ANÁLISIS ECONÓMICO DE LOS IMPUESTOS: IMPACTO EN LA RENTABILIDAD DE LAS INVERSIONES

MG. ECON. NICKO GOMERO GONZÁLEZ
Docente de la Facultad

RESUMEN
Para determinar el grado de solidez de la rentabilidad de un proyecto de inversión, es conveniente someterlos a evaluación bajo diferentes escenarios posibles de ocurrencias, situación que se podría configurar al cambiar una variable considerada como exógena para el proyecto y que, además, tiene relevancia en la determinación de los principales indicadores de rentabilidad. Es justamente la tasa impositiva, una de las variables no controlables que es conveniente someterla a evaluación para ver cuán beneficioso o pernicioso es para una inversión. El grado de correlación entre la rentabilidad y el impuesto a la renta es justamente lo que trata el presente artículo, documento que está dirigido específicamente a aquellos que permanentemente toman decisiones bajo distintas probabilidades de ocurrencia.

Palabras clave: Tasa de descuento, Valor Actual Económico, Impuesto a la Renta, Van de la deuda.

INTRODUCCIÓN
Los gobiernos, como se sabe, utilizan los impuestos como principal instrumentos para recaudar fondos públicos; la variabilidad de estas tasas depende de los objetivos de la política económica, específicamente de la fiscal. Los impuestos practicados para aumentar la presión tributaria, a parte de su mejor administración, son los directos e indirectos, cuyo impacto en el aparato productivo va a depender de su dirección y magnitud de aplicación.

En economía, nada es gratis, siempre existe un costo de aplicación de una medida aplicada, esto es general en todo tipo de sociedad, lo que quiere decir es que, si se aplica una medida monetaria o fiscal para lograr un objetivo deseado, impactará negativamente en algún sector productivo o social de la economía, la idea en este caso es minimizar o esterilizar dichos impactos colaterales con medidas complementarias, como es de suponer, este fenómeno ocurre con la aplicación de medidas tributarias. Por ejemplo, si se eleva el IGV, los afectados serán los consumidores y las empresas, y si se eleva el impuesto a la renta para aumentar los ingresos corrientes gubernamentales, el impacto directo recaerá sobre las unidades
empresariales, quienes, por cierto, tendrán que apelar a otros mecanismos de contención para minimizar el impacto de esta medida.

Con respecto al IGV, no es mayor el problema, el traslado al consumidor vía precios es inmediato, mejor aún si el producto es inelástico, ya que productos de esta naturaleza son caracterizados como esenciales dentro de la canasta familiar del consumidor. Pero el propósito de este artículo no es el IGV; lo que se pretende es demostrar el impacto que tiene el impuesto a las utilidades en el quehacer empresarial, específicamente en las inversiones. Como ya se mencionó, esta variable dentro del análisis de las inversiones es tomada como una variable exógena, ya que se constituye en el entorno, en este sentido cabe formularse la siguiente pregunta: ¿Qué sucede con la rentabilidad de una inversión cuando aumenta o disminuye el impuesto a la renta? Justamente, el artículo que se presenta pretende dar respuesta a esta interrogante, siguiendo una metodología de fácil entendimiento y aplicación.

**OBJETIVOS**

- Demostrar el impacto del impuesto a la renta en el VAN de las inversiones.
- Determinar el efecto del financiamiento en la rentabilidad de las inversiones cuando se maneján diferentes tasas impositivas.
- Determinar el impacto de la tasa impositiva en la tasa de descuento de las inversiones.

**1. TASA REAL QUE ENFRANTA UN PROYECTO DE INVERSIÓN POR UNA OPERACIÓN DE FINANCIAMIENTO**

Cuando una inversión recurre al mercado monetario o de capitales para su respectivo financiamiento, es obvio que la Institución Financiera de Intermediación (IFI) tiene que cargarle una tasa de interés, que bien puede ser en moneda nacional como extranjera, tasas que representan el costo del financiamiento. Bien se podría pensar que, por la operación de financiamiento, el costo financiero que soporta el proyecto es el costo del crédito que le cobra la IFI, lo cual por cierto es un error. Veamos por qué? Cuando una empresa financia sus inversiones con recursos de terceros, su posición tributaria mejora en función a cuanto sea el monto de la deuda y el costo del financiamiento, situación que se fundamenta por el lado de la base imponible, cuyo comportamiento está correlacionado indirectamente con la deuda que ha de asumir el negocio por viabilizar una inversión. Aquí la regla: “Si te endeudas más, baja la base imponible y pagas menos impuestos, y si la deuda es relativamente baja, su grado de impacto será menor, por lo que se perderá ventaja tributaria”.

