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SET-THEORETIC COMPLETE INTERSECTIONS ON
BINOMIALS, THE SIMPLICIAL TORIC CASE

Margherita Barile 1, Marcel Morales 2, ApORtolos Tboma 3

ABSTRACT. Let V be a simplicial toric variety ofcodimension r over
a iield oi any duuecteristic. We completely charaderize tbe implicial
toric varieties that are set-theoretíc complete intersections on binomials.
In particular we prove that:
1. In characterístíc zero, V is a set-theoretíc complete íntersection on

biuomiels if and only jf V' is a. complete íntersection. Moreover, if
F1,... .F; are bínomials such that 1(V) = rad( F¡, . .. ,Fr), then
I(V) = (F" ... ,Fr). "'e also get a gooI1letric prooE oE some oE
the results in [9] charaderizin¡; complete intersec;tíons by gluitu;
semigroups.

2. In positive characteristic p, V is a. set-theoretic complete intersec-
tion on binomiels if ead only if V is complete1y p-glued.

These results improve and complete sll known results on these topies.

INTRODUCTION

The determination of the mínimum number of equations needed to
define an algebraic variety V set-theoretically or ideal-theoretically is
an old and important problem in Algebraíc Geometry. In this paper we
consider the case of simplicial toric varieties and it turns out that these
two problems are strongly related in characteristic zero, seeTheorem
l.
The ideal of a toric variety is a prime binomial ideal. A birwmial ideal
is an ideal generated by binomials. Eisenbud and Sturmfels began the
systematic study of binomial ideals in [4], where also the ubiquity of
binomial ideals was presented. There are numerous publications in
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recent years on binomial ideals, and several of them treat the problem
of the 20 minimal generation of a binomial ideal or of the radical of it,
for example: [1, 2, 5, 6, 7, 9, 10, 12].
The binomial arithmetical rank of a binomial ideal l (written bar(l))
is the smallest integer s for which there exist binomials f1 , . .. ,j, in 1
such that rad(I) = radtfv., .. ,j,). Hence the binomial arithmetical
rank is an upper bound for the arithmetical rank of a binomial ideal.
From the definitions we deduce the following inequality for a binomial
ideal 1:

h(l) ~ ara(I) ~ bar(I) < ¡;,(I).

Here h( l) denotes the height and ¡;,(l) denotes the minimal number
of generators of l. When h(l) = ara(l) the ideal l is called a set-
theoretic complete intersection and when h(I) = ¡;,(I) it is called a
complete intersection. •
Let K be a field of any characteristic and let k be the algebraic closure
of K. Let el, . . . ,en be the elements of the canonical basis of ~. and
for a11i = 1, ... .r let al = (ai,l, ,ai,n) E IN"'o Let d, o" .ti; E IN
and set T = {d1 el, ... ,dnen, al, .a,} e IN"'. Define

as the homomorphism of K-algebras for which

for al! i = 1, ... ,n.,

for a11i = 1, ... ,r.

Where tal = t~i.l ... t~i.... Then K eTl/J = IT is the simplicial toric ideal
of T and its affine variety V = V(IT) of zeros in tc+: is an affine
simplicial toric variety in the sense of [4, 11], which also includes non
normal varieties. The image 4>(K[Xl, o •• , X"', Y1, ... ,Yr]) is the affine
semigroup ring of T.
Let 1NT = {l1 d, el + ... + ln+ •.a, :11, ... ,ln+r E IN} be the affine semi-
group generated by T and 7LI' = {hdIel + ... + ln+ •.a, :h, .. o ,ln+r E
LZ} the lattice spaned by T, We denote the dimension of the lattice by
dim( ZZT), which in this case is equal to no
We recall the definition of semigroup gluing.

Definition 1. Let T1 and Tz be non-empty subseis 01 T such that T =
TI UTz and TI nT2 = 0, Therz T is called a gluing 01T. asul Tz if thP,T"P,
is a nonzero element a E INI'1 n lNFz sudi iha; ~ = ~l n 7ZT2.
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The concept of semigroup gluing was defined by J.C. Rosales in [8]
and used by K. Fisher, W. Morris and J. Shapiro in [6] to characterize
all complete intersections affine semigroups. They proved that for an
affine semigroup INI' which is not a free abelian semigroup it holds:
INI' is a complete intersection if and only if there are two subsets T1

and T2 of T such that T is the gluing of T1 and Tz and INI'" INTz are
complete intersection subsemigroups.

