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Abstract: In this work, two search algorithms Expectimax and Monte Carlo Tree
Search (MCTS) were developed to solve the well-known “2048” puzzle online-game
and compare their results. In both cases, ?ve heuristics were employed to obtain
favorable tile positions within the game. These heuristics were combined to maxi-
mize the game-score in all possible board positions. As a result, the game-score, the
maximum value of tile obtained, and the computing time employed in solving the
game are shown. In addition, the e?ciency of each algorithm and its sub-cases are
presented. This research concludes by arguing that Monte Carlo Tree Search was
more e?cient in higher score than Expectimax algorithm, although in a longer time.
Increments in level of depth-search in Expectimax and number of moves in MCTS
do not necessarily resulted in obtaining higher score.
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Resumen: En el presente trabajo, dos algoritmos de búsqueda: Expectimax y Mon-
te Carlo fueron desarrollados a ?n de resolver el conocido juego en linea “2048” y
comparar sus resultados. En ambos casos, cinco heuŕısticas fueron empleadas para
obtener posiciones favorables de las ?chas dentro del juego. Estas heuŕısticas fue-
ron combinadas convenientemente para maximizar el puntaje del juego en todas las
posibles posiciones. Como resultado el puntaje, el máximo valor de ?cha, y el tiem-
po de cómputo empleado en el juego son mostrados. Adem´as, la e?ciencia de cada
algoritmo y sus subcasos son presentados. El presente trabajo concluye que el algo-
ritmo de búsqueda Monte-Carlo fue más e?ciente en obtener un mayor puntaje que
el algoritmo de Expectimax, aunque en un tiempo de cómputo mayor. Incrementos
en el nivel de búsqueda en el algoritmo Expectimax y el número de movimientos en
el algoritmo de Monte Carlo no necesariamente resultaron en un mayor puntaje del
juego. Palabras clave: Juego 2048, Algoritmo Expectimax, Monte Carlo, heuristi-
cas.
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1 Introducción

The “2048” puzzle is a single-player online game that has rapidly gained gamers attention
(http://2048game.com/). It consists of 4x4 grid with numbered tiles that can be slipped by the
player in four available directions: up, down, left, and right (basic rule). Rules for this game
consider that two neighboring tiles with same number can be merged into a single tile with the
sum of their values. Thus, some tiles increase their values at each turn. Initial state for “2048”
game is given by two filled cells (tiles) with either 2 or 4 randomly placed into the 4x4 board,
and the final state is given when the game is won or lost. The player wins when the value of
“2048” is obtained on some tile on the board and loses when there are no legal moves to make
[3].

Since the game was released in March 2014, it has gained thousands of followers. Online
foros for discussing strategies of solution were opened. Artificial-intelligence researchers have
rapidly started to develop some algorithms to obtain high score and maximum tile value in the
game. Chowdhury G. and Dhamodaran V. [1] attempted to solve 2048 by using Q-Learning and
Expectimax approaches. While memory limitations due to large state space were found by Q-
Learning approach, 90% of won games were obtained by Expectimax approach. Maintaining the
four cells of the left edge filled was used as a heuristic. Rodgers and Levine [4] discuss application
of Monte-Carlo Tree-Search and Averaged Depth Limited Search in 2048 solving. Xiao [5]
implemented an Expectimax algorithm considering bonuses for empty squares and placing large
values near edges and corners as heuristics. Later, Xiao [6] released some improvements and
recommendations to its algorithm by “StackOverflow” web-page.

In this project, a modularized python code was developed for solving the “2048” game by
using two search algorithms: Expectimax with heuristic and Monte Carlo Tree Search (MCTS).
Performance of these algorithms were evaluated in 100 experiments for each case. MCTS involved
five cases with different maximum number of random moves: 100, 150, 200, 250 and 300.
Expectimax algorithm involved five cases, one for each depth-search established on: 2, 3, 4,
5, and 6. Regardless of winning or losing the game, experiments were scored by three indicators:
the highest tile-value obtained, the sum of merged values (game score), and computational time
consumption (CTP). Towards the end of this report a discussion of results are presented in
tables and plots. Finally, the report provides overall conclusions.

