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DECAIMIENTO EXPONENCIAL DE UNA ECUACION

DE ONDA CON UNA CONDICION DE FRONTERA
VISCOELASTICA Y UN TERMINO FUENTE

V. Carrera B.' & F. Leén* & J. Bernui B.! & V. Martinez L.}

Resumen.- En este articulo estamos interesados en la estabilidad de las solu-
ciones de una ecuacion de onda con una condicion de frontera viscoeldstica y
un término fuente, usaremos el método potencial, la técnica de multiplicadores
y el teorema de unicidad para una ecuacion de onda con coeficientes variables.
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EXPONENTIAL DECAY OF WAVE EQUATION

WITH A VISCOELASTIC BOUNDARY
CONDITION AND SOURCE TERM

Abstract.- In this paper we are concerned with the stability of solutions for
the wave equation with a viscoelastic Boundary condition and source term by
using the potential well method, the multiplier technique and unique continua-
tion theorem for the wave equation with variable coefficient.
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1. Introduction

The main purpose of this work is to study the asymptotic behavior of the solution of

the following initial boundary problem.

si— (), = ulel' e T |0, 2[z]0,400] (11)
w0, 5=10 (1.2)
u(l,t)+fg(t—s)a(1,s)ux(1,s)ds~o, Vi 0 (1.3)
u(z,0) = :0 () w(x,0)=1u'(z) (1.4)
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The integral equation (1.3) is a Boundary condition with includes the memory effect.
Here u is the transverse displacement, g the relaxation function and p € R, ¢ > 1. By
a = a(z,t) we represent a function of

W2 (0, 00; H! (0, 1)), such that a (z,t) > ag > 0,

loc

a; (z,t) <0 and a (z,t) <0 for all (z,t) €]0,1[z]0, 00|

There exist a large body of Literature Regarding viscoelastic problems with the memory
term acting in the domain or in the Bondary. Among the numerous works in the direc-
tions we can cite Cavalcanti et al [2], Berrini & Messaoudi [1], Messaoudi et al [3], Rivera
et al [5], Santos [6], Park and Bae [4]. Considered the problem for the case of Kirchhoff
type wave equation. All the authors mentioned above stablished thein results with p < 0.

The first part of this paper is to study the global existence of regular and weak solutions
to problem (1.1) — (1.4) when p > 0; here we have some tethnical dificulties because of
source term. Semigroup arguments are not suitable for finding solutions of (1.1) — (1.4),
the refore, we make use ‘of Galerkin Aproximation and Potential well method.

The Second part is to give energy decay estimates of the solutions of (1.1) — (1.4); here
the main difficulty is the source term, it seems that a straight forward adaption of method
in [6] to our context fails completely. In order to solve this problem we need to introduce
suitable multiplicadors and a unique continuation property for the wave equation with

variable coefficients.
2. Notation & Preliminaries

We denote

(w,z)=/01w(:c)z(:c)d:r, 1z[2=/01 12 (2)2 do

By V' we denote the Hilbert Space
V={we H(0,1): w(0) =0}

Denoting by )
(gw)(t):fo g(t — 5) b (s) ds

the convolution product operador and differentiating (1.3) and the applying the Volterra’s



73

inverse operador, we get

G (1., ) = (0) e (u(L,8) + k x g (1,1)) (1.5)
where the resolvent kernel satisfies
B(t) + — (g% k) (t) = —g' (1 (L6)
9(0) PIOK |
with 7 = — and using the above identity, we write

9{0)

a(l,t)us (1,t) = —7{us (1,8) + k() u (1,¢) =k (£) uo (1) + &' * u (1,2)}
Let us denote by,
(f D) fft—sno o (s) ds (17)

We introduce the following functionals:

J(t) = 21 iy m| _q+1 |ul gi%

E(t)=E(u(t),u () = g lul® + J @) + § (k&) lu (L, = ¥ (£) Qu (1,1))

I(t)=T(u(t))=ao |ul® - plul I

and define the stable set
W={’UJEV:I(U)>O}U{9}

3. Global Existence and Exponential Decay
First, we need the following assumptions:
(A.1) The kernel g is positive, and k € ¢* (R™) satisfies

k,—K k" >0

(A.2) Let us consider {u®, u'} € (H2(0,1) NV) x V verifying the compatibitity condition:

a(1,0)w (1) = —7u; (1)
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The we state our main result.