Here we also define the notion of p-qluinq and inductively the notion
of completely p-glued, which will be very important for the character-
ization of set-theoretic complete intersections on binomials in charac-
teristic p.

Definition 2. Let p be a prime number and Ti and T2 be non-empty
subset» of T such. that T = TI U T2 asid T. nT2 = 0. Thf';n T 1,.'1called
a p-gluing of T, and n if 7ZIi n 7LT2 = ?La' qnd there is a nonzero
element a E INrl n INr2 and there is an integer k sucn that a = pk a' .

Definition 3. An affine semiqroup 1NT iB called completely p-glue.d
if T is the p-qluinq of TI and Tz, where each one of the semiqroups
INT" 1NT2 is completely p-qiued or a free abelian semiqroup.

The purpose of this paper is to prove the following results:

1. In characteristic zero the complete intersection simplicial affine
toric varieties are characterized as those simplicial affine toric va-
rieties which are set-theoretic complete intersections on binomial
hypersurfaces. In this respect one can get a different proof of the
characterization of complete intersection simplicial affine semi-
groups (see [9]) since the characterization of complete intersec-
tion affine semigroups is characteristic free. It will be interesting
to know if the above property still holds for a general toric variety
in characteristie zero.

2. In positive characteristics this result is not true since the class
of toric varieties which are set-theoretic complete intersections on
binomials is larger than the one of complete intersections. We re-
fer to [1], where we have proved that all simplicial toric varieties
with full parametrization are set-theoretic complete intersections
on binomials. In positive characteristic p, simplicial affinetoric va-
rieties which are set-theoretic complete intersections on binomial
hypersurfaces are those whose underlying semigroups are com-
pletely p-glued.

Throughout the paper we shall refer to the notations introduced in this
section.
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1. MAIN RESULTS

Let n = {X"X2~'" ~Xn,Y" ... ,Yr}' A partition ~ of n is a set of
pairwise disjoint non-empty subsets covering n. A partition ~1 refines
a partition ~2, denoted by ~1 <1 ~2, if every set of ~2 is the union of
some sets of ~1' For a11i = 1, ... ,T, let ITi = (Mil Ni) be an ordered
pair of unitary monomials. Let

~. ~.' ~.
os, <1 OS2 <1 ••• <1 OSr+'

be a chain of partitions of n. Aeeording to a definition given by De-
lorme [3], the sequence III ~ ,IIr is called distinguished with respect
to this chain if for all i =.1, ,T there are A, B¡ E SSi such tha t the
following two conditions are fulfilled:

- for aU i = 1, ... ~T,

supp (Mi) e A¡, supp (N¡) e B;

- for all .i = 2, .... T + 1 the partition <Sjis obtained from B'j_' by
replaeing Aj and Bj by their union.

Definition 4. Lei F E 1 = Ir be a binomial. F = M - N. uhere M
and N are unitary monomials. We denote II(F) = (M: N). We also
consider the partition <S, of n [ormed by the seis

8', : {Yl }, ... ,

We shall say that the sequénce Il¡ .... ,TI,. of binomial pairs is distin-
quished ~f it is distinquished with respeci to some chain of partitions
starting at ~, .

Let A e n. We denote by PA the point of Kn+r such that its
eoordinates eorresponding to variables belonging to A are equal to 1
and all the others are equal to zero.

Lemma 1. Let <s be any non trivial partition of n such that <SI is a
refinement o/SS) and let A E SS. Then PA rt V = V(Ir).

Proof. First suppose that {x" ... ,xn} ~ A. Since ~ is non trivial,
we have that Yi rf. A for some index i. Hence fj¡ = 0, whereas x, = ... =
Xn = 1. Since for any i there exists a binomial y~i - M(x" ... ,xn) E 1,
we have that PA ~ V.
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Suppose that {Xl,'" ,Xn} n A = 0. Since ~l is a refinernent of~; we
have that Yi E A for sorne index i. Hence Yi = 1, whereas Xl = ... =
Xn = O. Since for any i there exists a binomial yf' - M(x}, ... ,xn)
E 1, we have that PA fÍ- V. O

Lemma 2. Let V be a simplicial toric variety 01 codimension r sudi
that oor(I(V)) = r . Let Fe, ... .F; be r binomials sucñ that I(V) =
rad( FI, ... ,Fr). After a suitable re-arrangement 01 the índices one has
that the corresponding sequence II(Fd, II(Fz), ... ,II(Fr) 01 binomial
pairs is distinguished.

