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EL PROBLEMA DE TRANSMISIÓN CON
COEFICIENTES DEPENDIENTES DEL
TIEMPO CON AMORTIGUAMIENTO

INTERNO NO LINEAL

E. Cabanillas L.l & B. Godoy T.l & J. Bernui B.l

Resumen.- En este artículo consideramos el problema no lineal de trans-
misión para una ecuación de onda con coeficientes dependientes del tiempo y
amortiguamiento interno no lineal. Se prueba la existencia global y se estudia
propiedades de decaimiento de las soluciones. El resultado se alcanza usando
técnicas de multiplicado res y el teorema continuación única conveniente para
una ecuación de onda.
Palabras claves: Problema de transmisión, coeficientes dependientes del
tiempo, estabilidad.

THE TRANSMISSION PROBLEM WITH
TIME DEPENDENT COEFFICIENTS WITH

NONLINEAR INTERNAL DAMPING

Abstract.- In this paper we consider the nonlinear transmission problem
for the wave equation with time dependent coefficients and nonlinear inter-
nal damping. We prove global existence and study decay properties of the
solutions. The result is achieved by using the multiplier technique and suitable
unique continuation theorem for the wave equation.
Key words: Transmission Problem, time dependent coefficients, stability.

1. Introduction

In this work, we consider the transmission problem

PIUtt - (b(x, t)u:zJx + f¡(u) = O in ]0, Lo[ x jR+

P2Vtt - (a(x, t)vx)x + g(Vt) + h(v) = O in ]Lo, L[ x jR+

u(O, t) = v(L, t) = O, t > O

u(Lo, t) = v(Lo, t), b(Lo, t)ux(Lo, t) = a(Lo, t)vx(Lo, t), i » O

u(x, O) = uO(x), Ut(x, o) = u1(x), X E ]0, Lo[

v(x, O) = vO(x), Vt(x, o) = v1(x), X E ]Lo, L[
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where Pl, P2, are different constants, fr, 12, 9 are nonlinear functions and a(x, t), b(x, t)

are positive functions. Controllability and Stability for transmission problem has been

studied by many authors (see for example J. L. Lions [9], J. Lagnese [7], W. Liu and G.

Williams [10], J. Muñoz Rivera and H. Portillo Oquendo [11]' D. Andrade, L. H. Fatori

and J. Muñoz Rivera [1]). E. Cabanillas L and J. Muñoz Rivera [2] considered the problem

(1.1) - (1.6) with b(x, t) = b > ° and g(s) = as.

The goal of this work is to study the existence and uniqueness of global solutions of

(1.1) - (1.6) and the asymptotic behavior of the energy.

In general, the dependence on spatial and time variables of the coefficients causes diffi-

culties, semigroups arguments are not suitable for finding solutions to (1.1)-(1.6); therefore,

we make use of a Galerkin's process. Note that the timedependent coefficients also appear

in the second boundary condition, thus there are some technical difficulties that we need

to overcome. To prove the decay rates, the main difficulty is that the dissipation only

works in [Lo, L] and we need to estimate over the whole domain [O, L]; we overcome this

problem introducing suitable multipliers and a compactnessjuniqueness argumento

2. Notations and Preliminaries

We denote

(w, z) =1w(x)z(x)dx, Izl2 ~ llz(x)12 dx

where 1 = ]0, La[ or ]La, L[ for u's and v's respectively. Now, we state the general

hypotheses.

(A.1) The function fi E el (IR), i = 1, 2, satisfy

fi(s)s 2: 0, Vs E IR

!fF)(s)! < c(l + Isl)P-j, Vs E IR, j = 0,1

for some e > ° and P 2: 1.

fr(s) 2: 12(s)

Fi(S) = ¡S fi(~)d~, i = 1,2
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(A.2) Assumptions on the coefficient a

b, aE Wl,OO(a, 00; el(I)) n W2,OO(0, 00; Loo(I))

bt, at E Ll(O, 00; Loo(I))

b(x, t) 2: bo > 0, a(x, t) 2: ao > 0, V(x, t) E 1 x ]0, oo[

(A.3) Let 9 : lR ~ lR be a nondecreasing el function such that

g(8).8 > 0, for all 8 =1= °
and there exist Ci > 0, i = 1,2,3,4 such that

where p 2: 1

By V we denote the Hilbert space

v = {(w, z) E Hl(O, Lo) x n'iu; L) : w(O) = z(L) = O; w(Lo) = z(Lo)}

By El and E2 we denote the first order energy associated to each equation,

~ {Pl IUtl2 + (b, u;) + 21LO

F1(u)dx }

Hp"v,,' + (a, v;) + 2f F,(V)dX}

El(t, u, v) = El(t, u) + E2(t, v).

We conclude this section with the following lemma which will play essential role when

establishing the asymptotic behavior.

Lemma 2.1 Let E : lRt ~ lRt be a non-increasing function and assume that there exists

two constants p > ° and e > ° such that

{+OO +1l, ET(t)dt::; CE(8) , u< 8 < +00
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then we have

2
E(t) < cE(O)(l -+-t)-P-l , for all t.> O ifp > 1

E(t) < cE(O)e1-wt, for all t "2 O if P = 1

where e and w are positive constants.

Proof. See reference [[4JLema 9.1J.

3. Existence and Uniqueness of solutions

First of all, we define what we will understand ofweak solutions ofproblem (1.1) - (1.6).