Además es conveniente precisar, que sería un error que un negocio financie sus actividades de inversión con capital, ya que dada esta situación, si bien el riesgo por operación sería menor, se tendría que asumir un mayor costo tributario lo cual sería contraproducente para la gestión del negocio, por ello, ante situaciones de tasas elevadas de impuesto a la renta, es preciso recurrir a fuentes externas para captar liquidez generándose con ello una especie de escudo fiscal que impactaría positivamente en la rentabilidad de la inversión; en este último caso, se podría comprometer el patrimonio del negocio, pero de hecho, no deja de ser la mejor opción para financiar una inversión.

Aquí se puede ensayar un modelo matemático sencillo: donde TAMEX representa la tasa activa en moneda extranjera y Tx es el impuesto a la renta.

La tasa real que soporta el proyecto es igual a:

\[ Ir = \text{TAMEX} \times (1 - Tx) \]
En esta fórmula, claramente se puede apreciar que, a medida que aumenta la Tx, dado el costo del crédito, el costo real del financiamiento (Ir) disminuye, el cual vendría a representar la verdadera tasa que soportaría la inversión; además, esta tasa es considerada para determinar la tasa y el factor de actualización, tal como se señala a continuación:

Tasa de descuento del proyecto de inversión sería como sigue (CPK)

\[
\text{CPK} = \frac{\text{Deuda}[\text{TAMEX}(1-Tx)] + \text{Capital}(\text{COK})}{\text{It}}
\]

Donde:

\[
\text{It} = \text{Inversión total}
\]

\[
\text{COK} = \text{Costo de Oportunidad del Capital}
\]

\[
\text{CPK} = \text{Costo Ponderado del Capital (tasa de actualización)}
\]

Al darle operatividad a la fórmula presentada, se puede apreciar que la tasa de descuento está relacionada inversamente con la tasa que afecta a las utilidades, por lo que, considerando sólo la tasa de descuento del proyecto su rentabilidad mejorará con la subida de la tasa impositiva. Pero hay que tener en cuenta que el impacto del impuesto a la renta sólo es el efecto parcial, para saber realmente qué sucede totalmente con la rentabilidad del proyecto hay que someter a análisis el resultado del flujo de caja del proyecto, cuyo resultado podría ser distinto al obtenido si sólo se toma en cuenta el factor de actualización (FA). Para efectos de descontar el resultado del flujo de caja del proyecto, el factor de actualización toma la siguiente forma:

\[
\text{FA} = \frac{1}{(1 + \text{CPK})}
\]

La tasa de descuento que en este caso es el costo ponderado del capital (CPK) también se le conoce como el rendimiento mínimo exigido al proyecto de inversión. La regla nos dice “si la tasa de rendimiento supera a esta tasa, el proyecto se viabiliza; caso contrario, el proyecto se desecha como alternativa de inversión” a la rentabilidad del proyecto también se le conoce como la Tasa Interna de Retorno (TIR).

2. CASOS PRÁCTICOS; APLICACIÓN DEL MODELO

Caso práctico 1

Se presenta un caso simulado de dos situaciones para un mismo negocio: El primer Estado de Ganancias y Pérdidas no presenta costo financiero, lo cual hace suponer que ha financiado sus activos no corrientes con Capital. En el segundo caso, se presenta el mismo documento financiero pero con generación de pasivos, lo cual implica que su programa de inversión han sido financiado con pasivos, ya sea de corto o largo plazo, en el presente análisis es irrelevante plantear situaciones referentes a los vencimientos de los compromisos financieros, debido que el propósito es demostrar sólo el impacto de la tasa impositiva en el costo real de la deuda. A continuación, presentamos cifras simuladas:

Tasa impositiva del 30%

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Estado de ganancias y pérdidas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin financiamiento US$</td>
</tr>
<tr>
<td>Ventas</td>
<td>100 000</td>
</tr>
<tr>
<td>Costo de ventas</td>
<td>-40 000</td>
</tr>
<tr>
<td>Utilidad bruta</td>
<td>-60 000</td>
</tr>
<tr>
<td>Costo financiero</td>
<td>00</td>
</tr>
<tr>
<td>Utilidad antes de impuesto</td>
<td>60 000</td>
</tr>
<tr>
<td>Impuesto (30%)</td>
<td>-18 000</td>
</tr>
<tr>
<td>Utilidad después de impuestos</td>
<td>42 000</td>
</tr>
</tbody>
</table>

* El escenario con financiamiento supone que la empresa ha contraído una deuda de US$ 50 000 a una tasa de interés del 10% al año.