Proof. We are going to give the recursive construction of a chain
of r + 1 partitions starting at ~, with respect to which the sequence
IT(F,), ... ,IT(Fr) is distinguished.
Each of the elernents of~, contains the support of one of the 2r mono-
mials occurring in II(FI) , •.. ,II(Fr). If this were not true for sorne
A E ~I, then the point PA would be a point of V(Fl, ... ,Fr), since
it would annihilate every monomial in II(FI), ... ,II(Fr). But this is a
contradiction to Lemma 1.
Since the elernents of ~, are pairwise disjoint, in this way we se-
lect r + 1 different monomials out of the 2r rnonomials belonging to
IT(F,), ... ~II(Fr). Hence two of the selected monomials, say M, and
N" must belong to the same pair. Up to re-arrangements of the in-
dices we may assume that IT(F¡) = (Ml, N¡). Call Al and Bl the
elements of ~l such that supp (MI) e Al and supp (NI) e Bl' Let
~2 be the partition arising frorn ~l by replacing the sets A, and B,
by their union. We claim that each of the elements of ~z contains
the support of one of the monomials occurring in II(F2),'" ,II(Fr).
We have to prove the claim only for Al U Bl' S1.lPPOsefor a contra-
diction that the claim fails for this seto Then the point PAILJRl is a
point of V(F" ... ,Fr), since M, (PA¡IJR¡) = 1 = N, (PA¡lJR¡) and each
monomial in IT(F2) , ••• ,IT(Fr) vanishes in PAtlJR1' But this is a contra-
diction to Lernrna 1. We select r monomials out of the 2(r - 1) mono-
mials belonging to II(Fz), ... ,II(Fr), and by the same arguments as
in the first part of the proof we conclude that, up to re-arrangements,
IT(Fz) = (Mz, Nz)~ where supp (Mz) e A2 end supp (N2) e e, for
sorne A2~Bz E ~z. The next steps of the construction are clear: for a11
h = 2~... ~r we can construct a partition ~h+' of n such that:

(a) up to re-arrangements, II(Fh) ~ (Mh, Nh), where supp (Mh) e Ah
and supp (Nh) e Bi; for some Ah, Bh E ~h;

(b) ~h+l is obtained from ~h by replacing Ah and Bi, by their union.
These partitions form a chain of the required type. O
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Remark 1. For al! i = 1, . .. .r + 1 the partition ~i consists of r - i+2
sets. In particular ~r consists of 2 sets, namely Ar and Br. Hence
n = Ar U Rr' We "han assnrne that Ai n {.7:1)' .. ,xn} = 0 for a11
1, ... .r . In particular {Xl,'" ~Xn} e B«.

Remark 2. For a11k = 1,. .. ,r - 1we have that Ale e Ar if and only
ir e,e Ar'

Let liS call z.. for i = 1,... ,g, the variables in Ar and wj, for .i =
1, .. , .q, the variables in Br. Note that .Q + q = n + r, Let b, be the
vector of the exponents appearing in the parametrization of z¡ and cJ
be the corresponding vector for Wj. Let T, = {b- , ... ~bg} and let
T2 = {Cl:'" ,cq}. Then T = T.U T2 and T.nT2 = 0.
Let {e 11 , • . . ~e lq} be the binomials among Fl,... ,Fr-l such that
supp (el i) e Ar. and {e2l, .... e2t} be the binomials such that supp
(e2j) e Br. Note that s + t = r - 1.

Lemma 3. Por all í = 2, ... ,r let. Si be the number of binomials
among F1 •••• .Fi.., t(lhose suppori i..9 containe.d in Ai. Then

IAfl = Si + 1.

In particular lAr I = S + 1.

