CIENCIAS ECONÓMICAS

INCIDENCIA DE LA POLÍTICA MONETARIA EN LOS CICLOS ECONÓMICOS. PERÚ 2002-2014

IMPACT OF MONETARY POLICY ON ECONOMIC CYCLES. PERU 2002-2014

Pablo Hermenegildo Rivas Santos

RESUMEN

El presente trabajo estudia el problema entre la política monetaria y los ciclos económicos en la economía peruana durante 2002-2014. Para ello se propone un modelo econométrico que permite afrontar la problemática de la incidencia de la política monetaria en los ciclos económicos. Se estima este modelo utilizando la técnica econométrica VAR que evalúa los efectos de las variaciones de la tasa de interés real, del tipo de cambio real y de los términos de intercambios en las fases de auge y recesión del Producto Bruto Interno (PBI); y se prueba la hipótesis "los auges y caídas del PBI de duración variable son provocadas por la política monetaria". Así, para el período 2002-2014, las estimaciones realizadas evidencian que la evolución de la tasa de interés de política monetaria, del tipo de cambio real y de los términos de intercambios influyó en el ciclo económico peruano. Por lo que el aporte al estudio de la política monetaria y los ciclos económicos es que la política monetaria mediante el control de los agregados monetarios y de la tasa de interés de referencia han generado ciclos económicos durante 2002-2014; y que se evitará los ciclos económicos mediante modificaciones de los agregados monetarios que coincidan con la variación del PBI; y modificaciones de las tasas de interés de referencia que coincidan con las variaciones de la tasa de interés del mercado de capitales. El logro de la presente investigación se expresa en términos de demostrar que mantener el crecimiento de la producción mediante una política monetaria expansiva (aumentando los agregados monetarios y manteniendo baja la tasa de interés de referencia) ha generado una reiteración de los ciclos económicos, es decir, un tránsito de un período de auge a un período de recesión, que estimulará un nuevo uso expansivo de la política monetaria.

PALABRAS CLAVE: producto bruto interno, tasas de interés real, tipo de cambio real, ciclos económicos.

ABSTRACT

This paper studies the problem between Monetary Policy and Economic Cycles in the Peruvian economy during 2002-2014. To do an econometric model that allows face the problems of the impact of monetary policy on economic cycles proposed. This model using VAR econometric technique that evaluates the effects of changes in the real interest rate, the real exchange rate and terms of trade in the phases of boom and bust of Gross Domestic Product GDP is estimated; and the hypothesis is tested "booms and busts of GDP of varying duration are caused by monetary policy". Thus, for the period 2002-2014; the estimates show that the evolution of interest rate monetary policy, the real exchange rate and terms of trade influenced the Peruvian economic cycle. So the contribution to the study of the Monetary and Economic Cycles is that monetary policy by controlling monetary aggregates and Reference Interest Rate Economic cycles generated during 2002-2014; and that economic cycles will be prevented by changes in monetary aggregates that match variation of GDP; and changes in benchmark interest rates to match changes in the interest rate on the capital market. Achievement of this research is expressed in terms of demonstrating that maintain production growth through expansionary monetary policy (maintaining low interest rate reference) has generated a reiteration of economic cycles, ie, a transit of a boom period to a period of recession, which will stimulate a new expansive use of monetary policy.

KEYWORDS: Gross domestic product, real interest rates, real exchange rate, economic cycles.

INTRODUCCIÓN

l objetivo del presente estudio es demostrar que existió una relación de causalidad en el sentido de Granger entre política monetaria y ciclos económicos en Perú durante 2002-2014; toda vez que se analizó empíricamente la evolución de la tasa de interés de política monetaria, en su papel de instrumento operativo de la política monetaria en los ciclos económicos en Perú durante 2002-2014; y los efectos de la política monetaria en el comportamiento del tipo de cambio real y de los términos de intercambio y su impacto en los ciclos económicos en Perú durante el mencionado período.

Así, se consideró como hipótesis que los auges y caídas del PBI de duración variable son provocadas por la política monetaria especificando que la evolución de la tasa de interés de política monetaria, del tipo de cambio real y de los términos de intercambio durante 2002-2014 influyó en el ciclo económico peruano.

En cuanto al método utilizado, al ser el presente trabajo una investigación aplicada, en el diseño de la investigación, al considerar que las alzas y bajas continuas de la actividad económica (que es el efecto provocado por los reiterados intentos de reducir el interés mediante políticas monetarias) se usó la técnica econométrica denominada Vectores Autoregresivos VAR con datos de la economía peruana para el período enero 2002 - diciembre 2014. Mediante el uso de esa técnica econométrica se evalúa los efectos sobre el PBI causada por variaciones de la tasa de interés real, del tipo de cambio real y de los términos de intercambios en las fases de auge y recesión del PBI.

