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THE NONLINEAR TRANSMISSION PROBLEM WITH
TIME DEPENDENT COEFFICIENTS

Jaime Muiioz Rivera', Eugenio Cabanillas Lapa’? y Juan Bernui Barros?

ABSTRACT.- In this paper we consider the nonlinear transmission problem
Jfor the wave equation with time dependent coefficients and linear internal
damping. We prove global existence and exponential decay of solution.

The result is achieved by considering energy like - Lyapunov functionals and
suitable unique continuation theorem for the wave equation.

KEY WORDS.- Transmission problem, wave equation, global existence.

RESUMEN.- En este trabajo, consideramos el probletha de transmisién no
lineal para la ecuacién de onda con coeficientes dependientes del tiempo y
un damping lineal interno. Probamos la existencia global y el decaimiento
exponencial de la solucion. Los resultados son obtenidos por la considera-
cion de funcionales tipo Lyapunov y un adecuado teorema de continuacion
unica para la ecuacion de onda.

PALABRAS CLAVE.- Problema de transmisidn, ecuacion de la onda, exis-
tencia global.

1. INTRODUCTION

In this work, we consider the transmission problem

Py —bug + fi(w)=0 in ]0, Lo[x R* (1.1
pvy —(@(x, v, +av, + HL(v)=0 in ]Lo, L[ x R* (1.2)
u(0,0)=v(L,t), t>0 (1.3)
u(Ly, ) =Ly, 1), buy(Ly, 1) = ally, 1) vy Ly, 1) , >0 (1.4)
u(x,()):uo(x), 8, (x, 0)2ul(x), xE]O,LO[ (1.5)
v(x,0) =" (x),v,(x,0)=v'(x), xe]ly,L[ (1.6)

where p;, p, are differents constants; «, b are positive constants, f, g are nonlinear functions and

a(x, t) is a positive Controllability and Stability function. This transmission problem has been studied

by many authors (see for example J. L. Lions [7], J. Lagnese [5], W. Liu and G. Williams [8], J.
Mufioz Rivera and H. Portillo Oquendo [9], D. Andrade, L. H. Fatori and J. Mufioz Rivera [1]).
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All the authors above mentionated established their results with constant coefficients. In base
of our knowledge this is a first publication on transmission problem with time dependent coefficients

and nonlinear terms.

The goal of this work is to study the existence and uniqueness of global solutions of (1.1) - (1.6)
and the assymptotic behavior of the energy.

2. NOTATIONS AND STATEMENT OF RESULTS
We denote
(w, 2) = Lw(x) z(x) dx , |z|2 = L |2:()c)|2 dx

where =10, L[ or ] Ly, L[ for 4's and y's respectively. Now, we state the general hypotheses.

(A.1) The function £, e C'(R), i=1, 2, satisfies
szl ,; VEER
179)| sca+lsy™, vseRr, j=0,1

for some ¢ >0 and p >1.

()2 /)
F6)=[ f@ar, =12

(A.2) Assumptions on the coefficient a
a ewh>(0,0; C'([Ly, LD) n W30, 0; L (Ly, L))

a, € L' (0, 0; L* (Ly, L))
a(x,t)2ay >0, V(x,t) €Ly, L[ x ]0, ]

By V, we denote the Hilbert space
V= { (w, z) € H'(0, Ly) x H' (Lo, L): w(0) = z(L) = 0; w(Lg) = z(LO)}
By E, and E,, we denote the first order associated energy to each equation,
Bt =1 {alf ol +2 [ R0

L
E,(t,v)= %{le":lz +(a,vH+2 LOFz ) dx}

E()=E(t,u,v)=E(t,u)+ Ey(t,v).

We conclude this section with the following lemma which will play an essential role when
establishing the assymptotic behaviour.



Lema 2.1. Let E: R; — R be a non-increasing function and assume that there exists two

constants p >0 and c¢ >0 such that

+o0  ptl
E®* (t)dt<cE(s) , 0€s<+
5
then we have
e 18
E@)<cEO)(1+¢8) 7' forall t=0 if p>1
E(t) < cE0)e"™ forall t>0 if p=1

_where ¢ and w are positive constants.
Proof.