Theorem 3.1 Suppose that (A.1) — (A.2) hold;
p>0{u’u'} e (WNH?(0,1)) xV

and
(g—1
2

2 1

a0 lao(g—1)

Then there exists only u of the system (1.1) — (1.4) satisfying

u € L*®(0,00; W N H2(0,1))
u € L™ (0, o0; V)

Ut € La5 (0, 00; L2 (O, 1))

Proof of theorem 3.1. The main idea is to use the Galerkin Method.

Let {w;} be a complete orthonormal system of V such that
{uo,ul} = span {wo,wl}

and let us write

U™ (t) = Z Pim (£) w?

where u™ satisfies

(ug‘,fwj) + (a (z,t) ug’“,wi) == ([uquﬁlum,wj)
—7{u* (1,t) + k(0)u (1,t) +

—k@®)u® (1) + & *u(l, )} w (1) (3.1)

for 0 < j < m, satistying the following conditions

Standard results about ordinary differential equations guarantee that there exists only
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one solution of the system on some interval [0, T;,[. The extension of the solution to the
whole interval [0, 00| is a consequence of the first estimate which we are going to prove

below.

Estimate I.- Multipliying (3.1) by R, (t), integrating by parts and summing up on
. J we get

2 g = (@, u2)
- {T ]u;n (1, t)|2 + & (0)u™ (1,¢) hig (1,£) +
—k () u® (D) us (1,8) + K u™ (1,8) e (1,8) } (3.2)

where E™ (t) = E (u™(t)).

Moreover, we know that for f,¢ € C?([0,00[,R) we have

F Ol OF + 2T

% [f Oy— (ff(s,dS) |w[2)} (3:3)
0

Applying (3.3) to the term k' x u™ (1,t) u{" (1,t) in (3.2) and using the properties of
k, k" and k" we conclude by (3.2)

o=

/Of(t—s)w(s)dssotb

B =

LE™ (1) < cB™ (0)

Taking into account the definition of the initial data of 4™ we conclude that

E™(t) <c,Vte[0,T],YmeN

Lema 3.2 Let u™ (t) be the solution of (3.1) with v’ € W and u* € L?(0,1).

If
g;_]_

B+t {2—(-@1—),&3(0)] <1

ap ao(g— 1)

ay "
then u™ (t) € W on [0,T; that is, for allt € [0, T

I™(£) >0
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Proof.- Since I (u°) > 0, it follows from the continuity of «™ (t) that

I (u™ (t)) > 0 for some interval near to ¢t =0 (3.4)

Let tmax > 0 be a maximal time (possibly tmax = Tn) such that (3.4) holds on
[0, tmax|

In order to facilitate the notation, we will omite the index m of the approximate

system. Note that

J(u(t) = %(auw,uz)_;%mgiiz 2wl - 2
_ L aw(e=1) u :
- q+1I()+2(q+1)lmt = (+1)°|uml

Vi € [0, fmax|

Consequently, we get

2@ +1) ;i < HIFD

2(¢g+1)
wg-1) WGy FH s

el = (=)

E (0) (3.5)

It follows from the Sobolev-Poincaré inequality and (3.5) that

g+1 ST T S, o W™ o il 2
I € e 7 < B (o )
g—1
pett 12(g+1) 4 2 2
< = E (0 e - A
<M 12U D50 7 (anluel?) < aolu 39)

This, from (3.6) obtain

H lulq—f—l < Qo |’U.',mJ

Therefore we get I (u) > 0 on [0,tpax[ This implies that we can take tmax = Tr.