Proof. We prove the claim by induction on i 2:2. For A2 we have
two possible cases. If IA21 = L then supp (F1) ct. A2, and 82 = O. If
87J,pp (F'l) e A21 then F'l = yf - lIfr, for some distinct indices 1,m and
some positive integers a, (J. But then Al = {y¡} and B, = {Ym} (or
conversely}, and A2 = {Y¡,Ym}' Hence IA21 = 2 and 82 = 1.
Now assurne that i > 2 and suppose the claim proven for all Ale such
that k < i. Note that the claim is also true for a11Bk such that k < i
ano {TI:'" ,.T.n} n Rk = 0. If IAil = 1, then Si = O. Snppose that
IA¡ I > 1. Then A¡ = A,I; U BI; for some k < i. Let tk be the number of
binomials among F1 ••• , ,FIc-1 whose support is contained in Bv, Then
by induction

and

Moreover Sic + t,l; is the number of binomials among F1, ... ,Fk-1 whose
support is contained in At. V"'¡ealso have that supp (FI:J e A,I;uB,I; = At.
Thus it suffices to show that for all i = k + 1, ... ,i - 1 it holds:
supp (F;) rt At. But this is certainly true, because for a11j = k +
l. ... .i - 1 the set A¡ is an element of ~j. O
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Remark 3. From Lemma 3 we deduce that 9 = s + 1 and q = n + t.

Remark 4. Note that from the proof of Lemma 3 we deduce that each
two vectors in T1 are linearly dependent, whence dim (7ZF,) = 1. Note
also that {d1el"" dnen} e T2, whence dim (ZT2) = n.

Remark 5. Note that Ir¡ = IT nK [Ar] and IT2 = IT n K[Br].

Lemm.a 4. We have that ¡TI = roo(Gn, ... GIS) and Ir2 = rad (G21,

... ,G2t).

Proof. We shall prove the Lemma for 1TI.The binomials Gli belong
to ITu so that (Gll, •.. ,Gl.,!) e ITu whence V(IT¡) e V(G11, ••• ,G1.o;).
Suppose that the inclusion is strict, then there is a point (Yl"" ,Yg)
of V(Gll, ... ,GIS) e KP which is not a point of V(IT¡) e kg. This
means that (YI, ... ,Yg) cannot be expressed in the form (Ub1, ... ,u be),
for any U = (Ul,'" ,tln) E tc-, Recall that F; = M; - Nr, where M;
is a monomial in the Ar-variables and N; is a monomial in the B;»
variables. Let w = Mr(Yl, ... ,Yg) and set N.,. (UC1, ... ,uCq) = UC.
Moreover let (VI, ... ,vn) E kn be any root of the polynomiaI UC

- w E
k ['u1 1 ••• ,Un]' Then the point (y" ... ,Yg; yCl, ... ,yCq) is a point of
V(Gll, ••• ,G,~, G2" ••• ,G2t, Fr) e kn+r which is not a point of V. A
contradiction. O

ZERO CHARACTERISTIC CASE

Theorem 1. Let V be a simplicial toric varíety of codimension r over
a field of characteristic zero. Then bar(I(V» = r if and only if V Í.5 a
complete intersection. M oreouer, if F1, •• : .F; are binomials such. that
I(V) = rad(F" ... ,Fr), then I(V) = (F1, ••• ,Fr).

Proof. Suppose that V is a complete intersection, then height(I(V)) =
r ::; bar (I(V» ::; p,(I(V» = r, where /1(1(V)) denotes the minimal
number of generators of I(V). Therefore bar (I(V» = r,
For the converse suppose that ba.r(I(V)) = r . We proceed by induction
on r 2:: l. The statement is obvious for r = l. Suppose that every
simplicial toric variety of codimension smaller than r whose binomial
arithmeticaI rank is equal to the codimension is a complete intersection.
We perform the costruction contained in the proof oí Lemma 2 for
F1, ••• .F». We suppose that these binomials are arranged in such a
way that the corresponding sequence of binomial pairs is distinguished
with respect to the chain ~1 <l ~2 <l ••• <l ~r+ 1.
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From Lemma 4, Remark 4 and .the fact that the Krull dimension of
the residue ring of ITI is equal to the dim (7ZT¡), see [11], we have
bar(ITl) = s = (s + 1) - 1, therefore ITI is completeintersection and
ITI = (Gn, ... ,GIs) by the induction hypothesis. Similarly bar(IT2) =
t = (n + t) - n, therefore IT2 is complete intersection and IT2
(Gz" ... ,G2t,) by the induction hypothesis.
We complete the proof by semigroup gluing. First note that F;
M; - N; E I(V) and M; only involves variables from T, and N; on1y
variables from T2, whence Mr(Ub1, ... ,ubs) = Nr(uC1, ••• ,uCq) = u"
for some a E lNIi n INI'2' We claim that ~ = 7ZI'I n 7LI'2, i.e., T is
a gluing of TI and T2• According to [8] a11the preceding assumptions
imply that