2 Description and Methods

Game Description:

Developed by Gabriele Cirulli, the online game “2048” rapidly became widespread among
gamers since its releasing. Available online (http://2048game.com/), it is a single player game
on a square board of 4-by-4 cells, which are partially filled with tiles numbered with powers of
2. Rules and game steps are described below.

(1) Given an initial state, which shows only two filled tile with either 2 or 4 (randomly
placed into the board), the player may slide the board in four directions: up, down, left, and
right (Figure 1).

(2) One game turn means one sliding of board tiles. (3) At each turn, tiles also slide as far as
possible within the board. If two tiles with same number collide, they will merge into a unique
tile obtaining the sum of both tile-numbers. For example, Figure 3a shows two intermedia
sequential states. In the left side, rectangles show pair of tiles that will be merged on the next
state (right side) if the player chooses to swipe tiles toward up.

(4) After each turn, new tile arrangement will be obtained with the value 2 or 4 with
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Figure 1: Initial state of the game with two tile values
randomly placed

Figure 2: Winning state. No move is available to keep
going

(a) a (b) b

Figure 3: Two intermedia sequential states. (a) Red rectangles show pair of tiles that will be merged on the next
state if the player chooses to swipe tiles toward up. (b) Tiles slipped as far as possible to top border, merged
tiles, and a new tile in blue circle

probabilities of 0.8 and 0.2 respectively, new tile values will be obtained if some merged, and a
new tile will appear placed randomly in an empty cell. For example, the right side of Figure 3b
shows all the tiles slipped as far as possible to the top border, merged tiles, and a new tile in
circle

(5) Thus, values in merged tiles will increase frequently. (6) The player’s goal is to obtain

a tile with a value of 2048 (211), however the player may remain playing to attain higher score 
or higher tile value (212, 213, . . . ) until no legal move is available (Figure 2, side shows also no 
more legal moves available). (7) No moves are available when there are no empty cells and no
possible tiles to merge then game is over. (8) At each merge of tiles, their numbers are summed
and then accumulated to provide a score called “game score”. (9) The final state is given when
the game is won or when no more legal moves are available

Heuristics:

Five heuristics were considered to obtain favorable tile positions. All heuristics were com-
bined to maximize the game-score of all possible boar positions. (1) Maximum tile value in
a corner. This heuristic grants bonus to those board positions with the highest tile value in
any of the four corners. (2) Maximum empty cells. This heuristic penalizes the positions of
the board with less empty cells, since fewer empty cells implies a cramped board with risk of
running out of options in the coming turns. (3) Monotonicity along a snake-like path, rows and
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columns (Figure 4). This heuristic seeks to ensure ascending and descending tile values along
a snake-like path, rows, and columns. This heuristic also involves the first heuristic mentioned
above that states the highest tile value should go on the corner. This heuristic tries to maintain
an organized board with smaller tiles following and filling up to larger tiles. (4) Maximum tile
value of a line along an edge. This heuristic in some way is related to the previous heuristic. It
seeks also to obtain an organized ascending or descending board. (5) Neighbor tiles with equal
values to be merged. Merging neighbor values help to obtain a clear board with more empty
cells.

Figure 4: Scheme of snake-like path considered in heuristic of monotonicity

Expectimax algorithm:

This depth-limited search takes turn between expectation and maximization. In expectation,
it evaluates all the possible tile-values and tile-location of the next generations, and optimizes
based on weights according to the probability of each possibility (20% for 4 and 80% for 2).
In maximization, it assesses all possible moves and selects the choice with best score. The tree
search finished when it reached the predefined depth limit, or when it reached a highly unlike
board state.

Monte Carlo Tree Search (MCTS):

In this case, given a state board the next move was determined by playing the game employing
random moves until the end (no possible move can be obtained). This process was repeated
several times storing the track and the end-score. Then, the starting move with highest average
end-score was selected as the next move. Despite a random selection of possible games, it gave
an excellent game since the best end-scored game of attempted games was selected for the next
step. In this work, the number of random moves was established as a variable, thus five number
of moves were taking into a account Lanctot et.al [2].