See reference [[2], Lema 9.1].
3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

First of all, we define the weak solutions of problem (1.1) - (1.6).
Definicion 3.1.- We say that the couple {u, v} is a solution of (1.1) - (1.6) when

{u,v} € [ (0, T;7) nWH® (0, T; 120, Lo) x L2 (Lo, L))

and satisfies
~p1 [0 () 0(x, 0) dx - ) Ifovl(x)w(x, 0)dv - py f [0 updde
~pa [y I vt +b ([ [ Quypodd + [ [0 fi ) gabsar
+ [y jfoa(x,r) vyt + jgjfofz(v) wdxdt + o jgjliwdxdfzo

for any  {o,u}eI®0,T;V)nWhH® (0,T; I2(0, Ly) x I*(Ly, L))  such  that
p(T)=0, y(T)=0.

In order to show the existence of strong solutions, we need a regularity result for the elliptic
system associated to the problem (1.1) - (1.6) whose proof can be obtained, with little modifications,
in the book by O.A. Ladyzhenskaya and N.N. Ural’seva ([3], theorem 16.2).

Lema 3.2. For any given functions F e I? (0, Ly), Ge I (Ly, L), there exists only one solution

{u, v} of

~bugy = F in 0, Ly[
—(a,(x, ) vy)y =G in 0, Lo[
u(0) = v(L)=0

u(Ly) = v(Ly) , buy (Lg) = alLy, 1) vy (Lg)



with t a fixed value in [O, T], satisfying

we H?(0, Ly) and ve H? Ly, L).

The existence result to the system (1.1) - (1.6) is summarized in the following theorem.

Teorema 3.3. Suppose that {uo, VO} eV, {HI, Vl} e I2(0, Ly) x I? (Lo, L) and that

assumptions (A.1) - (4.2) holds. Then there exists a unique weak solution of (1.1) - (1.6)
satisfying

{u,v} € C(0,T;¥)nCL(0, T; I (0, Ly) x I? (Ly, L)).

In addition, if {uo y VO} e 1?2 (0, Lg) x 12 Chos L) s {ul, vl} eV, verifying the compatibility

condition below

bul (Ly) = a(Ly. 0) 3 (Lo) 3.1
Then

2
{uvye | w5=0,T; B2, 1y) x H2 * (14, L))
k=0

Proof. The main idea is to use the Galerkin Method.

Let {{¢9i, Wi} wi=il, 2, } be a basis of V.

Let us consider the Galerkin approximation

{u””(:), vm(z)} = inj him(t){qoi, !/fi}
i=1

where " and " satisfy

Pl @)+ b, oh) + (A@™), o)) + o 0, w') + (ax, VT, wh)

+a( )+ (HO™),p) =0 (3.2)
where i =1, 2, ...
With initial data
{um ), v} = {u2 30} ; {u" @), v (0 = {u, v!) (3.3)

standard results about ordinary differential equations guarantee that there exists only one solution of

this system on some interval [ 0, Tm[. The priori estimate that follow imply that in fact 7,,, = + 0.

Weak solutions. Multiplying (3.2) by A/, (t) integrating by parts and summing over i, we get



d m .m m2 Ia,(t)le m
E;E(r,u ,V )+a|vr, STE(t’u ) (3.4)

Proof. From this inequality, the Gronwall’s inequality and taking account the definition of the initial

data of {um " Vm} we conclude that

E(t,u",v")<C, Vte[0,T], YmeN (3.5)

thus we deduce that
{um v} is bounded in 1% (0, T;7)
{u" v} is bounded in L (0, T3 I2(0, Lg) x I2(Zg, L))
wich imply that
{um ™} - {u,v} weakly * in I°(0,T; V)
{u" v} > {u,v) weakly = in 1°(0, T; 12(0, L) x I (g, L).
In particular, by application of the Lions - Lemma [ , theorem.5.1] we have {um : vm} 4E {u, v}

strongly in 12 (0, T; I2(0, Lg) x I (Lg, L)) and consequently

u™ — u a.e. in )0, Ly[ and /i) - fi(w) a.e in Jo, o[
v = v a.e in |Ly, [ and HO™) > f2(v) a.e in ]I, 1.

