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ABSTRACTThis paper presents a space-time formulation for pro-
blems governed by the shallow water equations. A linear time-
discontinuous approximation is adopted and the streamline up-
wind Petrov-Galerkin (SUPG) methodis applied in its equivalent
form to fit the time discretization. Also,a shock-capturíng opera-
tor is used in order to solve all details of sharp layers andjor shock
discontinuities. The semi-discrete version is also established and
numerical examples compare the performance of these methods.

1. INTRODUCTION

The space-time Petrov-Galerkin (ST PG) method for the solution of shal-
lowwater equations has been presented in [1] ; This method is based on the
time-discontinuous Galerkin formulation with the addition of the Petrov-
Galerkin operator.

The Galerkin and the time-discontinuous Galerkin methods lack stability
in the approximation of convection dominated phenomena. A manifestation
of this lack of stability is that spurious oscillations spread over the entire
computational domain, generated by unresolved internal and boundary la-
yers. The operator added in the ST PG method controls the derivatives
along the characteristics, resulting in good stability and accuracy properties
and shows a convergence improvement over the time-discontinuousGalerkin
method. However, in the neighborhood of regions containing sharp gradients
the approximate solution may exhibit over- and under-shoots.
In this paper we present two Shock-Capturing (SO) operators, both lead-

ing to stable and accurate method which are capable of solving all details of
sharp layers andjor shock discontinuities. The first operator is the so-called
OAU proposed in[2, 3J ) which is an extension of the operator proposed
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by Galeaó and Dutra do Carmo[4] for the scalar advective-diffusive equa-
tion. The second operator has been developed by Shakib[5] for the Navier-
Stokes equations. For the space-time formulation, linear space-continuous
and time-discontinuous approximations are used.

2. PROBLEM STATEMENT

Let (x, y) E n e JR2 define a set of points on an horizontal plane and let
z E [h,1]] denote the vertical direction, where h(x, y) represents the water
depth and 1](x, y, z) is the water surface elevation, both measured from the
undisturbed water surface. We start from the 3 -D incompressible Navier-
Stokes equations, after turbulent time-averaging, integrating these equations
along the z direction using depth-averaged horizontal velocities. Under the
simplifying assumption of ahydrostatic pressure distribution (negligible ver-
tical acceleration), we arrive at the shallow water equations:

U,t + uU,x + VU,y + (gH),x - gh,x - Iv - (1W
x - TU + p,(u,xx + U,yy) = O

V,t + UV,X+ VV,y + (gH),y - gh,y + fu - (1WY - TV + ¡,¿(v,xx + V,yy) = O

(2.1) H,t + Hu,x + Hv,y + uH,x + vH,y = O

In these equations, H = h + 1] is the total water depth, U and v are the
averaged components of the velocity in x and y directions respectively. The
gravitational acceleration is given by 9 and I is the Coriolis parameter, (1 is
the surface friction coefficient and wX, wy arethe wind velocity components,
¡.¿ is the eddy viscosity.
Multiplying the third equation by 9 and observing that,

(2.2) (gH),t = ( (V9Hf) t = V9H (2V9H),t = e (2c),t
,

where e (gH)1/2, and considering similar expressions for (gH) x and,
(gH) we obtain the shallow water equations in the velocity-celerity vari-.u
ables [6] which, in matrix form, can be written as:

(2.3) U,t + A.V'U - V'. (IKV'U) + CU = F

where:

(2.4) UT = [u v e]; e = 2c

(2.5)
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(2.6)

(2.7)
[
O O O]Kl2 = K21 = O O O ;
O O O

(2.8) 'VU = [I3fJ/fJX] U
I3fJ/fJy

In (2.3) A. VU plays the role of a generalized advection term and 'V. (IK'VU)
plays the role of a generalized diffusion operator.

Once an initial state Uo(x,) is specified at t = O and appropriate boundary
conditions are prescribed, the system of equations above can be solved to
give the unknown column vector U.

3. STPG WITH SHOCK-CAPTURING FINITE ELEMENT
MODEL

In order to construct the space-time finite element subspace, let us con-
sider n a bounded open set of JR2 with boundary r. Let us also consider
the partition O = to < ti < ... < tN = T of the interval I = (O, T) and
denote by In = (tn, tn+d the nth time interval. For each n the space-time
integration domain is the "slab" Sn = n x In, with boundary rn = I' x In;
see Figure 3.1.

If we define S~ as the eth element in Sn, e = 1,2, .., (Ne)n, where (Ne)n
is the total number of elements in Sn, then for n = O, 1,2, .. we have:

(i) The space- time finite element partition nh,.ó.t is such that:

(3.1) s = U(nel)nse
n e=l n

(3.2)

(ii) The space-time finite element subspace consists of continuous piece-
wise polynomials on the "slab" Sn, and may be discontinuous in time across
the time levels tn, that is:

trial functions :
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'---- rn ="r x In
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x

Figure 3.1. Slah space-time.

weighting f unctions :

where IPk is the set of polynomials of degree less than or equal to k and
9 are the prescribed boundary conditions.