Los hallazgos encontrados en la presente investigación se expresan en términos de que el mantenimiento del crecimiento de la producción mediante políticas monetarias expansivas han generado una reiteración de los ciclos económicos.

En particular, estos ciclos han sido resultado de políticas monetarias que incluyó el control de la tasa de interés nominal de corto plazo de Referencia 2002-2014 ejecutados por el Banco Central de Reserva del Perú BCRP en un sistema bancario de reserva fraccional.

Entre 2002-2014 la Política Monetaria Expansiva se basó en mantener una tasa de interés de corto plazo baja para promover la inversión y de ese modo elevar la producción.

En particular, las etapas de auge se iniciaron entre 2006-III–2008-II y 2010-I–2011-II con una reducción de las tasas de interés de referencia; que respectivamente no ofrecieron una señal fiable del verdadero nivel de ahorro que existía en el mercado.

Esas etapas de auge en un comienzo implicaron que las nuevas inversiones parecieran rentables como consecuencia de esa reducción de las tasas de interés. En consecuencia, los empresarios alargaron y ensancharon la estructura del proceso productivo, trasladando los factores de producción hacia esas nuevas inversiones.

Pero ese alargamiento y ensanchamiento de la estructura productiva fue insostenible porque no se habían liberado los recursos necesarios para mantener esas nuevas inversiones (que estaban siendo financiadas con créditos que no estaban respaldadas con ahorro). Por tanto, existió descoordinación en las decisiones intertemporales de los agentes económicos: las empresas (fijándose en esas tasas de interés artificialmente bajas) invirtieron como si el ahorro hubiese aumentado. Por el contrario, los gastos de las familias seguían siendo los mismos de antes, de modo que no ahorraron lo suficiente para financiar esas nuevas inversiones.

Un efecto de esa política monetaria expansiva fue el aumento de los precios de los factores de producción (bienes de capital); debido a que existió una demanda creciente por estos factores de producción para implementar esas nuevas inversiones; sin que estos factores hayan sido producidos previamente. Por consiguiente, los costos de las inversiones se elevaron por encima del nivel esperado; pero el optimismo de la política monetaria expansiva hizo que el auge continuara durante algún tiempo.

Otro efecto fue el aumento de los precios de los bienes de consumo debido a que la oferta de bienes de consumo se había reducido como consecuencia del traslado de factores de producción hacia esas inversiones de largo plazo; y los propietarios de esos factores de producción gastaron el aumento de su renta.

Con ese aumento de los precios de los bienes de consumo, las ganancias de las inversiones de corto plazo se elevaron respecto a las ganancias de esas inversiones de largo plazo. Y a medida que la expansión del crédito se redujo, las tasas de interés se elevaron.

Esta elevación de la tasa de interés provocó una caída de los precios de los bienes de capital, haciendo que muchas de esas inversiones de largo plazo dejaran de ser rentables e incluso debían abandonarse. Así, el período de auge llegó a su fin; cuando aparecieron las pérdidas en esas inversiones de largo plazo.

Por lo tanto, ese alargamiento y ensanchamiento de la estructura productiva fue insostenible porque esas inversiones de largo plazo se habían financiado con créditos de nueva creación a una tasa de interés artificialmente baja; y no existía un volumen de ahorro suficiente para mantener esas inversiones. Como esas inversiones no se habían financiado con ahorro; esa reducción artificial de las tasas de interés indujeron a error a los empresarios. Estos empresarios iniciaron más inversiones de las que podían sostenerse con el ahorro existente. Por consiguiente, durante la etapa recesiva entre 2009-II; 2011-IV-2012-IV, el mercado depuró esas malas inversiones produciéndose una liberación de recursos. La recesión terminó cuando la estructura productiva se adaptó a los recursos disponibles de la economía y a las preferencias de los consumidores.

METODOLOGÍA Y TÉCNICA DE INVESTIGACIÓN UTILIZADA

Tipo de investigación: Investigación aplicada

Población y muestra. Las fuentes de información serán las estadísticas monetarias y financieras registradas y elaboradas por el BCRP, la SBS y el FMI en términos anuales. La descripción del problema se efectuará vía datos estadísticos de la economía monetaria peruana período 2002-2014. En la metodología especificamos que la data que se va a regresionar es Trimestral para el período 2002-2014 (control de tasas de interés).

Técnicas e instrumentos de recolección de datos

Por la naturaleza del análisis, se usó la técnica econométrica denominada Vectores Autoregresivos VAR con datos de la economía peruana para el período enero 2002 - diciembre 2014.

Mediante el uso de esa técnica econométrica se evaluó los efectos sobre el PBI causada por variaciones de la tasa de interés real, del tipo de cambio real y de los términosde intercambios en las fases de auge y recesión del PBI.