This completes the proof of lemma. W

Remark 1 Let u be as in lemma 3.2, then there is a certain number ng, 0 < ng < 1

such that

M Mgﬂ (1 —no) (aty, us)
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In fact, from lemma 3.2

plulii < (1= n0) aofus|® <

. g+1
with ng =1 — ££2—

g=1
ao |:

Mg(o)] L

ao(g—1)

Using lemma 3.2 we can deduce a priori estimate for u™ (t). Lemma 3.2 implies that

T

1
B(t) = 5 fuf + 2

(k@) L8] - K@) Oul,t) +J (u)

1 2 aO(Q“l) 2 I

2 g lul"+ ICESY || +mI(U)
1 ap(g—1) 2

> g hul + 50y el

Then

Where L, is a positive constant independent of m € N and t € [0,T7].

Estimate II.- Next, we shall find a estimate for the second order energy. Fisrt, let us
estimate the initial data u!} (0) in the L?— norm. Letting ¢ — 0% in the equation (3.1),

multiplying the result by Aj,, (0) and using the compatibility condition we get
lup, (0)| < M; , VYmeN (3.7)
Differentiating (3.1) with respect to the time, multiplying by h]m (t) and summing
us the products results in 7, noting that

’Ju’ (1u|q_1 Ut, 'U.tt)’ < [uquﬁl || |ug|
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after some computations we obtain

d 1 T
i (t) =5 (astia, Un,) — 3 Juge (1, )|
1 2 2 1 2 2
— K ()7 |]u° (1 — |k 1
+47?| (@) [lu” (1)] +4??| (O Ju (L, 0)[" +

1
t5 15" | 0,00y K" O 0 (1,8) + ¢ (Juage|” + [uee]) (3.8)
for some n, ¢ > 0, where
o 1 g M1 1 9
ET"(t) = 3 ue|” + 3 (QUgt-Ust) + §k (0) | ue (1,2)]

By integrating (3.7) over [0, t] and employing the first estimate and Gronwall’s lemma
we obtain

EP(t)<c , Vte[0,T],VmeN

the rest of the proof is a matter of routine. H

Proof. To Prove this theorem we shall use the Galerkin Method and potential well theory

for the wave equation. H

4 Uniform Decay
4.1 Exponential Decay

In this section, we shall show the asymptotic behavior of solutions for system (1.1) —
(1.4) when the resolvent kernel k decay exponentially, that is, there exist positive con-

stants mj, m, such that
E0)>0 ; K@) <-mk(t) ; K@) >-mk(t) (4.1)

Note that this implies that
k(t) < k(0)e™™¢

At first, we begin with the following Lemmas.
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Lemma 4.1 Any strong solution of system (1.1) — (1.4) satisfies

d T g2 o Tan 0 o T o 2
— & i = i
th(t)" 2|ut(1,t)1 +21c (t) Jug (1) +2k (t) |u (1,8)]° +
T i 1
— 5k (1) 0u(L,t) + 5

(atuw: ua:)

Proof. Multiplying (1.1) by u; and integrating over [0, 1], our conclusion follows.

As a consequence of the above Lemma we have that energy is bounded for any ¢ > 0. W

Lemma 4.2 Any stong solution of system (1.1) — (1.4) satisfies

L4 (ug, TUg) < (1 + ;—E) lue (1,1)]) + @ K| Ou (1,t) +

[k (0)]* 2
dt 2 e Ll

ok (0 a0 (D + 26y (L)~ SE (6) +cluf

Proof. Multiplying Equation (1.1) by zu,, using the Boundary condition (1.7) taking

small enough, we arrive at the conclusion. l

Lema 4.3 Let u be a solution in theorem 3.1. Suppose that (4.1) holds and the initial

data verifies

The there exists Ty > 0 such that if T > T, we have

i Gy
f lu>ds < c/ lug (1, 5)|* ds
s s

where ¢ is A positive constant.

Proof.-The method we use is based on A compactness-Uniqueness argument. In order
apply this method we need an unique continuation theorem for the wave equation with

variable coefficients. Let us introduce the functional

L(t) = NE )+ (us, zuz)
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with N > 0. Using Young’s inequality and taking N large enough we find that
6 (t) < L(t) < 6, (1)

For some positive constants 8y and &, .

Applying Lemmas 4.1-4.3, and integrating from s to t where
0<s<T <+

we obtain

/E(t) dt < cE (s)
s

this condition implies that

E(t) < ME(0)e™

wich completes the Proof. B
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