Besides, from the growth condition in (A.1) we have that
£1@™) is bounded in L°(0, T; I2(0, L))
£ (™) is bounded in L°(0, T3 [2(Ly, L))
and therefore.

LA™, O™} > (i@, A0} in 20,T; 120, L) x 12 (Ly, L).

The rest of the proof of the existence of a weak solution is matter of routine.

Regularity of solution: To get the regularity, we take a basis B = {{gpi , y;f } = N} such that
(10,9}, {ul, 91} & span {{0%, 60}, (o', 0]}

Let us differenciate the approximate equation and multiply by 4y, (£). Using a similar argument
as before we obtain
d 2 , ,
B Y+ abf = WM ) - (BT

- 1
—(atv;n . v;;t) + 5 (a4 ,(Vﬂ)z) (3.6)



where
P 5 b 2 ™ 2 . g
Ey(t,u,v)= ~—2—— |u”’ + 5|uxt| + 7 ’vﬂ| + 5 (a,ve)".
Note that
—(agvy s vin) = = (@vy s v + (v vie) + (ay, (V)’c?)z), 3.7

E5 (0, ™ ,v"™) is bounded, because of our choice of the basis.
From the assumption (A.1) and from the Sobolev imbedding we have

L
B oy aesc| (el ] el 68)
and similarly
.-
2
I;fi (vm)v[nvf?deC“g(l+‘v;"|) dx} v o (3.9)

Substituting (3.7), the inequalities (3.8) - (3.9), using the estimative (3.5) in (3.6) and applying
Gronwall inequality we conclude that

-

Esli sy il (3.10)
which imply that

{ul v} > {ug, v} weakly * in °(0, T; H'(0, Lo) x H'(Lg, L))
{ult v} > {uyg, vy} weakly * in 00, T; I2(0, L) x L2 (g, L)).

Therefore we have {u, v} satisfies (1.1) - (1.4) and we have

~buyy, = puy — fj(u) € (0, L)

—(a(x, )ve)y == pyvy - /o) — v € L2 (L., L)
u(Lly,t) =v(Ly,t), buy(Ly,t)=a(Lly,t) vy (Ly, 1)
u(0,0)=0=v(L, 1)

then using Lemma 3.2 we have the required regularity to {u, v}.
4. EXPONENTIAL DECAY
- In this section we prove that the solution of the system (1.1) - (1.6) decays exponentially as time goes

to infinity. In the remainder of this paper we denote by ¢ a positive constant which takes different
values in different places.

We shall suppose that p; < p, and a(x, ) <b, a/(x,1) <0, V(x, 1) € ]LO, L[x ]O, oo[.

Teorema 4.1. Take {uo, vo} eV and {ul,vl} e I? 0, Ly) % ik (Lo, L) with

ud(Ly) =0, (4.1)



then there exists positive constants y and c such that

t
E()<cE@0)e™” , Vt=0. (4.2)
We shall prove this theorem for strong solutions; our conclusion follows by standard

density arguments.
The dissipative property of system (1.1) - (1.6) is given by the following lemma.

Lema 4.2. The first order energy satisfies

d 2
EEI(r,u,v):—a|v,| +(a,,v£) (4.3)

Proof. Multiplying equation (1.1) by %, equation (1.2) by v, and performing an integration by parts,
we get the result.
Let w e Cg (0,L) besuchthat 7 =1 in 1Lo -8, Lo + 5[ for some & > 0, small constant.

Let us introduce the following functional
L L
1) = [,° prinqueds + [} pyviy qvyd

where g(x) = x.

