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SOLUCIONES DE UN SISTEMA HIPERBOLICO
NO LINEAL CON INCLUSION DE FRONTERA

DIFERENCIABLE Y AMORTIGUAMIENTO
DE SEGUNDO ORDEN SOBRE LA FRONTERA

Alfonso Pérez Salvatierra' Victoriano Yauri Luque®
Zoraida J. Huamdn Gutierrez’  Féliz Pariona Vilca®

Resumen.- En este articulo estudiamos la ezistencia de soluciones genera-
lizadas para un sistema hiperbdlico no lineal con términos discontinuos multi-
valuados y términos de amortiguamiento de sequndo orden en la frontera.

Palabras claves: Sistemas hiperbdlicos no lineales, inclusion diferenciable,
amortiguamiento en la frontera, Faedo-Galerkin.

ON THE SOLUTIONS OF A HYPERBOLIC NONLINEAR
SYSTEM WITH BOUNDARY DIFFERENTIAL

INCLUSION AND NONLINEAR SECOND ORDER
DAMPING OVER THE BOUNDARY

Abstract.- In this paper we study the existence of generalized solutions for a
hyperbolic nonlinear system with a discontinuous multi-valued term and non
linear second-order damping terms on the boundary.

Key words: Hyperbolic nonlinear system, differential inclusion, boundary
Damping, Faedo-Galerkin.

1. Introduction

The main purpose of this paper is to investigate the initial boundary value problem

for a hyperbolic nonlinear system with differential inclusion on the boundary.

u —Au — M (HVuHQ) Au+ud=f in (z,t) e@=Qx(0,T)
u(z,0) =u'(2,0) =0 inz e
(1.1) |u=0 on Xg =TIy x(0,7T)
2 M (|Vul?) & + K(up' + Py +E=0 on T, =T, x (0,T)
E(z,t) € p(u'(z,t)) a.e. (z,t) eX; =T; x(0,7)
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Where §) is a bounded open set of R” (n > 3) with sufficiently smooth boundary
[' = 9Q such that I' = TyUI';, ToNT; = @ and Ty, I'; have positive measures, p € (1, +00),
M (s) is a C* class such that M(s) > mg > 0 for some constant mg, K (s) is a continuously
differentiable positive function Vu = _n g%f‘, Vul?® = i fg|§f;|2dx, v, is the outward
unit normal vector on I', ¢ is a discorit:ilnuous and nonlizgéar set valued mapping and T'
is a positive real number, u® is a nonlinear term. The precise hypotilesis on the above
system will be given in the next section. '

The background of these problems is in physics, especially in solid mechanics, where
non-monotone and multi-valued constitutive laws lead to differential inclusion. For a brief
account of the works on such variational inequalities we refer the reader to [3,4,5]. Moti-
vated the results of [1], in this paper we study the existence of solutions of the variational
inequalities (1.1). It is important to observe that as far as we are concerned it has never
been considered differential inclusion acting on the boundary in the literature. The plan
of this paper is as follow. In section 2, the assumptions and the main results are given.

In section 3, the existence of a solution to problem (1.1) is proved.

2. Assumptions and main results

Throughout this paper we denote

H (Q)={ue H (Q); u=0on o} (u,v) = fu(:r,)v(z)dw)
!
1/p
(o), = [ u(ay(a)r lullr, = | [ fute)Par
' 1
For simplicity, we denote ||ul|;2(qy and |||y, by ||| and ||-[|r, respectively. We for-

mulate the following assumptions:

(A1) K(s) is a continuous real function satisfying the conditions

(2.2) 0 < |K ()77 < Ky (1+ K(s))

For some Ky, K1, K3 >0
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(A2) b:R — R is a locally bounded function satisfying
(2.3) [b(s)] < p1(1+]s]); Vs R

for some p; > 0.

