Palais-Smale sequence and suppose there exists
u ∈ E such that un ⇀ u in E. Then, there exist a subsequence still denoted by (un) such that

f(un)→ f(u) and F (un)→ F (u), in L1(Ω).

Proof. By Lemma 2.3, we can assume that there exists a subsequence still denoted by (un) in
E ⊂ L1(Ω) and un → u in L1(Ω). By (A1) and (A4), there exists C0 > 0 such that

|f(s)| ≤ C0e
(α0+1)|s|p , for all s ∈ R.

Using Proposition 2.11, the sequence (f(un)) and f(u) are in L1(Ω). From (A2), we have∫
Ω
|f(un)un| dx =

∫
{x∈Ω:|un(x)|≤s0}

|f(un)un| dx+

∫
{x∈Ω:|un(x)|>s0}

f(un)un dx (26)

=

∫
{x∈Ω:|un(x)|≤s0}

(
|f(un)un| − f(un)un

)
dx+

∫
Ω
f(un)un dx.

Note that ∫
{x∈Ω:|un(x)|≤s0}

(
|f(un)un| − f(un)un

)
dx ≤ 2|Ω| sup

|s|≤s0
|f(s)s|.
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Combining last inequality with Lemma 5.2 in (26), we conclude that∫
Ω
|f(un)un| dx ≤ C, for all n ≥ 1,

for some C > 0. Consequently, by Lemma 5.3, we obtain f(un)→ f(u) in L1(Ω).
On the other hand, by assumption (A3), we have

|F (s)| ≤ max
|s|≤s0

|F (s)|+M |f(s)|, for all s ∈ R.

Let M0 = max|s|≤s0 |F (s)|. Then,

|F (un)| ≤M0 +M |f(un)|, for all n ∈ N,

where M0 + M |f(un)| ∈ L1(Ω). Note that, we may assume that un → u almost everywhere in Ω.
Then, by generalized Lebesgue dominated convergence theorem, we get

F (un)→ F (u) in L1(Ω).

�
Now, we estimate the minimax level given by Pass mountain theorem, this estimate will be

important to show that the weak solution is nontrivial.

Lemma 5.5 If we assume

Cθ >

[
α0(θ − 2)

4π

](θ−2)/2(Sθ,p
θ

)θ
,

then, the minimax level given by (21) satisfies:

c <
2π

α0
.

Proof. Let uθ be the function given by Lemma 4.2. Define γ0 : [0, 1]→ E by γ0(t) = tt0uθ. Thus,
γ0(0) = 0 and γ0(1) = e which implies that γ0 ∈ Γ ={γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}. Then,

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≤ max
t∈[0,1]

J(γ0(t)) = max
t∈[0,1]

J(tt0uθ) ≤ max
t≥0

J(tuθ).

By (A5), we have

c ≤ max
t≥0

J(tuθ) = max
t≥0

{‖tuθ‖2
2
−
∫

Ω
F (tuθ) dx

}
≤ max

t≥0

{‖tuθ‖2
2
− Cθ‖tuθ‖θθ

}
.

Since ‖uθ‖ = Sθ,p and ‖uθ‖θ = 1, we get

c ≤ max
t≥0

{ t2S2
θ,p

2
− Cθtθ

}
=
{ t2S2

θ,p

2
− Cθtθ

}
t=t1

, where t1 =
(S2

θ,p

θCθ

)1/(θ−2)

=
(θ − 2)

2θ

S
2θ/(θ−2)
θ,p

(θCθ)2/(θ−2)
.

Finally, by assumption on Cθ, we get c < 2π/α0. �
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6 Proof of the Theorem 1.2

Proof. Let (un) be a sequence the Palais-Smale given by (20), by Lemma 5.1, the sequence (un) is
bounded in E and using the fact that E is a reflexive space, we can assume that there exists u ∈ E
such that un ⇀ u in E. Moreover, since J ′(un)→ 0 for each φ ∈ C∞0 (Ω), we have

J ′(un)φ =

∫
Ω
∇un∇φ dx−

∫
Ω
f(u)φ dx = on(1), (27)

using this together with Lemma 5.4 in (27), we obtain passing to limit∫
Ω
∇u∇φ dx−

∫
Ω
f(u)φ dx = 0.

Now, and using the fact that C∞0 (Ω) is dense in E, yields∫
Ω
∇u∇φ dx =

∫
Ω
f(u)φ dx, for all φ ∈ E.

Thus, u ∈ E is a critical point of J . To conclude the proof, it only remains to prove that u is
nontrivial. Suppose, by contradiction, that u ≡ 0. Then, we can assume that

un → 0 in Lr(Ω), for all r ≥ 1. (28)

Using the fact that J(un)→ c, we have

J(un) =
‖un‖2

2
−
∫

Ω
F (un) dx = c+ on(1). (29)

Since, we suppose that un ⇀ 0, by the second part of Lemma 5.4, we obtain∫
Ω
F (un) dx→

∫
Ω
F (0) dx = 0.

Replacing in (29), we have
‖un‖2

2
= c+ on(1).

Now, using Lemma 5.5, we get

‖un‖2 = 2c+ on(1) <
(α∗p
α0

)2/p
+ on(1).

Hence, we can assume that, there exists δ > 0 sufficiently small such that

‖un‖p ≤
α∗p
α0
− δ, for all n sufficiently large.

Therefore, we can find r > 1 sufficiently close to 1 and ε > 0 sufficiently small such that

r(α0 + ε)‖un‖p ≤ r(α0 + ε)(
α∗p
α0
− δ) < α∗p.
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From (A1) and (A4), there exists C > 0 such that

|f(s)| ≤ |s|+ Ce(α0+ε)|s|p , for all s ∈ R.

Using Hölder’s inequality, we obtain∫
Ω
f(un)un dx ≤

∫
Ω
|un|2 dx+ C

∫
Ω
e(α0+ε)|un|p |un| dx

≤ ‖un‖22 + C‖un‖r′
(∫

Ω
er(α0+ε)|un|r dx

)1/r

≤ ‖un‖22 + C‖un‖r′
(∫

Ω
e
r(α0+ε)‖un‖p(

|un|
‖un‖

)p
dx
)1/r

≤ ‖un‖22 + C‖un‖r′
(∫

Ω
e
α∗p(

|un|
‖un‖

)p
dx
)1/r

Using Proposition 2.12, for some positive constant C, we have∫
Ω
f(un)un dx ≤ ‖un‖22 + C‖un‖r′ .

Thus, from (28), we get ∫
Ω
f(un)un dx→ 0. (30)

Since, (un) is bounded in E and ‖J ′(un)‖E−1 → 0, we obtain

|J ′(un)un| ≤ ‖J ′(un)‖E−1‖un‖ → 0. (31)

Observe that

J ′(un)un = ‖un‖2 +

∫
Ω
f(un)un dx.

Combining (30) with (31), we get

‖un‖2 = J ′(un)un +

∫
Ω
f(un)un dx→ 0.

From (28), we have ‖un‖2 → 2c, which implies that c = 0 which is a contradiction, since c ≥ σ > 0.
Thus, u is a nontrivial critical point of J nontrivial and hence u is a nontrivial weak solution of the
equation (1).

�
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[11] Kavian, O. (1993). Introduction à la théorie des points critiques et applications aux problèmes
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