Lema 4.3. There exists ¢; >0 such that
d , |
L1052 (o - p) P 0,0 + g, 0] 1- 2422 2 g, )
~Lo (Lo, 0) = Fa (Lo, ) = 5 [0 (o + b + 2P ()

1 (Ly+6 2 Ly 2 2 L 2 Ly 2
_Z'[Lo avxdx+cl(JLO+5(vf +avy) dx + _[Lov,a'x+ _[0 u“dx
L 2 J
+ vidx |+ eE(t,u,v
i 9

for any € >0,

Proof. Multiplying equation (1.1) by gu,, equation (1.2) by wqv,, integrating by parts and using

the corresponding boundary conditions we obtain

'g;(pa Ur, qux) = £2Q|:plul‘2(LO=t) + buJZC(LOJ t)] - LO‘FI (H(LO ,f)) -

% 30 o + bu? + 2K (wydx &4

2 (v waue) < 2 oo 20,0 + allo, 2 (Lo 0]+ LoF (v(Lo 1)
45
—% If§+5av§dx++c1[.[£o+5(v,2 ravdydr + jfﬂ(v,z +F2(v))dx:| (4:)



Summing up (4.4) with (4.5), we get

d
E!W—%[(m - o)V Lo, 1) +ally, ) v3Lg, 1) - bul Ly, )]
1
- Lo[R@Lo, ) - Fagy (1, )] - = J‘OLO(pluf- + bu? + 2F(u)) dx
1
-3 If: avxdx+c1(IL 5(": +av?) dx + ILO(vt + Fy (v)) dx (4.6)

" J()[ﬂF(u)dx)

According to (A.1), we have f;(0)=0 and

/i) < edlsl +1s17) (47
this implies
|Fi(s)| <e (|s|2 + |s|p+1) < c(|.s"|2 +s1%# ) (4.8)
From the interpolation inequality '
<hg e, 12,122 seo,

and the immersion f7! (Q) - sz(Q), Q= ]0, LO[ or ]LO, L[, we obtain for all ¢ = 0
p-1

20-1
1) 'ux (t)|2 A 3

55 < ce (EOPCuef; + by

considering that
’ux (f)li <cE(0,u,v)=cE(0)
we have

2 2(p-1 2
uly? < ¢, [EO)] CV@) + eE(t, u, v). (4.9)
Replacing the inequalities (4.7) - (4.9) in (4.6) our conclusion follows.

Let p € C* (R) anonnegative function suchthat ¢ =0 in /5, = ]LO s Dy + [ and ¢ =1
in R\/; and consider the functional
L
J(t) = j PV pvdx.
£
We have the following lemma
Lemma 4.4. Given ¢ > 0, there exists a positive constant c, such that

Ly+o

d Libt .y by 4
Eth(t)SﬁHZ- ILU+5avx dx + & J.LD avidx+cg J.Lo(v +v; ) dx



Proof. Multiplying equation (1.2) by @v and integrating by parts we get

d
= O =@, ov) = (av,, @.v) —a (v, 99) = (9. LOW) + (v, ov).

Applying Young’s Inequality and hypothesis (A.1) we concludes our assertion.

Let us consider the following functional

K@O)=I()+Q2e+1)J@)

and we take ¢ = g in lemma 4.4, where &, is the solution of the equation

1

taking in consideration (A.1) in lemma 4.3 we obtain

d 1Ly
=K < ~E(t,0)— Lu(avx +2F, (v)) dx + £E(t, u, v) +

+ Cy ( J: o2 +v¥)dx + J-OLuuzdx). (329

Now in order to estimate the last two terms of (4.10) we need the following result

Lema 4.5. Let {u, v} be a solution in theorem 3.3. Then there exists Ty>0 such that if T > T
we have

IST(|VIZ - |u[2) ds < SI:_LT(E’,“xlz + lu,fz) dsa Lrlalfzvx st}

+c lvzds )
e J I

for any >0 and c, is a constant depending on T and &, by independent of {u, v}, for any

initial data {HO,VO}, {MI,VI} satisfying E0,u,v)<R, where R>0 is fixed and
O<S<T <+o0,

Proof. We use a contradiction method. If (4.11) was false there would exist a sequence of solutions

{u" ; vv} such that

L’iﬂ(lvvl2 + ,uvlz) ds=v Li|vfl2 ds + ¢ I:(b

and E(0,u",v')<R, Vv.