The multi-valued function ¢ : R — R is obtained by filling in jumps of a function

b: R — R by means of the functions QE,EE, b, b:R — R as follows:

belt) = eseinf{b(s)} be = ﬁsf;?p{b(s)}
b(t) = lim b.(t), b(t) = lim be(t),p(t) = [b(t), b(t)]

We shall use the regularization for b defined by
+00
AR m/ b(t — 7)p(mT)dr

1

Where p € C§°((—-1,1)), p = 0 and f p(t)=1.
-1

Remark 2.1 It is easy to show that b™ is continuous for all m € R and that b,, b, b, b,
b™ satisfy condition (A2) with a possibly different constant when b satisfies (A2).

Definition: A function u(z,t) such that

u € L*(0,T; Hy ()
u € L*(0,T; H; ()N L™ (0,T; I"* (T'w))
u € L2(0,T; Hy () N L2 (Ty)

Is a generalized solution to (1.1) if exists = € L% (0,7T; L?(T';)) and for any functions
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veW = H; (Q)NLP2(T)) and ¥ € CH0,T) with (T) = 0 the relations hold:

/0’ (u",v) + (Vu, V) + M (|| Vul®) (Vu, Vo) +

/

o + (Ju'|Pu’ — K (uw)(u)? + 5, @)1“1} P(t)dt—
| |+ f (K, o), ()dt+

+f0 (ua(t),u”(t))@b(t)xf (f,v)y(t)dt

!

(2.5) Z(z,t) € p(uz,t)) ae. (x,t) €L,

Now we are in the position to state our existence result.

Theorem: Assume que (A1) and (A2) hold and f € L? (0,7 H1(f2)). Then, for all

T > 0 there exist a generalized solution to problem (1.1).

3. Proof of the main theorem

In this section we are going to show the existence of solution for problem (1.1) using
the Faefo-Galenkin’s approximation. For this, we represent ‘by {w,} j>1 & base in
W = H,(Q) N LP*2(Ty). Let Wy, = ({wy, wa, ..., wy}) subspace generate by the m first
vectors of the base.

We consider un,(t) = 3 gim(t)w; the solution of the problem approaching of Cauchy:
=1

(p (), wy) + (Vu;n, Vw;) + M (|[Vum|?) (Vim, Vw;) +

(3.1) " ! ! ]
(K(um)um + |’u’m|pum <+ bm(u’m): wj)pl + (ufmwj) = (f t): wj); ij € W

(3.2) Um(0) = Uy, (0) =0

By the theorem of Caratheodory, the, approximate system (3.1) and (3.2) has solutions
Um(t) in [0,¢,), to see [6].
The extension of these solutions to the whole interval [0,7] is a consequence of the

priori estimate which we are going to prove below.
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STEP 1: A PRIORI ESTIMATE

Multiplying (3.1) by g}m(t) and summing from j = 1 to j = m, and definition of u,,,

we get.

(2, (8), Uy (8) + (Vi (£), Vit (£)) + M (| Vit (8)[2) (Vi (£), Vit (£)) +
(K (ttn (£) )y (£) + [t (6) [P (&) + D™ (U (£), U ) )1y + (W (£), U (£)) = (F(2), 2p (2))

From where we obtain

2dt{” O + T UTun ) / K (tm (2, )t (3, t))?dr+§|1um(t>||i}+
P+2
/bm( (1)) (2, )T + |Vt 8 H + e 0+
I
+ 3 [ B (o, 0) (2,0 = (£0),0(0)
I

Where M (s [ M (r)dr.