Definición 3.1 We say that the couple {u, v} is a weak solution of (1.1) - (1.6) when

and satisfies

¡Lo ¡LO jL
- Pl u1(x)ip(x, O)dx + Pl UO(x)ipt(x, O)dx - P2 VI (x)'Ij;(x, O)dx

° ° Lo
jL ¡T¡LO+ P2 VO(x)'Ij;t (x, O)dx + Pl (Uiptt + b(x, t)uxipx + fl(U)ip)dxdt
~ ° °

+ P2 {T jL (v'lj;tt + a(x, t)vx'lj;x + g(Vt)'Ij; + h(v)'Ij;)dxdt = Olo Lo
for any {ip, 'ljJ} E C2(O, T; V) such that ip(T) = ipt(T) = O = 'Ij;(T) = 'lj;t(T)

In order to show the existence of strong solutions we need a regularity result for

the elliptic system associated to the problem (1.1) - (1.6) whose proof can be obtained,

with little modifications, in the book by O.A. Ladyzhenskaya and N. N. Ural'tseva; ([5],

theorem 16.2).
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Lema 3.2 Por any given functions F E L2(O, Lo), G E L2(Lo, L), there exists only one

solution {u, v} of

-(b(x, t)vx)x F in ]0, Lo[

-(a(x, t)vx)x - G in ]Lo, L[

u(O, t) v(L, t) = O

u(Lo, t) v(Lo, t), b(Lo, t)ux(Lo) = a(Lo, t)vx(Lo)

with t a fixed value in [O, T] satisfying

The existence result to the system (1.1) - (1.6) is summarized in the following theorem.

Theorem 3.3 Suppose that {uO,vO} E V, {U1,V1} E L2(O,Lo) x L2(Lo,L) and that

assumptions (A.l) - (A.3) hold. Then there exists a unique weak solutiont of (1.1) - (1.6)

satisfying

In addition, if {UO, VO} E H2(O, Lo) x H2(Lo,L), {U1,V1} E V, verifying the compati-

bility condition below

Then
2

{u,v} En Wk,OO(O,T,H2-k(O, Lo) x H2-k(Lo,L))
k=O

Proof. The main idea is to use the Galerkin Method.



6

4. Main Result: Exponential Decay.

In this section we prove that the solution of the system (1.1) - (1.6) decay exponentially

as time ~Ges tu iañmty. ln the remainder of this paper we denote by e a positiva constant

which takes different values in different places. We shall suppose that Pl ::; P2 and

b(x, t) b > 0, V(x, t) E ]0, Lo[ x ]0, oo]

a(x, t) < b, at(x, t) ::;O, V(x, t) E ]Lo, L[ x ]0, oo]

,ax(x, t) < i(i)

u~(Lo) = °
then there exisis positive constants ry and e suchthat

E(t) < cE(O)e-¡t , Vt 2:: O.

We shall prove this theorem for strong solutions; our conclusion follow by standard

density arguments.

The dissipative property of system (1.1) - (1.6) is given by the following lemma.

Lemma 4.2. The first arder energy satisfies

Proof. Multiplying equation (1.1) by Ut, equation (1.2) by Vt and performing an integra-

tion by parts we get the resulto

Let'l/J E CoCO, L) be such that 'IjJ = 1 in ]Lo - 5, Lo + 5[ for some 5> O,small constant.
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Let us introduce the following functional

where q(x) = x.

Lemma 4.3. There exists el > O sueh that

[or any E> O.

Proof. Multiplying equation (1.1) by quX) equation (1.2) by 'ljJqvx integrating by parts

and using the corresponding boundary conditions we obtain the lemma.

Let rp E COO(IR) a nonnegative function such that rp = O in h/2 = ]Lo - ~) Lo + ~[ and
ip = 1 in IR \ le, and consider the functional

We have the following lemma

Lemma 4.4. Given f > O, there exists a positive eonstant e, sueh that

Let us consider the following functional

K(t) = l(t) + (2e1 + l)J(t)
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and we take E = El in lemma 4.4, where El is the solution of the equation

taking in consideration (A.1) in lemma 4.3 we obtain

Now in order to estimate the last two terms of (4.1) we need the following result

Lemma 4.5. Let {u, v} be a solution in theorem 3.3 Then there exists To > O such that

ifT ~ To we have

for any E > O and Cf is a constant depending on T and E, by independent of {u, v}, for

any initial data {uO,vO}, {ul,vl} sattsfying E(O,u,v) :::;R, where R > Ois fixed and

O < S < T < +00.

Proof. We use a contradiction method. (to see [3].)

Proof of theorem 4.1 Let us introduce the functional

L(t) = N E(t) + K(t)

with N> O. Using Young's Inequality and taking N large enough we find that

(4.2)

for some positive constants eo and el'
Applying the inequalities (4.1) and (4.2), along with the ones in Lemma 4.5 and

integrating from S to T where O :::;S :::;T < 00 we obtain

lsT E(t)dt S cE(S).
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In this condition, lemma 2.1 implies that

E(t) < cE(O)e-rt

this completes the proof.

5. Polynomial Decay.

In this section we study the asymptotic behavior of the solutious of system (1.1) -

(1.6) when the function g(s) is non-linear in a neighborhood to zero like sP with p > 1.

In this case we shall prove that the solution decays like (1 + t)-2(P-l).

Theorem 5.1 With the hypotheses in theorem 4.1 and p. > 1 the weak solution decays

polynomially, i. e.

E(t) = CE(O)(l + tt2/(P-l), Vt ~ O

Proof. From (A.3) and making use of Hólder's inequality, theorem follows.

Remark. If we consider, in (1.2), a linear localized dissipation a = a(x) E C2(]Lo, L[),

a(x) = 1 in]Lo,Lo+8[, a(x) = O in ]Lo+28,L[ our situation is very delicate and we

need a new unique continuation theorem for the wave equation with variable coefficients.

This is in preparation by the authors. .
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