which will complete the proof.
Suppose that our claim is not true. Then there is an element al E ;zn
such that lZal = ;zr'1 n 7ZI'z, since 7ZI'1 n ;zr'2 has dimension 1. From
a E 7.ZI'1 n 7.ZI'2 we see that a E lZa/, therefore there exists a positive
integer m > 1 such that a = mal. Note that a11entries of a are positive.
so that we can assume that the same is true for al.
The degree of an element of N is the sum of its entries, let d = deg(a)
and di = deg(a/). Then d = md'. Let w E k be a primitive m-th root
of unity and let € E k be such that €d' = w. Re-arrange the coordinates
of kn+r in order to form the sequence (ZI' ..• , Zg; WI ••• ,wq). For a11
j = 1, ... ,q, let Tj = 2::::~_lcj,}¡. The point (1, ... ,1;f'YI, ... ,C'q) is a
zero of a11Gll, ... ,GIS, because (1, ... ,1) is a point of VI' It is also a
zero of all G21, . .. ,Gze, because (€'YI , . . . ,f'Yq) is a point of V2. Moreover
F; (1, ... , 1j el ,... ,€'Yq) = 1 - ed = O. Thus (1,... ,1; f'Yl , ... ,e'Yq) E
V. Rnt. al E 7Zr1 n 7Zrz rneans that al = 2::::f=l Vib, = 2::::r=l/ljCJ.
for suitable integer coefficients Vi, {tj' Let v = (VI, ... ,Vg) and ¡L =
(¡Ll , ... ,{tq). Then the second equality shows that the binomial G =
zvl wJ1. - ZV wJ1.

1 E I(V). Moreover dI - Lj=l!J-jTj. But then from
G( 1) ... ) 1; ('Yl ) . .. ,f)'q) = O) we have that O = 1 - ~d' = 1 - w :f:. O,
which is a contradiction.O

Corollary 1. Let V be a simplicial projective toric variety of codimen-
sion r over a field of characteristic zero. Then bar (I(V)) = r if and
only if V is a complete intersection. Moreouer, if FI, ... ,F.,. are bino-
mials sucñ that I(V) = rad(Fl, ... ,Fr), then I(V) = (F1, ... ,Fr) and
after a suitable re-arranqemeni of the índices we haue that the binomial
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Fi is monic in Yi and the oiher monomial term of F'; only involves the
x-variables and the variables Yi such that j < i.

Proof. The first part follows from Theorem 1. For the last part, note
that in the projective case any two vectors a" aJ in the parametrization
of V can not be proportional. That means that there is no binomial
with support {Yi, Yi}' Therefore each binomial F1,•.. ,F; should be
monic in y¡ for some i. The proof follows from a careful reading of
Lemma 2. O

Remark 6. In fact the above Corollary is true for every simplicial
toric variety for which each two vectors in T are linearly independent.

2. POSITIVE CHARACTERISTIC CASE

Theorem 2. Let V be a simplicial toric variety of codimension r over
a field of characteristic p. Then bar(I(V)) = r if and only if V is com-
pletely p-glued and T is the p-gluing ofTI and T2, where dim (~I) = 1
and dim (7ZT2) = n = im(7ZT).