Therefore, integrating over (0,¢) and u,,(0) = u,,(0) =0,

% {”u;n(t)HQ + T Vun(®)?) + % ot (8)]

/K(um(as,t))(u;n(:c,t))zdf}+ft v (S)H:"d
(3.3) & pH
i u, (s o ds—l—/ /bm U, (z, 8))u,,(z, s)dl'ds—

o [ [ K e s = /Ot(f(S):u;n(S))dS
4L
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For the condition of (A2) we have

[eminn]],, = [0 unta onyar
< [ a1+ uy (2, 1))%d0
(3.4) I{ N t

< 2¢4 fcl(l + |u, (z,t)[>)dT
N1
) 2
< e+ 2¢ H’u.m(t)H
N}

From (3.4) and by the Holder’s inequality

(0™ (U (5), U (5)) )y s

; AT 5 12 o ot g 1/2

< ([l #) " ([ 1ol »)

(3.5) s (/t(c2—§-2c1 D)4 H )1?2 (/OtHu;n(s)Hil ds)l/z
<c3 (1 +/ ” ‘ ds)

Let us observe that, by Young’s inequality

[0

/0 /|um s 12 |Um s)[P — e}um 3)113 "C(E)|K'(um(3))|§gi} dTds

p+2

/ mam@wWﬁ}@z

p+2.T1
(3.6)

Also we notice that,

31 [l < [P+ [ )]



From (3.5), (3.6), (3.7) and for € = £ we obtain

% {H“iw(t)!k TV + 5 im0+ f o (um(t))(u;n(t))ﬂdr} +

t i 2 1 2 . £
+f | ds+§/ /!um(3)|p+2dfds
(3.8) 0 ° 1

< [/ [ a1 (e

<es (1 —:1/;”1&;1(5) il ds) + /; £ ()| ds + /Ot Hu’w,w(s)H2 ds

Vi, (s)

On the other hand, we observe that:
K(u) > cp(1 + K(u)) where 2¢o = min{1, Ko}
from where

(3.9) fluin(t)|2lK(um(t))ldF > co / [t ()L + K (m(t))|dT

r,

Also, from (2.2)
|K'(s)[P_, < Ka(1+ K(s))

Then

e(e) / / (2, )| K (i, £))| 2T dT'ds <

(3.10) B

< (K> / / i, (%, 8)[2[1 + K (um(z, 5))|dTds
J14 ]"‘1
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From (3.9) and (3.10) majority to right and left in (3.8)

1

+cof el ()12 [1 + K (um(t))] dr}+/ot iiVu;n(s)szs+
o (s)” ds <

1 t
+ s
2 /o pt2,T;

(311 < c/t / |u;n($, 821 + K (um(z, s))] dlds+
0
Iy

¢ t
+c3 (1+/O /[u;l(z,s)lz)dfds) -+—/0 I F(8)|| ds+
T

i
+] lu,.,(s)[%ds; ¢ = c(e) + K,
0

Eju;"(t)HQ + M([|Vum(®)]*) + % lum(E)]2 +

p+2

Let us define,

’

U,

" FTunOIF) + 5 01} +

s0-3{

+¢o / lu, (£)]2[1 + K (up(t))]dl
I'

then, of (3.11) definition of E,, we obtain

En(t) < ¢4 (1 + /D t Em(s)ds)

Thus, by Gronwall’s lemma, we conclude that
(3.12) En(t) <cs; VE€[0,T]

From (3.11) and (3.12) it is obtained V¢ € [0, T']

t

(3.13) /
0

By imbedding theorem and from (3.13) we have

(3.14) fot Hu’m(s)”Q ds < cg

2
al'< é:

Vu;n(s)szs = B /”u;n(t)

I
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Furthermore, from (3.4) y (3.14) we obtain

2
l

I,

dSSCg

(3.15) f 67wl (5)

Since M([|Vim(t)[*) 2 mo ||V (1)1, by (3.12)

(3.16) Hvum(f)||2 < ¢
Similarly from (3.12) we obtain

(3.17) llum (£)][§ < €1
From (3.17) we can say

(3.18) (um) is bounded in L*(0, T; L*(Q))

Applying the theorem of Aubin-Lions By = H;(R2), B = By = L*(Q2) and py = 2 = py,

we can obtain a denoted subsuccesion in the same way
(3.19) ud —ud ae in Q
From (3.18) we conclude that (u?,) is bounded in L*?(Q) of where

ud, — u® weak in LY3(Q) = [LY(Q)], ie.,

(3.20) /(u w; ) dt—+/ w®, w;)(t)dt, ¥ € C1(0,T)