---

Ir = i(1-Tx)
r = 0.10 (1-0.30)
r = 0.07 el cual es igual al 7%

Ahorro tributario: 3,500/50,000 = 7%
Deuda

El resultado nos dice que si bien es cierto que el costo de la deuda es del 10%, la tasa real por esta operación de financiamiento es del 7%, esto debido a la mejor posición que tiene el negocio en términos tributarios. Más claro, si se divide el ahorro tributario debido al financiamiento (42,000-38,500) entre el monto total de la deuda (US$ 50,000) el resultado es 7%, que es exactamente igual al costo real de la deuda.

Ahora supongamos que la tasa impositiva no sea el 30%, sino el 20%, bajo la misma estructura del financiamiento, ¿Cuál será el costo real de la deuda?

Tasa impositiva del 20%

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Estado de ganancias y pérdidas</th>
<th>Sin financiamiento US$</th>
<th>Con financiamiento US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventas</td>
<td></td>
<td>100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>Costo de ventas</td>
<td></td>
<td>-40 000</td>
<td>-40 000</td>
</tr>
<tr>
<td>Utilidad bruta</td>
<td></td>
<td>-60 000</td>
<td>60 000</td>
</tr>
<tr>
<td>Costo financiero</td>
<td></td>
<td>0</td>
<td>5 000</td>
</tr>
<tr>
<td>Utilidad antes de impuesto</td>
<td></td>
<td>60 000</td>
<td>55 000</td>
</tr>
<tr>
<td>Impuesto (30%)</td>
<td></td>
<td>-18 000</td>
<td>-16 500</td>
</tr>
<tr>
<td>Utilidad después de impuestos</td>
<td></td>
<td>42 000</td>
<td>38 500</td>
</tr>
</tbody>
</table>

Ir = i(1-Tx)
Ir = 0.10 (1-0.20)
Ir = 0.08 el cual es igual al 8%

Ahorro tributario: 4,000/50,000 = 8%
Deuda

Con este resultado sale una primera conclusión, el cual es la siguiente:

"Cuánto más elevado es el impuesto a la renta, y el negocio financia sus activos no corrientes con deuda, el costo que realmente enfrenta por la deuda contraída disminuye, el cual origina, desde este punto de vista, que mejore su posición económica".

3. ¿QUÉ SUCEDA CON LA RENTABILIDAD DE UNA INVERSIÓN ANTE UN AUMENTO DEL IMPUESTO A LA RENTA?

Si sólo se tomará en cuenta el impacto de la tasa de descuento o factor de actualización para determinar la rentabilidad de un proyecto, sin temor a equivocarnos diríamos que de aumentar la tasa impositiva, los indicadores que miden este resultado tendrían un mejor comportamiento, tal como es el VAN de la inversión, pero este análisis sería parcial, por lo que nos llevaría a una conclusión equívoca. Para tomar decisiones de inversiones, el análisis tiene que ser integral, es decir, se tiene que evaluar todos los impactos provenientes del entorno, algunos impactos pueden ser positivos, otros negativos, el modelo de simulación nos tiene que llevar a considerar todos los resultados posibles.

A efectos de demostrar lo afirmado, se presenta el flujo de caja de un proyecto, cuyo horizonte de evaluación es de 5 períodos. Las partidas más relevantes de este documento financiero son: el ingreso, los egresos operativos y el monto de la inversión, que siempre se contabiliza en el período cero. Los parámetros técnicos por la operación de financiamiento son:

**Caso práctico 2**

- Financiamiento bancario: 60% de la inversión.
- Costo del crédito: 10%.
- Período de reembolso: 5 años.
- Modalidad de pago: cuotas fijas.
Con estos indicadores se estructura el cronograma de pago de la deuda, donde se apreciará el costo del financiamiento.