Este modelo de Vectores Autoregresivos VAR relaciona las variables tasa de interés real IREAL, tipo de cambio real TCR, tipos de intercambio TI, con la variable Producto Bruto Interno Real PBI,

Las series de tiempo IREAL, TCR, TI, PBI, son no estacionarias y presentan tendencias aleatorias creciente y decreciente.

La operación econométrica para determinar la incidencia se hizo considerando la metodología de Christiano & Fitzgerald para la filtración de las series; la cual elimina los movimientos no deseados de corto plazo y proporciona series que se adecuan a los ciclos económicos. Este filtro se usó para el análisis del comportamiento cíclico de las variables de la economía peruana, los comovimientos existentes entre ellas, y la capacidad de predicción de períodos recesivos de cada una de las series. Se realizó un análisis de los ciclos de la economía peruana entre 2002-2014 poniendo énfasis en los comovimientos entre las series analizadas e intentando encontrar los indicadores líderes que nos permitan anticipar los movimientos de la producción del país. Así, la elección del filtro de Christiano y Fitzgerald se sustentó en su capacidad para aislar el componente de alta volatilidad indeseado, para un estudio más apropiado de los ciclos económicos. Además, con el objetivo de investigar el impacto de las brechas tasas de interés sobre la brecha del PIB, se realizaron dos ejercicios. El primero de carácter empírico, en donde se analizó la relación de las brechas de tasa de interés contra la brecha del PIB. El segundo de carácter econométrico por medio de un análisis VAR. Finalmente se consideró la regresión Mínimo Cuadrático en ambas series temporales y realizando la prueba de Dickey Fuller (DF) a los Residuos de dichas Regresiones. Sí se demuestra que dichos Residuos son Estacionarios, entonces dicha Regresión se denomina Equilibrio de Largo plazo.

Plan de análisis estadístico de datos

Para las estimaciones usamos las técnicas econométricas y series temporales. Para verificar "La amplitud de los ciclos económicos son provocados por la am-

plitud del período de la política monetaria expansiva y la amplitud de la demora del BCRP en cambiar tal política" usamos la prueba del filtro de Hodrick-Prescott. Los resultados econométricos se leen considerando la calidad del R², evaluar la existencia de la multicolonialidad, la heterocedasticidad, la autocorrelación, la prueba de Durbin Watson.

RESULTADOS DE LA INVESTIGACIÓN

Los resultados se presentan considerando la hipótesis "los auges y caídas del PBI de duración variable Y son provocadas por la política monetaria (es decir, por la evolución de la tasa de interés de política monetaria X1, del tipo de cambio real X2 y de los términos de intercambio X3)" y los objetivos específicos que incluye el análisis empírico de la tasa de interés

de política monetaria en su papel de instrumento operativo y su impacto en los ciclos económicos, el comportamiento del tipo de cambio real y su efecto en los ciclos económicos y el comportamiento de los términos de intercambio y su incidencia en los ciclos económicos en Perú durante 2002-2014.

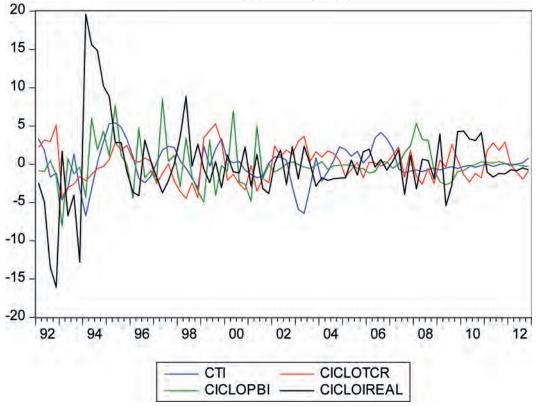

Así, aplicando el filtro de Hodrick-Prescott con λ = 1600 a las brechas del Producto Bruto Interno, la Tasa de Interés Real, el Tipo de Cambio Real y los Términos de Intercambio para el período 2002-2014 se ha descompuesto las series para obtener el comportamiento cíclico del PBI, la Tasa de Interés Real, el Tipo de Cambio Real y los Términos de Intercambio. Filtro que consiste en eliminar las tendencias y suavizar de esa manera la curva; pero no garantiza que se elimina las tendencias cíclicas y volatilidades, la cual está sujeta a la discrecionalidad del investigador e induce a un comportamiento espurio de las variables.