2 2 2
u;’ +|u,| 4—'.511/21)x )ds




10

Let

A2 = I;(Ivvlz + |u"|2)ds

v f v
wv(x,t):-u—(x’—l , z"(x,t):v(x’z) s DgEL T,
A,
Then we have
T .2 T 2 2 2
v [ s e | (82 + wif +]a"222 ) ds <1
5 s

and consequently

Ty 2
le}’l ds—>0 as vo> o
s

J.

Also we have

W

(4.12)

;’2+ wf2+'a1"22;2)d5£c. (4.13)
g

J.S (lzvl2 +'wv|2)ds=] (4.14)

As S is chosen in the interval [0, T[ , we obtain from (4.12) - (4.13) that, there exists a

subsequence {wv ,Zv} which we denote in the same way, such that

v
w

From which

This implies

— w in I[*(0,T; H (0,L,))
L 7LD
20, T; H' (Ly, L))

Ty T (Lo B,

— w, in
—>w in 20, T; 20, Ly))
—z in I20,T; I*(Ly, L)).

ﬂ"(lzl2 +1wl?) ds =1. (4.15)

Besides, from the uniqueness of the limit we conclude that

and therefore

z,(x,00=0

z(x,t) = p(x) (4.16)
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Note that {Wv ] Zv} satisfies

pwy — bwy, +—;—;—ﬂ(2.vwv):0 in ]0, L [x]0,T|

Pz —(alx, Dz;), +%f2(2vz")+az;’ =0 in ][O,L[x ]0, T[

w0, =0=2"(51
w' (Lo, 1) =2"(Ly, 1) (4.17)
bW’ (Ly, 1) = a(ly, L) 22 (Ly, 1)

10 (x)

W (x,0) =—=, W (x,0) ol uvfl(x)

2’ (x,0) =% vwO(x), 2 (x,0) :i—vv’l(x).

Now, we observe that {ﬂv}vél is a bounded sequence

<[ [T +lof) ds}l” < [

< cE(0,u,v)<cR, R fixed.

2

v

Vx

v
uJ(

-+

2) dsT2

because the initial data are in the ball B(&, R).

Hence, ther exists a subsequence of {’lv}vzr (still denoted by (4,)) such that

A, = A€]0, +oo].

In this case passing to limit in (4.17) when v — o« we get for {w, z}

PiWy — bwy, +-}i-ﬁ(lw):0 in ]0, Ly [ x ]O,T[

(a(x,t)zx)x+-i—f2(/”tz)=0 in JLy,L[x ]0,T]
w(0,)=0=z(L,1t)

w(ly, 1) =2(Ly, 1)

bw, (Ly, 1) =a(Ly, L) z,(Ly, )

(%, 0) =10 in ]ZLo,L[x ]0,T]

(4.18)

and for y = w,

Py — by + FOW)y =0 in ]0,L[x]0, T
y(0,0)=0=y(Ly, 1) (4.19)
by, (Ly,t)=aq (L, 1) z,(Ly, 1)



Here, we observe that

Wy (Ly,0) _ 4Ly, 1)
w(Lo.t)  a(ly, )

then we get after an integration
wy(Ly,t)=ka(Ly,t), k is a constant.

But, using the hypotheses we obtain

0= lino1+ w,(Ly,t) =k a (Ly, 0).
{—

Consequently £ =0 and y, (L, t) = 0.

Thus, the function y satisfies

PV _byxx + f'(;"w)y=0 in ]O, LD[X](),T[
y(0,0)=0=y(Ly, 1) on ]0,7[ . 4.19)
Y:(Lp, 1) =0 on ]0,T].