3 Experiment Setup

Five cases of depth-search were considered for Expectimax algorithm: 2, 3, 4, 5 and 6. For
each depth-search, 100 experiments were conducted. Regarding Monte Carlo Tree Search, five
cases of maximum number of random moves were considered: 100, 150, 200, 250 and 300 moves.
Note that for MCTS the sample width (minimum of sample needed to evaluate a move) were
kept in 20. For each case, also 100 experiments were carried out. In all cases, the initial states
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were randomly considered as established by the rule of the game (Table 1). Experiments were
executed through a python code which were developed and implemented for this project. These
codes are available at https://github.com/noayarae/games.

Table 1: Experiments for each algorithm

Expectimax
Number of

experiments
Monte Carlo
Tree Search

Number of
experiments

100 100
100 100
100 100
100 100

Depth-search = 2
Depth-search = 3
Depth-search = 4
Depth-search = 5
Depth-search = 6 100

Max-moves = 100
Max-moves = 150
Max-moves = 200
Max-moves = 250
Max-moves = 300 100

4 Results

Table 2 shows a summary of results corresponding to mean of scores (Mean score), max tile
reached (Max tile), median of tiles reached (Median tile), mean of tiles reached (Mean tile), and
mean of computational time consumption-CTC (Mean time consumption) for both algorithms.
CTC time, measured in seconds, is the amount of time that the Central Processing Unit (CPU)
employed in processing the python code instructions for solving “2048” game. Table 3 shows a
summary of experiment results grouped according to the maximum value of tile attained. This
table also represents efficiency since the number of experiments for each sub-case is 100.

Table 2: Mean score, Max-tile, Median of tiles, Mean of tiles,
and Mean of computing time

Algorithm
Depth search -

# of moves
Mean
score

Max
tile

Median
tile

Mean
tile

Mean time
spent (sec)

Expectimax

2 2836 2048 512 472 5.0
3 3812 2048 512 610 24.4
4 2991 2048 256 474 32.8
5 3318 2048 512 531 142.1
6 4157 2048 512 642 301.0

Monte Carlo
Tree Search

100 13410 4096 2048 1720 395

150 15899 4096 2048 2015 663
200 15877 4096 2048 2010 874
250 16970 4096 2048 2148 1251
300 15843 4096 2048 1987 1364

5 Discussion

Expectimax algorithm.

Figure 5(a) shows plots between depth-search and score reached. Singular results were
obtained for depth-search level 3. Interestingly depth-search at level 3 provided better results
than depth-searh at level 4 and 5, and almost same as depth-search level 6. Theses results suggest
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Table 3: Results grouped by the maximum value of tile obtained

Tile

Expectimax Algorithm

Depth search

Monte Carlo tree search

Number of moves
2 3 4 5 6 100 150 200 250 300

16 1 0 1 0 0 0 0 0 0 0
32 9 4 19 13 17 0 0 0 0 0
64 13 15 15 15 21 0 0 0 0 0
128 6 8 8 8 1 0 0 0 0 0
256 13 8 9 6 1 0 1 1 1 0
512 36 27 19 26 21 6 5 2 3 2
1024 21 34 26 29 28 29 18 15 12 21
2048 1 4 3 3 11 62 64 74 70 68
4096 0 0 0 0 0 3 12 8 14 9

(a) (b)

Figure 5: (a) Depth-search vs score reached. (b) Depth-search vs computing time in seconds

to state that depth-searh 3 is enough to obtain acceptable results for the game. Regarding
time, Figure 5(b) shows a monotonic relation between depth-search and computational time
consumption. It appears there is a threshold at depth-search level 4, since after this point
increases in depth-search resulted in exponential increases in computing time.