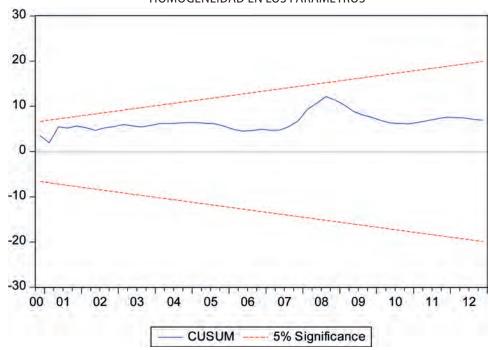
TABLA 1: CICLOS

	<u> </u>		<u></u>	
	Producto Bruto Interno	Tasa de Interés Real	Tipo de Cambio Real	Términos de intercambios
2002Q1	-0.99769728	0.10975993	2.39310064	0.99106146
2002Q2	-0.57367566	1.846282	1.01462301	0.92530709
2002Q3	0.02978699	-2.62608087	1.84555722	0.52668206
2002Q4	0.31352086	2.28807718	1.29277855	-2.90883734
2003Q1	-0.02166253	-1.91419665	2.96200881	-5.88560399
2003Q2	-0.37514757	2.36271477	3.65816183	-6.40615276
2003Q3	-0.54630512	0.01562492	0.38430019	-2.96934
2003Q4	-0.13427159	-2.86012937	1.64120009	0.82998178
2004Q1	0.36215808	-1.76922107	0.92939756	-2.20118409
2004Q2	-0.65572715	-2.11453556	1.74840291	-0.95635304
2004Q3	-0.18686467	-1.89785244	1.39714552	0.47233527
2004Q4	-0.12978204	-1.81962976	0.47346205	2.29333888
2005Q1	-0.08289001	-1.77913939	-1.62568404	1.91482063
2005Q2	-0.14451824	0.52548408	-0.70362525	1.04351003
2005Q3	-0.51294457	-1.402782	0.23732202	1.68493981
2005Q4	-0.58635653	1.6387113	-1.8047189	0.14399052
2006Q1	-1.16262105	1.95348965	0.26822701	1.0244896
2006Q2	-0.93923858	-0.35594548	0.15526273	3.43017454
2006Q3	0.28701706	0.61168647	-0.24467642	4.16414248
2006Q4	0.31995907	-0.74211151	0.16724784	3.32734672
2007Q1	-0.53677873	0.38378129	1.19002672	2.01813797
2007Q2	0.02023751	1.89094941	2.22254691	-0.56721265
2007Q3	1.49477711	-3.91926251	-1.73704868	-1.13369536
2007Q4	2.39059676	1.15330837	1.80799376	-0.88594587
2008Q1	5.3105189	-3.18872561	-1.64448628	-0.72789134

2008Q2	3.25587187	0.6565271	-2.59777933	-0.9629052
2008Q3	3.1246649	0.49295099	-0.5541481	-0.69390594
2008Q4	-0.78712767	-1.87597978	-2.51423169	-0.52321027
2009Q1	-2.28548442	3.95290087	0.52167713	-0.75270117
2009Q2	-2.67589199	-5.4160685	-0.34514301	-0.48393464
2009Q3	-2.36240858	-2.78101992	2.58626049	-0.31799623
2009Q4	-0.94741997	4.26329967	0.61705593	-0.55566902
2010Q1	-0.83183541	4.32388144	-1.35320482	-0.29753737
2010Q2	-0.31597203	3.305052	-2.32535552	-0.14383833
2010Q3	0.00037293	3.10843553	-1.19938419	-0.39462298
2010Q4	0.31759972	4.13359056	-1.7738255	-0.14985252
2011Q1	0.23610837	-1.02186714	1.75353548	-0.0092415
2011Q2	0.15610039	-1.66290533	2.78602234	-0.27241082
2011Q3	0.37762974	-1.19385306	1.82586271	-0.03897559
2011Q4	0.1006528	-1.2680001	2.87354294	0.09161932
2012Q1	0.02488994	-0.73789003	-0.07159176	-0.18004658
2012Q2	-0.05000137	-0.85527397	-1.01199218	0.04654893
2012Q3	-0.22437923	-0.47144182	-1.95006433	0.17204062
2012Q4	-0.29857049	-0.73714894	-0.88758174	0.79703417

GRÁFICA 1 FLUCTUACIÓN CONJUNTA DE LOS CICLOS DEL PBI, TASA DE INTERÉS REAL, TIPO DE CAMBIO REAL Y TÉRMINOS DE INTERCAMBIO

Elaboración propia. En esta gráfica se observa que entre 2002 y 2014 las variables Ciclos del Producto Bruto Interno, Ciclos de la Tasa de Interés Real, Ciclos de los Términos de Intercambio y Ciclos del Tipo de Cambio Real fueron Estables.