Determinando el cronograma de pago

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48000</td>
<td>4800</td>
<td>7876</td>
<td>12676</td>
<td>40124</td>
</tr>
<tr>
<td>2</td>
<td>40124</td>
<td>4012</td>
<td>8664</td>
<td>12676</td>
<td>31460</td>
</tr>
<tr>
<td>3</td>
<td>31460</td>
<td>3146</td>
<td>9530</td>
<td>12676</td>
<td>21930</td>
</tr>
<tr>
<td>4</td>
<td>21930</td>
<td>2193</td>
<td>10483</td>
<td>12676</td>
<td>11447</td>
</tr>
<tr>
<td>5</td>
<td>11447</td>
<td>1145</td>
<td>11531</td>
<td>12676</td>
<td>0</td>
</tr>
</tbody>
</table>

La fórmula para determinar la cuota fija es la siguiente:

$$ R = P \left(1+i\right)^i \frac{i}{(1+i)^i-1} $$

donde P es el monto del préstamo, e i = TAMEX, R es el monto de la cuota, que es fija para todos los periodos. En R está incluido los intereses y las amortizaciones de la deuda.

Flujo de caja económico con tasa de impuesto del 30%:US$  

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingreso</td>
<td>100,000</td>
<td>120,000</td>
<td>140,000</td>
<td>160,000</td>
<td>180,000</td>
<td></td>
</tr>
<tr>
<td>Costos</td>
<td>-60,000</td>
<td>-80,000</td>
<td>-100,000</td>
<td>-120,000</td>
<td>-140,000</td>
<td></td>
</tr>
<tr>
<td>Depreciación (20%)</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td></td>
</tr>
<tr>
<td>Costo financiero</td>
<td>-4,800</td>
<td>-4,012</td>
<td>-3,145</td>
<td>-2,193</td>
<td>-1,145</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de impuesto</td>
<td>29,600</td>
<td>30,388</td>
<td>31,255</td>
<td>32,207</td>
<td>33,255</td>
<td></td>
</tr>
<tr>
<td>Impuestos</td>
<td>-8,880</td>
<td>-9,116</td>
<td>-9,3765</td>
<td>-9,6621</td>
<td>-9,9765</td>
<td></td>
</tr>
<tr>
<td>Utilidad después de impuestos</td>
<td>20,720</td>
<td>21,272</td>
<td>21,879</td>
<td>22,545</td>
<td>23,279</td>
<td></td>
</tr>
<tr>
<td>Inversión</td>
<td>-80,000</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td></td>
</tr>
<tr>
<td>Flujo económico</td>
<td>-80,000</td>
<td>26,320</td>
<td>26,872</td>
<td>27,479</td>
<td>28,145</td>
<td>28,879</td>
</tr>
</tbody>
</table>

* Activos fijos tangibles: 35% de la inversión total

Midiendo la rentabilidad del proyecto:

Para evaluar la rentabilidad del proyecto, se tiene que determinar a priori la tasa de descuento, la cual por aplicación de la fórmula correspondiente, se obtiene:

$$ CPK = 0.6 \left[ 0.10(1-0.30) \right] + 0.40 (0.15) $$

$$ CPK = 0.042 + 0.06 = 10,2\% \text{ (tasa de de descuento)} $$

Al aplicar esta tasa al resultado del flujo de caja se obtiene un VANE de:

$$ VANE = \frac{80,000 + 26,320 + 26,872 + 27,479 + 28,145 + 28,879}{(1+0,102) + (1+0,102)^2 + (1+0,102)^3 + (1+0,102)^4 + (1+0,102)^5} $$

$$ VANE = 25,164 $$

Este resultado nos indica que el proyecto evaluado es más rentable que la mejor opción alternativa de similar riesgo en US$ 25 164, por lo tanto, se convierte en la mejor opción de inversión.

El gráfico explica tal resultado:
Ahora, ¿qué pasaría con esta rentabilidad si la tasa impositiva fuera del 20%, y por cierto no cambiara en nada las otras variables. Para responder a esta pregunta, se tiene que estructurar un nuevo flujo de caja pero tomando en cuenta la nueva tasa impositiva, que es del 20%.