Multiplying (3.1) by g;-'m(t) and summing from 7 = 1 to j = m and definition from

Um(t), we have

in @]+ 3 2 [P+ MOITn () 2 (Trtn(8), T ()
+ M(TumOI) [T )]+ B a0 0 D), + ] K () i (1) T+




Integrating this equality over (0, )

(3.21)

[l o3 [lofo

+ / M (90 (5) ) (i 1) ( s~

0

+‘/0 M ([ V()] >|lwm(t>\i ds+

+f0t / K(Um(s))(“;(s))gdl’ds—}-/Dtrf b™ (u, (z,5), u. (z,s))dds+

&
HP+2

1
H ds+
p }t— ds p+2,T

p+2

of /11 x, 8)u JSdee-—/ffxsd:cds
0
Q

Note that, from

t i - " 2
/ /K(um(;ﬂ,s))(um(m, 5))*dlds > K0/ u,($)l|  ds
Ty
0 8 0
On the other hand, we note what
1 \ pt2 i ||p+2
H | ds-::———lum £)|

p+2 ds Hp +2.Ty n+ 2 ‘0-1—2.[11

and

/O MVt (3) ) (Pt (1), Dty (1)) = M (Tt (8]2) (Tt (1), Tt (1))~

2 [ 3 (V5 )(Ttn(5). Vi (5)d



Next, this in (3.21)

[ e ds + 5 [wuto] +
M9 0) ) (Pt £, Vi 1)~
2AANMMMMﬁmeLW%MV%+

Kgf(; Upy (S) ii p11L2 ‘
< ] MV un(3)]) [ Vil (5)| ds-

f ! ol s e

// (z, s)u( a:sdacds—r//f:r:s

By Young’s inequality, and immersion H}(Q) — L*(Q):.

t
—/ /bm(u;(m,s))u;(m,s)dfds %
0 £ t

@ [ [ertintep|] as+e [

+/ ul (z,8)u, (, )dmds <

<c/ T s)llHlds—l-c/ e
/ff:cs (z,s)dzds <

\SG/DJ 9| ds+c()fuf( )| ds

From (3.23) in (3.22) we have

[l ozl « |

+2 “H
/ M [V (8)|2) (Vi (), Vi (5))?ds+

?
/M(HVum ) ||V ” db-i—C(E)/
+e/0‘lt ‘u:n(s) !F1 ds—i—clg—l-e/ J

p+2
=
p+2,I1

’

ds + Hum_(t

(3.22)

0™ (u

"

Unn (8)

|

0

(3.23)

3= ar = — M|V ()) (Vum(t

(3.24)

Since ¢ is arbitrary and M(s) is a C! function and from (3.13)

2
1"
U, \8
m( ) I

B ()|

21

(z,s)dzds

2
ds—
'

dS < C19

ds+

), Vit (£))+

ds+

|| ds + c(e) / 17 ()II% ds

= (3.16), (3.24), we
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conclude that

[

Just mow, from (3.13) — (3.16) and (3.24), taking into consideration that u|r, = 0, we

4 p+2

S

u:n(s)’} ds + } Vu, 1‘

¥ ds + Hu;n(t)

< ¢13
p+2,I

obtain

U )is bounded inL*(0, T; H,(9))

/

u,,)is bounded inL*(0, T; Hy(2)) N L*°(0, T; LF(I"y))

K

(
(
(., )is bounded inL>(0, T; LX) n L3(Ty))
(

bm(u ))is bounded inL*(0, T; L*(T'y))

STEP 2: PASSAGE TO THE LIMIT

Multiplying (3.1) by ¢ € C*(0,T) whith ¢(T) = 0 and integrating over (0,T), we

obtain

| {n01.5) + (T 0, 903) + MATun ) Tt t), T+
(0™ (U (), 03)1s + ([t ()Pt (8) = K (1 (8)) (1 (8))%, w5, | ()t —
" / (B (tm(8)) i (£), 05,0 (8t