TABLA 2 RESULTADO SEGÚN MÉTODO MÍNIMO CUADRADO

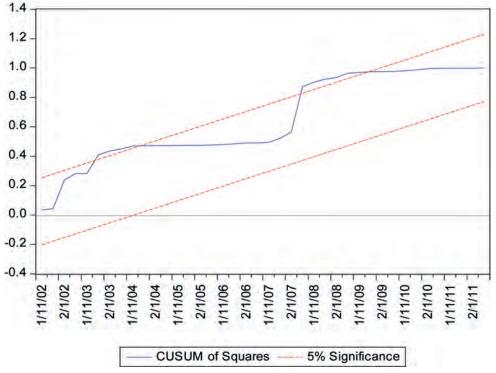
Dependent Variable: CICLOPBI

Method: Least Squares Date: 11/04/15 Time: 14:49 Sample: 2000Q1 2012Q4 Included observations: 52

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CICLOIREAL	-0.010031	0.119787	-0.083742	0.9336
CICLOTCR	-0.190677	0.154088	-1.237454	0.2218
CICLOTI	-0.088074	0.151843	-0.580032	0.5646
R-squared	0.032766	Mean dependent var		-0.013916
Adjusted R-squared	-0.006713	S.D. dependent var		1.965952
S.E. of regression	1.972540	Akaike info criterion		4.252482
Sum squared resid	190.6547	Schwarz criterion		4.365054
Log likelihood	-107.5645	Hannan-Quinn criter.		4.295639
Durbin-Watson stat	1.739329			

GRÁFICA 2 HOMOGENEIDAD EN LOS PARÁMETROS

Elaboración propia. En el período 2000 Q1 – 2012 Q4 cambia de signo el parámetro CICLOIREAL de 0.054071 a -0.010031 y el parámetro CICLOTI de 0.415679 a -0.088074 con lo que queda satisfecha el cambio estructural. Entre 2007-2009 puede haber un indicio pero en promedio no es pronunciado, por lo que existe estabilidad.


TABLA 3
RESULTADO SEGÚN MÉTODO MÍNIMO CUADRADO

Dependent Variable: PBI

Method: Least Saquares Date: 11/13/15 Time: 18:16 Sample: 1/01/2000 1/01/2002 Included observations: 49

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.161905	0.454657	0.356103	0.7236
PBI(-1)	0.202084	0.149229	1.354192	0.1833
PBI(-2)	0.280263	0.140928	1.988698	0.0536
IREAL(-1)	0.010636	0.129692	0.082013	0.9350
IREAL(-2)	0.053791	0.122819	0.437973	0.6638
TI(-1)	-0.078798	0.243270	-0.323909	0.7477
TI(-2)	0.275068	0.239870	1.146737	0.2583
TCR(-1)	0.121099	0.178948	0.676727	0.5025
TCR(-2)	0.165227	0.173342	0.953185	0.3462
R-squared	0.317015	Mean dependent var		-0.705510
Adjusted R-squared	0.180418	S.D. dependent var		2.427805
S.E. of regression	2.197910	Akaike info criterion		4.577297
Sum squared resid	193.2324	Schwarz criterion		4.924774
Log likelihood	-103.1438	Hannan-Quinn criter.		4.709130
F-statistic	2.320808	Durbin-Watson stat		1.943446
Prob(F-statistic)	0.037807			

Los residuos recursivos no siguen un comportamiento estable. Este es un síntoma de que los coeficientes del modelo tienen quiebre estructural.

Se corrige este quiebre para la especificación del modelo:

Chow Breakpoint Test: 1/01/2009

TABLA 4 RESULTADO SEGÚN LA PRUEBA DE CHOW

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables Equation Sample: 1/01/2000 1/01/2012

F-statistic	0.099649	Prob. F(3,43)	0.9598
Log likelihood ratio	0.339481	Prob. Chi-Square(3)	0.9524
Wald Statistic	0.298946	Prob. Chi-Square(3)	0.9602

Según la Prueba de Chow, está dentro del Intervalo de Confianza

TABLA 5 RESULTADO SEGÚN LA PRUEBA DE CHOW

Multiple breakpoint tests

Bai-Perron tests of L+1 vs. L sequentially determined breaks

Date: 11/20/15 Time: 20:00 Sample: 1/01/2000 1/01/2012 Included observations: 49 Breakpoint variables: IREAL TITCR

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05

Sequential F-statistic determined breaks:				0
Break Test	F-statistic		1 Scaled F-statistic	Critical Value**
0 vs. 1		4.591472	13.77442	13.98

^{*} Significant at the 0.05 level.

H₀: No existe múltiples quiebres estructurales (3 quiebres estructurales)

H₁: Sí existe múltiples quiebres

F statistic > Values critical → Se rechaza la hipótesis nula

F statistic < Values critical → Se acepta la hipótesis

 $13.77442 < 13.98 \rightarrow \text{No hay quiebres estructurales}$

El Test de Chow siempre es más potente para detectar quiebres que los demás test.