Here, we observe that

Wy, (Lo, 1) _ a,(Ly, 1)
wx(LO ] t) a(LO: t)

then we get after an integration
w, (Ly,t) =k a(Ly,t), kisa constant,

But, using the hypotheses we obtain

0= lim w,(Ly,t)=k a(ly,0).
= 0*

Consequently £ =0 and y, (L, t)=0.

Thus, the function y satisfies

Py — by + f(Aw)y=0 in ]0, L[ x ]0, T
y(0,8)=0=y(Ly, ) on ]0,7]
Ve (Ly, 1) =0 on ]o,7[.



Then, using the result of [[4]] (based on Ruiz arguments [[10]]) adapted to our case we conclude that
y =0, thatis w, (x, t) = 0, for T"suitable big.
Returning to (4.18) we obtain the following elliptic system
- bw,, +%f1(}i.w):0
1
(a(x,0)z,), + = S (A2) =0

multiplying by u and v respectively, integrating, and summing up we arrive at
Ly L 1 ko 1 L
b [ “wiax+ [ a(e0 Zds+— [ " fiaw w4 — [ fo(42) zde =0
0 x L, ( )zx 1 do fi( w)wx 1 Lon( Z)Z

So we have w = 0and z =0, wich contradicts (4.15).
If we are not in the above situation and there exists a subsequence satisfying

A, =0

and applying inequality (4.10) to the solutions { u’, Vv} we have

d

= K'(t) < -8E(t, u”,v") + c5 { _L:((v;’)z + (V")) dx + J.OL"(u”f de,

integrating from s to 7" we get

T L 2 2 2
K*(T) + &, J'S E(t,u",VV)a’tsK(S)Jrq[J.S(Iv;’l ot B sl )Ja’t.

Since KV satisfies

coE(t,u” V)< K (T) < qE(t, u*,v")
and E is a decreasing function we have
v T c (7
ET,u" V') +6) L E(t,u",v”)dts?j EQ,u’,v')di +
; S
T 2 2 2
ve [+ o) s
S

thus, we obtain

v v Ci 3 v v 4 ¥ 2 v 2 1 2
ET,w,z )+ 567}— J-SE(t,w,z)dtSq IS ’z,’ +|z' +|w| dt.
Using (4.12) and (4.14), taking T large enough, we conclude that E(T,w",z") is bounded. Now,

multiplying equation (4.17),, (4.17), by w, and z} respectively, performing an integration by parts we
get

13
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v v v v r v2 L vy2
E@w, ) <E@w, ) +a [ 3] a- [ (a, )

From (4.12) and (4.13) we deduce that E(¢, w", z*) is bounded for all e [S, T].
Then in particular, on a subsequence we obtain

w” > w weak *in L”(0,7; H'(0, L))
w, — w, weak *in L*(0,T; L*(0, L))
z' -z weakx*in L”(0,T; H'(Ly, L))
z) =z, weak *in L°(0,T; I*(L,y, L))
w' - w in I?(0,T; I2(0, Ly))
2 -z in Z2(0,T; I*(Ly, L))

Now, the limit funtion {w, z} satisfies

Py —bwy + 0 w=0 in ]0,Ly[x ]0, T
(a(x,8)z,), + f3(0) z=0 in |Ly,L[x |0, T
w(0,8) =0=2z(L, 1)

w(Ly,t)=2(Ly,1)

bw, Lo, ) =ally, L)z, (Los D)

z,(x,0)=0 in |L,L[x ]0,T|

Repeating the above procedure, we get w =0 and z = 0 which is a contradiction.
The proof of lemma 4.5 is now complete.

Proof of theorem 4.1.
Let us introduce the functional

L) =N E@®)+K()

with N > 0. Using Young’s Inequality and taking N large enough we find that
GEM)<L()<GE®) (4.20)

for some positive constants ¢, and .

Applying the inequalities (4.9) and (4.20), along with the ones in Lemma 4.5 and integrating
from Sto 7 where 0 < § <7 < we obtain

_":E(r) dt < cE(S).

In this condition, lemma 2.1 implies that
E()<cE0)e™,

this completes the proof.
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