Considering that finite element functions are discontinuous at the space-
time slab interfaces, let

(3.5)

and define the jump in time tn of íJh as

(3.6)

According to the above definitions, the variational space-time formulation
discontinuous in time for the problem (2.3) reads:

. . h h ~h ~hWithin each Sn, n = 0,1,2, .., find U E Un such that for all U E Un
the following variational equation is satisfied
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where

(3.8) RUh = U,1+ A.\lUh - \l. (1K\lUh) +CUh -:F = 1:,Uh-:F

is the residual. 1:, is defined as

888 8
1:, = - +Ai- - -(Kij-' + e

8t 8Xi 8Xi 8xj

The first, second and last integrals in (3.7) constitute the time - disconti-
nuous Galerkin formulation. The jump condition is the mechanism by which
the information is propagated from one space-time slab to the next. The
third integral in (3.7) is the (STPG) operator and the fourth integral is the
shock-capturing operator (Se). Those operators will be briefly seen later.

3.1 Space-Time Petrov-Galerkin Operator (STPG). The Space-Time
Petrov-Galerkin operator is defined as

(3.9)

where r is the 3 x 3 symmetric positive-semidefinite Petrov-Galerkin matrix
of intrinsic time scales. The definition of this matrix T is given in[5] by

where z¿ = t : XI = X ; X2 = Y ; ~k (k = 0,1,2) are the local coordinates of
the parent element S~ and h is the identity matrix of dimension 3. When
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solving steady state problems or if a semi-discrete formulation is used, the
first term in the square-root inverse (3.11) may be set to zero.
3.2 Shock-Capturing Operator. This operator is built to satisfy a few
design conditions: in order to control the oscillations, this operator should
act in the direction of the gradient; for consistency it should be proportional
to the residual RUh; and for accuracy it should vanish quickly in regions
where the solution is smooth.

We present two operators that satisfy the above conditions.
3.2.1 CA U Operator. This operator is defined as [2, 3]

(3.12)
(Ne)n¡ ~h hL Te 'VU .'VU dOdt
e=l sg

where

((Pe) = coth(Pe) - A ; P¿ is the Peclet number[7] and

(3.14)
if
if

l'VUhl2 # O

l'VUh
l
2 = O

with

(3.12)

3.2.2 DC Operaior. In order to define this operator, denote by 'VE, 'Ve
the local gradient in element spatial and space-time coordinate systems,
respectively. That is,

(3.16) 6 x 3

(3.17) 9 x 3
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(3.18) 12 X 3

Let the generalized gradient operator in the local element coordinates be
defined as . . .

(3.19) 24 x 3

The number of terrns included in V{ depends on the differential operator
L. The above definition accounts for a11the gradient terrns in (3.9).

Therefore the operator (DC) is defined as

(3.20)

where

(3.21)

Linear Form

Quadratic Form

4. COMPUTATIONAL ASPECTS

4.1. Linear-in-time and linear-in-space approximation. In this ap-
proximation the Uh and fjh interpolations are bilinear in space and time.
The total number of nodal points for each space-time slab is 2nnp: nnp nodal
points at t~+lwith values denoted by U~(n+1)- and nr:-p nodal points at tt
with values denoted by U~(n)+' where nnp is the number of spatial nodal
points; (see Figure 4.1).

We refer to U~(n+l)- as the primary variables and to U~(n)+ as the se-
condary variables. With these definitions, for the nth space-time slab we
have
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Uf+1;(n)+ ir.--+--------+--------+---. ..... (n)

r h······ t~)

Uj+1;(n)-

h h

Figure 4.1. Nodal configuration for the linear-in-time
approximation.

(4.1)
nnp

Uh(x, y, t) = :ECPj(X, y) (NI(t)U~(n)+ + N2(t)U~(n+l)- )
j==l

(4.2)

where CPj(x, y) is the spatial shape-function of spatíal node j whích is as-
sumed to be piecewíse linear; NI (t) and N2(t) are the temporal shape-
functions defined as

(4.3)

(4.4)

Substitution at the above functions into the variational equation (3.7)
leads to followingsystems of equations:

(4.5) [K~~ K~~] [ U(n)+ ] = [F~]
K K U(n+l)- F

where

(4.6)
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(4.7)

(4.8)

(4.9) K22
- K22 +K22 +K22 +M22
- G PG se t

(4.10)

(4.11)

(4.12)
[

'Pi'Pj O O]
Mij =¡ O 'Pi'Pj O dO.

n O O 'Pi'Pj
(jump term)

(4.13)
[

N~

1 'Pi'Pj k 8t
Mtk!. = O,1)

Sn O

Integrating the above expression in time,

11[1"1'; O
~ ] d!l ~ ~M(4.14) Ml~· = - O 'Pi'Pj,1) 2 n O O 'Pi'Pj

11[1"1'; O
~ ] d!l ~ ~M(4.15) Mt~rj = 2 n ~ 'Pi'Pj

O 'Pi'Pj

11[1"1'; O O ] 1(4.16) M?~. = -- O 'Pi'Pj O dO. = -2M
,1) 2

!1 O O 'Pi'Pj

11[1"1'; O
~ ] d!l ~ ~M(4.17) Mt~rj = 2!1 ~ 'Pi'Pj

O 'Pi'Pj

Using these relations, the system of equations can be rewritten in the
form
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If can be seen in the above equation that the temporal coupling in the
mass term M is non symmetric. This leads to the explicit algorithm based
on this process unconditionally unstable. However, this coupling can be
transformed in to a symmetric couplingby using the followingpreconditioner
matrix.