Por lo tanto, a pesar de que el Test CUSUMQ nos sugiere la presencia de múltiples quiebres, el Test de Chow con múltiples quiebres rechaza esta posibilidad, la cual es reforzada con el test de coeficientes recursivos.

Las políticas monetarias (tasa de interés real, términos de intercambio y tipo de cambio real) implementadas entre 2003-II – 2004-II y entre 2008-I – 2009-4 permitieron atenuar los efectos de crisis nacional y la crisis financiera global, respectivamente. Estas políticas monetarias resultaron efectivas, los datos trabajados en el modelo lo comprueban, al no existir el quiebre estructural que hubiera sido intenso de no darse esas políticas monetarias descritas.

Esos dos subperíodos, coinciden con los períodos previo y posterior a la adopción del régimen de Metas Explícitas de Inflación MEI. Durante el pe-

^{**} Bai-Perron (Econometric Journal, 2003) critical values.

ríodo previo la política monetaria se realizaba mediante el control de la emisión primaria; y durante el período posterior a la adopción del régimen MEI el instrumento de política monetaria era la tasa de interés de corto plazo.

Además, ese cambio en el comportamiento cíclico de las tasas de interés real, los tipos de cambio real y los términos de intercambio entre esos dos subperío-

dos ha sido influenciado por la adopción del régimen MEI y del cambio de instrumento monetario. Las volatilidades no condicionales de las tasas de interés real, los tipos de cambio real y los términos de intercambio caen hacia el período MEI. Se reportan los hechos estilizados de los ciclos de las tasas de interés real, los tipos de cambio real y los términos de intercambio, comparándolos según esos dos subperíodos.

TABLA 6

Null Hypothesis: D(CICLOPBI,2) has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test s	tatistic	-12.20278	0.0000
Test critical values:	1% level	-3.562669	
	5% level	-2.918778	
	10% level	-2.597285	

*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CICLOPBI,3)

Method: Least Squares Date: 08/21/15 Time: 16:32 Sample: 2000Q1 2012Q4 Included observations: 52

included observations: 52					
Variable	Coefficient		Std. Error	t-Statistic	Prob.
C	-0.047994		0.297255	-0.161458	0.8724
R-squared	0.944135	Mean dependent var			-0.214188
Adjusted R-squared	0.940643	S.D. dependent var			8.789678
S.E. of regression	2.141453	Akaike info criterion			4.434650
Sum squared resid	220.1195	Schwarz criterion			4.584746
Log likelihood	-111.3009	Hannan-Quinn criter.			4.492193
F-statistic	270.4030	Durbin-Watson stat			2.283414
Prob(F-statistic)	0.000000				

El ciclo del PBI es estacionario porque se rechaza la hipótesis nula H_0 : la serie CICLOPBI presenta raíz unitaria dado que su probabilidad = 0. 0000 < α = 1%

Así, la ecuación que utiliza el ADF para obtener el t – Estadístico del ADF es $D(CICLOPBI,3) = \beta_0 + \beta_1 D(CICLOPBI(-1),2)$

+ β ₃ D(CICLOPBI(-1),3) + β ₃D(CICLOPBI (-2),3)

TABLA 7

Null Hypothesis: D(CICLOIREAL,2) has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test sta	atistic	-7.517094	0.0000
Test critical values:	1% level	-3.562669	
	5% level	-2.918778	
	10% level	-2.597285	

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CICLOIREAL,3)

Method: Least Squares Date: 08/24/15 Time: 18:39 Sample: 2000Q1 2012Q4 Included observations: 52

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CICLOIREAL(-1),2)	-4.579205	0.609172	-7.517094	0.0000
D(CICLOIREAL(-1),3)	2.225100	0.517593	4.298937	0.0001
D(CICLOIREAL(-2),3)	1.049513	0.331314	3.167734	0.0027
D(CICLOIREAL(-3),3)	0.369684	0.132446	2.791198	0.0076
C	0.064699	0.419582	0.154198	0.8781
R-squared	0.928695	Mean dependent var		0.105416
Adjusted R-squared	0.922626	S.D. dependent var		10.87190
S.E. of regression	3.024143	Akaike info criterion		5.142344
Sum squared resid	429.8357	Schwarz criterion		5.329964
Log likelihood	-128.7009	Hannan-Quinn criter.		5.214273
F-statistic 153.0345		Durbin-Watson stat		2.052424
Prob(F-statistic)	0.000000			

El ciclo de la tasa de interés real es estacionario porque se rechaza la hipótesis nula H_{0} : la serie CICLOIREAL presenta raíz unitaria dado que su probabilidad = $0.0000 < \alpha = 1\%$