Flujo de caja (20% de impuesto): US$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingreso</td>
<td>100,000</td>
<td>120,000</td>
<td>140,000</td>
<td>160,000</td>
<td>180,000</td>
<td></td>
</tr>
<tr>
<td>Costos</td>
<td>-60,000</td>
<td>-80,000</td>
<td>-100,000</td>
<td>-120,000</td>
<td>-140,000</td>
<td></td>
</tr>
<tr>
<td>Depreciación (20%)</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td>-5,600</td>
<td></td>
</tr>
<tr>
<td>Costo financiero</td>
<td>-4,800</td>
<td>-4,012</td>
<td>-3,145</td>
<td>-2,183</td>
<td>-1,145</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de impuesto</td>
<td>29,600</td>
<td>30,388</td>
<td>31,255</td>
<td>32,207</td>
<td>33,255</td>
<td></td>
</tr>
<tr>
<td>Impuestos (20%)</td>
<td>-5,920</td>
<td>-6,078</td>
<td>-6,251</td>
<td>-6,441</td>
<td>-6,651</td>
<td></td>
</tr>
<tr>
<td>Utilidad después de impuestos</td>
<td>23,680</td>
<td>24,310</td>
<td>25,004</td>
<td>25,766</td>
<td>26,604</td>
<td></td>
</tr>
<tr>
<td>Inversión</td>
<td>-80,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciación</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td></td>
</tr>
<tr>
<td>Flujo económico</td>
<td>-80,000</td>
<td>29,280</td>
<td>29,910</td>
<td>30,604</td>
<td>31,366</td>
<td>32,204</td>
</tr>
</tbody>
</table>

Bajo este nuevo escenario (tasa de impuesto del 20%), la tasa de descuento del proyecto será igual a:

CPK = 0,60(0,10(1-0,20) + 0,40(0,15) = 0,048 + 0,06 = 10,8

Comparativamente, subió con respecto a la tasa de descuento obtenida considerando una tasa compositiva del 30%. Si el flujo inicial se evaluará considerando esta tasa de descuento, la rentabilidad del proyecto caería.

Pero, para tomar una decisión final, como ya se dijo, se tiene que tomar en cuenta los dos impactos: por el lado de la tasa de descuento y de los flujos, es por ello que el VAN asume el siguiente resultado:

\[
\text{VANE} = \frac{(80,000)}{(1+0,108)} + \frac{29,280}{(1+0,108)^2} + \frac{29,910}{(1+0,108)^3} + \frac{30,604}{(1+0,108)^4} + \frac{31,366}{(1+0,108)^5} + \frac{32,204}{(1+0,108)^6}
\]

\[
\text{VANE} = (80,000) + 26,426 + 24317 + 22,503 + 20,772 + 19,283
\]

\[
\text{VANE} = \text{US$ 33,301}
\]

Que, comparado con la primera rentabilidad, subió en un 32,33%; también se podría decir, la caída del impuesto a la renta en un 33,33% conduce a una mejora en la inversión en un 32,33%.
4. CUÁL ES EL IMPACTO EN LA RENTABILIDAD AJUSTADA DEL PROYECTO?

Lo que se pretende en este caso es visualizar el impacto de la deuda sobre la el VAN del proyecto. Para este fin, como explica Sapag en su texto de Preparación y Evaluación de Proyectos\(^2\) para empresas, se tiene que determinar el VAN de la deuda. Que a continuación será hallada considerando un 30% y 20% de tasa impositiva.

Con un 30% de impuesto a la renta: US$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intereses (costo financiero)</td>
<td>-4,800</td>
<td>-4,012</td>
<td>-3,145</td>
<td>-2,193</td>
<td>-1,145</td>
<td></td>
</tr>
<tr>
<td>Impuestos (30%)</td>
<td>1,440</td>
<td>1,204</td>
<td>944</td>
<td>658</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Intereses netos</td>
<td>-3,360</td>
<td>-2,808</td>
<td>-2,202</td>
<td>-1,535</td>
<td>-0,802</td>
<td></td>
</tr>
<tr>
<td>Financiamiento</td>
<td>48,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amortización</td>
<td>-7,876</td>
<td>-8,664</td>
<td>-9,530</td>
<td>-10,483</td>
<td>-11,531</td>
<td></td>
</tr>
<tr>
<td>Flujo de la deuda</td>
<td>48,000</td>
<td>-11,236</td>
<td>-11,472</td>
<td>-11,732</td>
<td>-12,018</td>
<td>-12,333</td>
</tr>
</tbody>
</table>

En el cuadro se aprecia un hecho interesante: si se divide los intereses netos de la deuda con el costo del financiamiento exactamente dará el 70% que es igual \(1 - tx\) = 0,70 * 10 = 0,07 que es el costo real del crédito para el proyecto. Asimismo, el monto de los impuestos es considerado como un ingreso, ya que es tratado como un ahorro tributario del negocio. Situation que se fundamenta por el aumento de la base imponible y la generación, por ende, del escudo fiscal.