Figure 6: Distribution of tile-values reached on each depth-search case. Notice that depth-search at level 3 shows
better performance that others.
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(a) (b)

Figure 7: (a) Number of moves of Monte Carlo Tree Search vs game score reached. (b) Number of moves of
MCTS vs computing time in seconds

Figure 6 shows the the distribution of tile-values reached on each depth-search case. Al-
though, depth-search at level 6 resulted in a greater number of games won, depth-searching
at level 3 is highly competent as well. For instance, depth-search at level 3 presented greater
achievements of tiles equal to 1024 than other levels.

Monte Carlo Tree Search.

Relationship between number of moves and score follows a monotonicity behavior, although
with a low gradient after 150 moves. While from 150-moves to 300-moves the mean-score shows
small rises (almost constant), the computing time for those moves keeps ascending constantly.
It can be inferred that in the cases of 150 and 300 moves, tiles values are getting up trying to
reach goals even higher than 2048 (goal to win) but not all of them reached 4096 or more (Figure
7(a) and (b)). As many games did not reach tile-values equal or higher than 2048, the average
of tile-values remained low. Regardless of whether or not tiles have reached 2048 or 4096, or
have failed in their attempt to reach, the computing time keeps running. In short, increase in
computing time should go associated to increases on number of moves and level of difficulty.
Figure 7(a) and (b) that show the relationship between number of moves and score reached and
computing time support this assertion.

Figure 8 shows histograms of maximum-tiles reached by using Monte Carlo Tree search. This
algorithm won at least 65% of games. Interestingly with this algorithm, the case with greater
moves (300-moves, 77 games won) was not one that won more games but the case with 250
moves (84 games won), followed very close by the case of 200 moves (82 games won). Hence,
cases with 200-moves and 250 moves resulted better in performance for having won more games.

5.1 Trade-off analysis

Regarding expectimax algorithm, relationship between score of tries and time shows a strong
association with Pearson coefficients close to 1. However, since the optimal scenario is to win
the game employing minimum time these two variables are conflicting (Figure 9). Pareto front
for each depth-search can be drawn as a first order function (line). In the same way, relationship
between maximum-tile and time resulted associated but strong conflicting. On the other hand,
relationship between score and maximum-tile resulted strong redundant and associated with
Pearson coefficients close to 1 as well.
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Figure 8: Distribution of tile-values reached on each number of moves of MCTS. Notice that depth-search at level
3 shows better performance that others.

Table 4: Pearson Correlation Coefficient (PCC) values and Trade-offs between the objective functions for depth-
search 2, 3, 4, 5, and 6

Pair of variables
Pearson Coefficient

Trade-off
h = 2 h = 3 h = 4 h = 5 h = 6

0.99 0.98 0.99 0.98 0.96
0.96 0.95 0.96 0.95 0.94

Score - Time
Max. tile - Time
Score - Max. tile 0.98 0.97 0.98 0.97 0.98

Strong conflicting
Strong conflicting
Strong redundant

Relationship between score and max-tile shows a common sense association: as the value of
the tile increases, the value of the score also increases. Trade-off between these variables are
strongly redundant. One thing that is important to highlight is that the game is won with scores
over 10,000, whatever be the depth-search level (The first game won was at 10708 of score). This
does not mean that reaching a score of 10000 ensures winning the game, but it can be inferred
that by reaching a score of 10000, the goal to win the game is close.

With respect to MCTS algorithm, results showed similarities to expectimax, strong associ-
ation among score, max.tile and time with Pearson coefficients close to 1. Trade-off between
Time and Max.Tile, and Time and Score resulted to be strong conflicting. Figure 10 shows also
a global Pareto front in continuous line and Pareto front for 300-moves in dashed lines. If score
is prioritized before the goal (win the game), it would be convenient to use a MCTS process
with the least number of moves.