La ecuación que utiliza el ADF para obtener el t – Estadístico del ADF es $D(CICLOREAL,3) = \beta_0 + \beta_1 D(CICLOREAL(-1),2) + \beta_2 D(CICLOIREAL(-1),3) + \beta_3 D(CICLOREAL(-2),3)$

TABLA 8

Null Hypothesis: D(CICLOTCR,2) has a unit root

Exogenous: Constant

Lag Length: 5 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test sta	atistic	-5.893547	0.0000
Test critical values:	1% level	-3.562669	
	5% level	-2.918778	
	10% level	-2.597285	

^{*}MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(CICLOTCR,3)

Method: Least Squares Date: 08/21/15 Time: 16:33 Sample: 2000Q1 2012Q4 Included observations: 52

included objet vations, 52				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CICLOTCR(-1),2)	-4.527156	0.768155	-5.893547	0.0000
D(CICLOTCR(-1),3)	2.452872	0.690928	3.550114	0.0009
D(CICLOTCR(-2),3)	1.769922	0.558665	3.168126	0.0028
D(CICLOTCR(-3),3)	1.310362	0.422809	3.099180	0.0033
D(CICLOTCR(-4),3)	0.733676	0.281988	2.601798	0.0125
D(CICLOTCR(-5),3)	0.286142	0.125543	2.279246	0.0274
C	-0.073298	0.301407	-0.243188	0.8090

R-squared	0.898770	Mean dependent var	0.100573
Adjusted R-squared	0.885273	S.D. dependent var	6.352191
S.E. of regression	2.151572	Akaike info criterion	4.494924
Sum squared resid	208.3168	Schwarz criterion	4.757592
Log likelihood	-109.8680	Hannan-Quinn criter.	4.595625
F-statistic	66.58907	Durbin-Watson stat	2.163544
Prob(F-statistic)	0.000000		

El ciclo del tipo de cambio real **es** estacionario porque se rechaza la hipótesis nula H0 : la serie CicloTCR presenta raíz unitaria dado que su probabilidad = $0.0000 < \alpha = 1\%$

La ecuación que utiliza el ADF para obtener el t – Estadístico del ADF es $D(CICLOTCR,3) = \beta_0 + \beta_1 D(CICLOTCR(-1),2) + \beta_2 D(CICLOTCR(-1),3) + \beta_3 D(CICLOTCR(-2),3)$

TABLA 9

Null Hypothesis: D(CICLOTI,2) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test st	atistic	-8.684888	0.0000
Test critical values:	1% level	-3.562669	
	5% level	-2.918778	
	10% level	-2.597285	

*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(CICLOTI,3)

Method: Least Squares Date: 08/21/15 Time: 16:33 Sample: 2000Q1 2012Q4 Included observations: 52

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CICLOTI(-1),2)	-1.681668	0.193631	-8.684888	0.0000
D(CICLOTI(-1),3)	0.403295	0.120630	3.343248	0.0016
C	-0.003046	0.222366	-0.013697	0.9891
R-squared	0.671255	Mean dependent var		0.026589
Adjusted R-squared	0.657837	7 S.D. dependent var		2.739720
S.E. of regression	1.602591	Akaike info criterion		3.837081
Sum squared resid	125.8465	Schwarz criterion		3.949653
Log likelihood	-96.76411	Hannan-Quinn criter.		3.880239
F-statistic	50.02592	Durbin-Watson stat		2.139129
Prob(F-statistic)	0.000000			

El ciclo de los términos de intercambio es estacionario porque se rechaza la hipótesis nula H_0 : la serie CICLOTI presenta raíz unitaria dado que su probabilidad = 0. 0000 < α = 1%

La ecuación que utiliza el ADF para obtener el t – Estadístico del ADF es

D(CICLOTI,3) = β_0 + β_1 D(CICLOTI(-1),2) + β_2 D(CICLOTI(-1),3) + β_3 D(CICLOTI(-2),3)

Es la ecuación auxiliar que utiliza ADF para obtener el t – Estadístico del ADF.

TABLA 10

F-statistic	2.147277	Prob. F(6,77)	0.0573
Obs*R-squared	12.04032	Prob. Chi-Square(6)	0.0611
Scaled explained SS	19.23972	Prob. Chi-Square(6)	0.0038

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/04/15 Time: 15:06 Sample: 1992Q1 2012Q4

Included observations: 84				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.044369	2.025082	1.997139	0.0493
CICLOIREAL^2	0.008817	0.031315	0.281550	0.7790
CICLOIREAL*CICLOTCR	0.143081	0.171000	0.836735	0.4053
CICLOIREAL*CICLOTI	-0.080069	0.087524	-0.914833	0.3631
CICLOTCR^2	0.408432	0.294851	1.385216	0.1700
CICLOTCR*CICLOTI	0.593634	0.260906	2.275284	0.0257
CICLOTI^2	0.081486	0.171848	0.474171	0.6367
R-squared	0.143337	Mean dependent var		7.030806
Adjusted R-squared	0.076584	S.D. dependent var		13.11280
S.E. of regression	12.60068	Akaike info criterion		7.985034
Sum squared resid	12225.84	Schwarz criterion		8.187602
Log likelihood	-328.3714	Hannan-Quinn criter.		8.066465
F-statistic	2.147277	Durbin-Watson stat		2.044325
Prob(F-statistic)	0.057329			