En este caso, el costo del crédito actuará como tasa de descuento. El resultado del VAN de la deuda es igual a:

\[
\text{VAND} = (48,000) - \frac{11,236}{1 + 0,10} - \frac{11,472}{(1 + 0,10)^2} - \frac{11,732}{(1 + 0,10)^3} - \frac{12,018}{(1 + 0,10)^4} - \frac{12,333}{(1 + 0,10)^5} \\
\text{VAND} = (48,000) - 10,214 - 9481 - 8,814 - 8,209 - 7,660 \\
\text{VAND} = \text{US$ 3,662}
\]

Con un 20% de impuesto: US$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intereses</td>
<td>-4,800</td>
<td>-4,012</td>
<td>-3,145</td>
<td>-2,193</td>
<td>-1,145</td>
<td></td>
</tr>
<tr>
<td>Impuestos</td>
<td>960</td>
<td>802</td>
<td>629</td>
<td>439</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Intereses netos</td>
<td>-3,840</td>
<td>-3,210</td>
<td>-2,516</td>
<td>-1,754</td>
<td>-916</td>
<td></td>
</tr>
<tr>
<td>Financiamiento</td>
<td>48,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amortización</td>
<td>-7,876</td>
<td>-8,664</td>
<td>-9,530</td>
<td>-10,483</td>
<td>-11,531</td>
<td></td>
</tr>
<tr>
<td>Flujo de la deuda</td>
<td>48,000</td>
<td>-11,716</td>
<td>-11,874</td>
<td>-12,046</td>
<td>-12,237</td>
<td>-12,447</td>
</tr>
</tbody>
</table>

Como en el caso anterior, los intereses netos sobre el costo del crédito es exactamente igual al 80% que multiplicado por la tasa de interés es igual a 8%

\[
\text{VAN}_j = (48,000) - \frac{11,716}{(1 + 0,10)} - \frac{11,874}{(1 + 0,10)^2} - \frac{12,046}{(1 + 0,10)^3} - \frac{12,237}{(1 + 0,10)^4} - \frac{12,447}{(1 + 0,10)^5}
\]

\[
\text{VAN}_j = (48,000) - 10,650 - 9,813 - 9,050 - 8,359 - 7,731
\]

\[
\text{VAND} = \text{US$ 2,397}
\]

Para obtener Valor Actual Neto Ajustado y así evaluar el efecto apalancamiento en la rentabilidad de la inversión aplicamos la siguiente fórmula:

\[
\text{VAN}_j = \text{VANE} + \text{VAND}
\]

\[
\text{VAND} = \text{Van de la deuda}
\]

\[
\text{VAN}_j = \text{Van ajustado}
\]

\[
\text{VANE} = \text{Van del proyecto}
\]

Aquí los resultados:

<table>
<thead>
<tr>
<th>Indicadores de rentabilidad</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VANE</td>
<td>33,301</td>
<td>25,164</td>
</tr>
<tr>
<td>VAND (VAN de la deuda) US$</td>
<td>2,397</td>
<td>3,662</td>
</tr>
<tr>
<td>VANJ</td>
<td>35,698</td>
<td>28,826</td>
</tr>
</tbody>
</table>

De igual modo se procede para una tasa del 30%. En ambos casos, la deuda conlleva que la rentabilidad de la inversión aumente. Queda demostrado, entonces, que la magnitud de cambio en la rentabilidad va a depender de la tasa impositiva. A mayor tasa impositiva el efecto apalancamiento en la rentabilidad del proyecto será mayor

**CONCLUSIONES**

1. La tasa impositiva, como variable exógena de las inversiones influye en la rentabilidad de las mismas. Para visualizar el impacto, la evaluación tiene que ser integral, por el lado de la tasa de descuento y los resultados del flujo de caja.

2. Al aumentar la tasa impositiva, si bien la tasa de descuento del proyecto disminuye originando que mejore su rentabilidad, pero por el lado de los flujos, la rentabilidad de la inversión cae, siendo esta última más significativa que la primera; por ello, el resultado neto por el aumento del impuesto es que el VAN disminuye.
3. Al aumentar la tasa impositiva el efecto apalancamiento de la deuda en la rentabilidad de la inversión es mayor, situación que se explica por la mejor posición tributaria.

4. Al aumentar el impuesto a las utilidades es recomendable manejar una estructura de financiamiento donde se tenga mayor participación de la deuda, con lo cual se conseguiría un mayor VAN ajustado, mejor dicho, mejoraría la posición económica de la inversión.

REFERENCIAS