Table 5: Pearson Correlation Coefficient (PCC) values and Trade-offs between the objective functions for 100,
150, 200, 250, and 300 moves

Pair of variables
Pearson Coefficient MCTS

Trade-off
100 m 150 m 200 m 250 m 300 m

0.87 0.95 0.93 0.94 0.86
0.79 0.94 0.89 0.90 0.79

Score - Time
Max. tile - Time
Score - Max. tile 0.98 0.97 0.94 0.95 0.93

Strong conflicting
Strong conflicting
Strong redundant

Relationship between score and max-tile resulted strongly redundant. By this algorithm
like expectimax, tile values equal to 2048 (goal to win the game) started after scores of 10,000
(first won game was at 11,610 of score), whatever be the number of moves. However, by MCTS
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(a) (b)

(c) (d)

Figure 9: Trade-off of expectimax results: (a) trade-off between score and time; (b) trade-off between max-tile
reached and time; (c) trade-off between score and max.tile reached. Scores for achieving 2048 tile start after
10,000; and, (d) trade-off between max.tile reached and time considering only winner experiments.

(a) (b)

(c) (d)

Figure 10: Trade-off of MCTS results: (a) trade-off between score and time; (b) trade-off between max-tile reached
and time; (c) trade-off between score and max.tile reached. Scores for achieving 2048 tile start after 10,000; and,
(d) trade-off between max.tile reached and time considering only winner experiments.



Noa Yarasca y Khoi Nguyen

10 PESQUIMAT 21(1): 1–10

algorithm were able to obtain tiles with values of 4096 (the next level of tale value: 2048),
starting at 26,600 of score, which were not obtained by expectimax.

Regardless of subcases (depth-search in expectimax or number of moves in MCTS), feasible
space of games won by MCTS is larger than that obtained by expectimax as it is noticed in
Figure 10(d) and Figure 9(d).

6 Conclusion

Monte Carlo Tree Search algorithm was able to solve more games than Expectimax although
in a longer time. In Expectimax, a depth-search at level 6 achieved to obtain more games won
than other depth-search levels with an efficiency of 11% followed by depth-search level 3 (4%)
which resulted more competent than levels 4 (3%), 5 (%), and 2 (1%). Regarding MCTS,
the highest performance was obtained by 250-moves with (84%), followeb by 200-moves with
82% and 300-moves, 150-moves, and 100-moves with 77%, 76% and 65% respectively. Hence,
feasible space by MCTS algorithm regarding games won is highly larger than that obtained by
Expectimax.

In both algorithms, trade-off between score-game and maximum-tile resulted strong redun-
dant with pearson coefficiets close to 1. Trade-offs between score-game and time, and maximum-
tile and time resulted strong conflinting with pearson coefficients close to 1 as well. In both cases,
the target value (2048) is reached with scores greater than 10,000, i.e. the game is won at scores
higher than 10,000. However, this does not mean that reaching a score of 10,000 ensures winning
the game, but it can be inferred that by reaching a score of 10000, the goal to win the game is
close. Regarding to computing time, Expectimax optimization offers a better alternative than
MCTS algorithm although with a low efficiency (no more than 11%).

Finally, this article concludes arguing that Monte Carlo Tree Search was more efficient in
higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-
search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining
higher score.

References

[1] Chowdhury G., and Dhamodaran V. (2014). 2048 Using Expectimax. University of Mas-
sachusetts Lowell Department of Computer Science.
http://www.cs.uml.edu/ecg/uploads/AIfall14/vignesh gayas 2048 project.pdf

[2] Lanctot, M., Saffidine, A., Veness, J., Archibald, C., and Winands, M. H. M. (n.d.). Monte
Carlo * -Minimax Search. Maastricht University, Netherlands.
https://dke.maastrichtuniversity.nl/m.winands/documents/mc star minimax.pdf

[3] Neller, T. W. (2015). Pedagogical Possibilities for the 2048 Puzzle Game. The Journal of
Computing Sciences in Colleges 30.3 (January 2015), 38-46.

[4] Rodgers P. and Levine J. (2014). An Investigation into 2048 AI Strategies. Department of
Computer and Information Sciences, University of Strathclyde, Glasgow, UK.
https://www.cse.unr.edu/~sushil/pubs/newestPapers/aux/paper 106.pdf

[5] Xiao R. (2014). 2048 ia. GitHub repository.
https://github.com/nneonneo/2048-ai

[6] Xiao R. (2017). What is the optimal algorithm for the game 2048?.
https://stackoverflow.com/questions/22342854/ algorithm-for-the-game-2048