(4.19)

resulting

(4.20)
[
M O] [ U(n)+ ] [1 -1] [Fl]
O M U(n+1)- + .....+ = 2 1 ·1. F2

We incorporate the preconditioning described above using the following
modified weighting functions

(4.21)

5. NUMERICAL RESULTS

In this section we show some numerical results obtained with the pre-
sented methods. We will refer to SUPG as the generalized Strearnline
Upwind Petrov-Galerkin method for the case of semi-discrete formulation,
presented in[8] and STPG as the correspondent space-time formulation;
DCL and DCQ are the discontinuity-capturing methods, linear and qua-
dratic, respectively; CAU-ST, G-ST, CAU-SD and G-SD are the CAU
and Galerkin methods, with ST and SD standing for space-time and semi-
discrete versions, respectively. In the semi-discrete formulation presented,
the Crank-Nicolson scheme was used to approximate the temporal deriva-
tives.

The first example is the well know dam break problem, which consists
of a wall separating two undisturbed water levels that is suddenly removed
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(Figure 5.1). Friction effects are neglected and the spatial discretization is
given by a 100 linear one-dimensional elements mesh.

Figure 5.2 show the results for t=7.5, using a time step tit = 0.1, and
compares the solutions obtained with the G, STPG and CAUmethods, in
the space-time and semi-discrete formulation. As expected, the G, STPG
and SUPG solutions presents some oscillations, wich disappear when the
CAU operator is used. Figure 5.3 and 5.4 show the results for t = 2.5 and
t = 7.5, wiht the time steps tit = 0.5 and tit = 0.1 using both, the CAU
and the DCL operators.
Figure 5.5 compares the CAU, DCL and DCQ operators in the space-

time formulation.

1.0 1.0

0.8 0.8

0.6 0.8

O., O.,

0.2 02

0.0 0.0

-0.2 -02
-50.0 -30.0 -10.0 10.0 30.0 50.0 -50.0 -30.0 -10.0 10.0

r¡=1

h=l

q = 10
L = 100

--------------.-----------------------------'------------.,

-- ...• x
L/2 L/2

Figure 5.1. Dam break problem.

30.0 50.0

Figure 5.2. Solution for time t = 7.5, with flt = 0.1.

The second example, illustrated by Figure 5.6, is the problem oí a refíect-
ing wave in a írictionless horizontal channel of length L = 500, discretized
with 10 elements. The channel is open at the inflow boundary and closed
at the opposed boundary. The system is subjected to a boundary condition
at point A, raising the water level suddenly from the initial state of rest
(H = 10) to H = 10.1, within one time step. The results can be seen in
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Figure 5.3. Solution for time t = 2.5 and f = 7.5, with
~t = 0.5.
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Figure 5.4. Solution for time t = 2.5 and f = 7.5, with
~t = 0.1.
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Figure 5.5. Solution for time t = 2.5 and t' = 7.5, with
~t = 0.1.

Figures 5.7 - 5.8. In these figures, the time-history responses for the water
surface elevation at point B are depicted.

Figure 5.7 show the curves with the space-time and semi-discrete formula-
tions for the a time step !:lt = 10. CAU-ST solution reaches the rectangular
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g = 9.81

h = 10

A --~-------------------------------JB
L = 500

Figure 5.6. Reflecting wave in a frictionless channel.

form while the others solutions present some oscillations. Figure 5.8 presents
results for the time steps b.t = 10 and b.t = 1 respectively, obtained with
CAU-ST, CAU-SD and DCQ. The CAU-ST presents the best rectangular
formo

0.30 PG 0.30
G-ST

0.25
~

0.20 020

~ 0.15

0.10 0.10

0.05 0.05

0.00 0.00

6000.0

Figure 5.7: Solution atpoint B, with ~t = 10.
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Figure 5.8. Solution at point 'E, with D.t = 1'0and D.t = 1,
respectively .
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6. CONCLUSIONS

In this work a ST PGmodel with shock-capturing operators was derived
for problems govemed by the shallow water equations. Piecewise linear
approximations, continuous in space and discontinuous in time, were used.
In addition, the correspondent semi-discrete versions were presented.

From the previously presented examples we can conclude that:
1) The space-time formulation allows the use of larger time-steps when

compared with the correspondent semi-discrete formulation, but at the cost
oí duplicating the number oí the equations. Nevertheless, using the precon-
ditioning scheme previously présented this system oí equations can be split
in two coupled systems and solved iteratively.

2) For both examples the additionalstability engendered by the shock-
capturing terms províded by the CAU 01"- DC methods eliminates the re-
maining oscillations still observed when the Galerkin or SU PG formulations
were used. -

3) Conceming accuracy and stabilíty,' the CAU method performs slightly
better than the DC methods.
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