Proof. Suppose that bar(I(V)) = r. We proceed by induction on
r ~ l. The statement is obvious for r = 1, since in this case \¡r is always
a complete intersection and therefore it is also completely p-glued, see
[9J. Suppose that every simplicial toric variety oí eodimension smaller
than r whose binomial arithmetical rank is equal to the codimension
is completely p-glued.
We perform the costruction contained in the proof of Lemma 2 for
F1,... ,Fr' We suppose that these binomials are arranged in such a
way that the corresponding equence of binomial pairs is distinguished
with respect to the chain SS} <1 SS2 <1 ••• <l B'r+l'
46rom Lemma 4, Remark 4 and the fact that the Krull dimension of
the resi due ring of IT¡ is equal to dim (7ZTI) = 1, see [11], we have
bar (IT¡) = S = (s + 1) - 1, therefore h¡ is completely p-glued by the
induction hypothesis. Similarly bar(h2) = t = (n + t) - n, therefore
IT2 is completely p-glued by the induction hypothesis.
We complete the proof by semigroup p-gluing. First note that F; =
M; - N; E I(V) and M; only involves variables from T, and N; only
variables from T2: whence Mr(ub1, ... ,ubp) = Nr(uC1, ••• ,uCq) = u"
for some a E 1NT1n 1NI2. Also there is an element a' E ~ such that
?La'= 7ZT1n 7ZI'2, since %TI n %T2 has dimension 1.
We claim that there is an integer k such that a = pka', i.e. T is the
p-gluing of TI and T2.
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Suppose that our claim is not true. then there exist a positi ve integer
m> 1 and an integer k such that a = mpka'and p does not divide m.
Note that all entries of a arepositi ve, so that we can assume that the
same is true for a'.
Comparing the degrees d of a and d' of a' we have that d = m¡}d'.
The number m is not divided by p, the characteristic of the field, so
let w E K be a primitive m-th root of unity and let f. E K be such
that ~dl = w. He-arrange the coordinates of kr+: in order to form t-he
sequence (Zl, ,Zg; tOl ... ,wq). For all j = 1, ... 1 q, let 1;' = 2:::~_1Cj,k.
The point (1, , 1; ~fl, ••• ,fYq) is a zero of all Gn, ,GIs, because
(1, ,1) is a point of Vl' It is also a zero of a11G2I, ,G2t, because
(~I, ,(7q) is a point of V2. Moreover Fr(l, ... ,1; ('1, ... ,~fq) =
1- ~d = O. Thus (1, ... ,1;f'n, ... ,~q) E V. ut a' E 7ZI1n7ZI'2means
that a' = 2:::Ll Vi b, = 2:::LI lJ,jCj i for snitable integer coefficients Vi, f1.j'

Let II = (IJ" ... ,IJg) and 11, = (p-" ... ,J.tq) then. the second equality
shows that the binomial G - Zll: '1.0" - z" W"I E I(V). Moreover
d' = 2:::)-1P{'Ij' Bnt then from G( 1 ~ •.. , 1; ~11 , ... ,~1q) = O, we have
that O = 1 - ~! = 1 - w -1 O) which is a. contradiction.
For the converse, let V be a simplicial toric variety of codimension r
over a field oí characteristic p. Let T be the semigroup defining V and
suppose that it is completely p-glued, and it is the p-gluing of T, and
T2, where dim(7ZIJ) = 1 and dím(7ZT2) = dim(7ZI'). We shall prove
that bar(I(V)) = r by induction on r ,
For r = 1 the claim is obvious, since I(\l) is a principal ideal, Therefore
bar(I (V)) = 1. Suppose that the claim is true for a11 toric varieties of
codimension smaller than r. By hypothesis 7ZI', n 7ZI'2 = ~a' and
there are a nonzero element a E INT, n INT2 and an integer k such
thata = ra'o Let TI = {bll .. · ,bg}, and T2 = {el,'" : Cq}. We call
Yi, for i = 1,... ,.9, the variables corresponding to the vectors in T1
and Zj' for i = 1,... ,q, the variables corresponding to the vectors in
T2, Clearly ITI = ITnK[y,: ... 'YD] and IT2 = ITnK[Zl,'" :ZqJ, Since
a E INT, n INT2, we can write

for some natural numbers ei, 7]j. This implies that the binomial F =
y~1 ... y;9 _ zt ... z;q belongs to TT' We clairn that

IT = rad(IT¡ + IT2 + (F)).
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Let (Y" ! Y!Jl Z" ... ,Zq) E gg+q a zero of Ir1 + Ir2 + (F). By hypo-
thesis (y" ,Yg) is a zero of Ir¡, hence there exist u" ... ,u" E K such
that Yi = ubt . For a similar reason there exist Vl, .•. ,vn E k, such
that Zj = yCJ for any i,j. It follows that F(Yl, ... ,Yg, Zl,'" ,Zq) =
O = uL é'¡b¡ - v L 7JiCJ . 'I'he ideal IT is g~n~rat~ by binornials of the
form:

We have that B E Ir, therefore L I+¡b, - E I-¡b, = E ó+jCj -

E (L jCj E 7ZT, n 7ZT2 = LZa'. Thus there exists a natural num-
ber T such that Lpk'libl - LY, ibl = LpkÓ'jCJ - LpkÓ jCJ =
pkT20a' = ra, in particular we get the relations :

so that

Therefore B E rad( I rt + I r2 + (F) ). The claim fol1owsby the inducti ve
hypothesis since V(IrJ and V(Ir2) are completely p-glued and whose
codimension is smaller than r. O

EXAMPLES

In this section we are going to present several examples to clarify the
coneept of p-glulng.

Example 1. There are examples of toric varieties that are eompletely
p-glued for every prime number p. In [1] we have proved that over a
field of positive characteristie all simplicial torie varieties with full sup-
port are set-theoretic complete intersections on binomials. It follows
from Theorem 2 that every simplicial toric variety with full suppori is
completely p-qlued, for every p. In fact the same proof of Thecrem 1
in [1]gives a stronger result:
Let V be a simplicial toru: variety of codimension r over a field of char-
acteristic p, such that after a suiiable re-arranqemeni of the indices it
holds that supp(al) e supp(a2) ... e supp(a.r). Then V is completely
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p-qlued for every prime p and therefore it is sei-theoreiic complete in-
tersection on binomials.

Example 2. There are examples of toric varieties that are completely
p-qlued for only one value of p. For example, let II be the Veronese
surface in p5 parametrized by Xl = tr,xz = t~,x3 = t~,YI = tZt3,YZ =
tlta,Y3 = tlt2. Then T = {(2,0,0), (0,2,0), (0,0,2), (0,1,1), (1,0,1),
(1,1, O)}. According to Theorem 2, if II were completely p-glued for
some p, then it would be the p-gluing of TI and Tz, where dim( 7ZI'1) = 1
and dim(7ZT2) = 3 = dim(7ZT). Each two vectors in T are lin-
early independent. Therefore T1 has just one elemento From the def-
inition of p-gluing we conclude t hat this element cannot be any of
(2, O)O), (0,2\ O), (O~O, 2), since otherwise INrl n INrz = 0, Ry symrne-
try, we may assume that T1 = {(O, 1, 1)}. Easy computations show t
hat 7ZT1n 7ZTz = ~(O, L 1) and INI; n INTz = ~IN(O,2,2). Note that
lNI'2 i.s a complete intersection and therefore completely p-glued for
every p. But (0,2,2) = 2(0,1,1) therefore we conclude that II ie com-
pletelu p-olued only [or p = 2.

Example 3. Finally there are examples ol ioru: varieties that are not
completely p-olued [or any p > O. For example, let II be the toric variety
parametrized by Xl = tI: Xz = ~: X3 = t3, YI = t2t3, Y2 = tlt3, Y3 =
tltZ' Then T = {(2,0,0),(0,3,0),(0.0,5), (0,1,1), (1,0,1), (1,LO)}.
As in Example 2 one can argue in the following way: if \/ were p-glued
for some prime p, then the possible partitions for T would be TnlT21
or T12, T22 or T1?, T2?, where r; = {(O,1, 1)}, T12 = {(L O,In, T1? =
{(1, LO)} and T21, T22, T2.1 are - in the same order - their complements
with respect to T. Then we would have that 7ZI'11n 7ZTZ1= ~(O, 1, 1)
and INFll nINT21 = JN(O, 15, 15). This means that T is not the p-gluing
of TII, T21. For a similar reason T is not the p-gluing of TIZ, > TZ2 and of
TI3,Tz3, since 7ZT1Z n 7ZI'22= ~(1,0, 1), INT12 n INT22 = JN(lO, O,10),
7ZT13 n 7ZT23 = ~(l, 1, O) and INFl3 n INF23 = IN(6, 6, O). None of
15,10,6 is a power of a prime number, therefore we conclude that V is
not completely p-qiued [or any p.
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