' / (u3,(£), w;)()dt = f (F(2), wy) b (2)dt

(3.25)

From (3.25), we have subsequence (we denote by the same symbols as original sequence)

such that

(3.26) um — u weakly star in L*(0,T; H1(£2))

(3.27) u,, — u weakly star in L=(0, T; H;(Q)) N L=(0, T; LF*4(Ty))
(3.28) u, —u weakly in L*(0,T; L*(Q) N L3(Ty))

(3.29) -~ b™(u,) — E weakly in L*(0,T; L*(I',))
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From (3.27) — (3.29), considering that imbedding H;(Q2) — L?(I';) is continuous and

compact and using Aubing compactness theorem [2], we have

t I ] ! ' g 2
BI) Pt Klmls K (am)(i)? € (5, g = 222 51
(3.31) Um — % a.e. on U1 and u,, — U a.e. on O
Therefore,
i P, = 4P, Ko = K
K (um)(u,,)? — K (u)(u)? a.e. on X,

STEP 3: (u,E) IS A SOLUTION OF (1.1)

Letting m tend to infinity in (3.25) and using (3.27) — (3.32) and (3.20)

/ {(un V' (1), Vaog) + M(|Vu(®)|2)(Vu(t), Vawy) +
HED, wy)r, + (P (1) ~ K (D) (0) w5)r, } vt
T ; ; T f B
+ / (B (ut)),  (2), ;) () + f (63 (8), wy)p(e)dt = f (F(0), w;)p(t)dt

Since {w;} is dense in H;(2) N LP*2(T"), we conclude that (2.4) hold.

Only it remains to show (2.5), i.e., (E(z,t)) € ¢(u(z,t)) a.e. (x,t) € T;. By the
Aubin-Lions compactness Lema in [2], we get from (3.28) — (3.29) that

U,, —u Strongly in L? (0,T; L* (T'1))

This implies

u, (z,t) — u (z,t) a.e. on T

Thus, for given n > 0, using the theorems of Lusing and Egoroff, we can choose a
subset w C ¥, such that means (w) < 7, v € ¥\ w and u,, — » uniformly on ¥\ w.

Thus, for each € > 0, there is a N > § such that

., (z,t) — ' (z,0)] < %; V(z,t) € T, \ w
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Then, if |u,,(z,t) —s| < L, we have |u/(z,t) —s| < e for all m > N and (z,t) € 51\ w.

Therefore,
be(u'(z, 1)) < b™(up,(z, 1)) < be(w (,8)); Vo > N; (2,) € By \ w

Sea ¢ € L™ (%), ¢ > 0, then

=

/ b(u'(z,t))(z, t)dldt < / b (u,, (z,t))p(z, t)dTdt

1\w Bi\w

< /Ee(ul(m,t))qﬁ(m,t)dfdt

El\w

(3.33)

Letting m approach oo in (3.33) and using (3.29), we obtain

f b(u (z,t))¢(z, t)dldt < / E(x, t)¢p(x, t)dldt

(334) 21\w El\w ) '
< / be(u (z,1))o(z, t)dldt

Ei\w

Letting ¢ — 0% in (3.34), we infer that
E(z,t) € p(u'(z,t)) a.e. in X, \ w
and letting n — 07 we get
E(z,t) € o(u (z,1)) ae. in Ty

This complete the proof.

4. CONCLUSIONS

The technique used to find the solution to the generalized system (4.1), it is quite
usual, Faedo-Galerkin method and results of Compactness, so unusual is that it applies
to problems with terms of Differential Inclusion. Currently, many researchers are under
doomed to study differential equations with Inclusion. What would also be interesting to
see is the study of asymptotic behaviour. This paper will serve as guidance for the study

of equations, which may be affected with terms of Differential Inclusion on the boundary.
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