H₀ Los errores del modelo ciclo real no presenta heterocedasticidad (son homocedásticos)

H₁ Los errores del modelo ciclo real sí presenta heterocedasticidad (son heterocedásticos)

Se acepta $\mathbf{H_0}$ por lo tanto, los errores son homocedásticos

[$\alpha = 5\% < \text{Prob } 0.0573$] [$\alpha = 5\% < \text{Prob } 0.0611$]

Aspectos metódológicos

Mediante la técnica econométrica no lineal de Vectores Autoregresivos VAR con datos de la economía peruana para el período Enero 2002 - Diciembre 2014 se muestra los efectos contractivos y expansivos en el PBI causado por variaciones de la tasa de interés real, del tipo de cambio real y de los términos de intercambio.

TABLA 11

Group unit root test: Summary

Series: CICLOPBI, CICLOIREAL, CICLOTI, CICLOTCR

Date: 08/21/15 Time: 16:34 Sample: 2000Q1 2012Q4

Exogenous variables: Individual effects Automatic selection of maximum lags

Automatic lag length selection based on SIC: 1 to 3

Newey-West automatic bandwidth selection and Bartlett kernel

Balanced observations for each test

			Cross-	
Method	Statistic	Prob.**	sections	Obs
Null: Unit root (assumes common unit root process)				
Levin, Lin & Chu t*	-7.84775	0.0000	4	208
Null: Unit root (assumes individual unit root process)			
Im, Pesaran and Shin W-stat	-16.8700	0.0000	4	208
ADF - Fisher Chi-square	160.218	0.0000	4	208
PP - Fisher Chi-square	86.8165	0.0000	4	208

^{**} Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Se rechaza $\mathbf{H_0}$: las series CICLOPBI, CICLOIREAL, CICLOTI, CICLOTCR presentan raíz unitaria Prob. $0.0000 < \alpha = 0.01 = 1\%$ es decir, no existe raíz unitaria.

En consecuencia, las Series CICLOPBI, CICLOIREAL, CICLOTI, CICLOTCR son estacionarias.

Así, se estudia los mecanismos de propagación de los ciclos económicos a través del uso del modelo de vectores autorregresivos con dos rezagos (ya que por el test de exclusión de rezagos se eligió 2 rezagos).

La prueba de causalidad de Granger nos permite establecer la relación de causalidad entre las variables incorporadas en el sistema VAR.

TABLA 12

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 08/21/15 Time: 20:57 Sample: 1/01/1992 2/01/2012 Included observations: 82

[Dependent varia	ble: PBI		
	Excluded	Chi-sq	df	Prob.
	IREAL	9.796657	2	0.0075
	TI	5.123718	2	0.0772
	TCR	2.622905	2	0.2694
	All	14.28364	6	0.0266

Según la aplicación del test Chi-Cuadrado, se rechaza la H_0 (la tasa de interés real no causa a lo Granger al PBI) dado que la Prob $0.0075 < \alpha = 0.05 = 5\%$; y también se rechaza H_0 (los términos de intercambio y el tipo de cambio real no causa a lo Granger al PBI) sí consideramos un $\alpha = 0.10 = 10\%$ y un $\alpha = 0.27 = 27\%$ respectivamente haciendo que la Prob $0.0772 < \alpha = 0.10 = 10\%$ y que la Prob $0.2694 < \alpha = 0.27 = 27\%$

Tomando en conjunto la exclusión de todas las variables; se rechaza $\rm H_0$ con lo cual se demuestra que IREAL , TI y TCR sí causa a lo Granger al PBI.

TABLA 13

VAR Residual Serial Correlation LM Tests

Null Hypothesis: no serial correlation at lag order h

Date: 08/21/15 Time: 20:59 Sample: 1/01/1992 2/01/2012 Included observations: 82

Lags	LM-Stat	Prob
1	25.10535	0.0680
2	29.80150	0.0191
3	14.14720	0.5877

Probs from chi-square with 16 df.

Para el Test de Correlación Serial LM; se observa que: con 1 y 3 rezagos resulta no significativo el Estadístico LM dado que Prob $(0.0680; 0.5877) > \alpha$

= 0.05 = 5%; lo que significa que los errores No están Autocorrelacionados en primer y tercer orden de los rezagos; en cambio con 2 rezagos se rechaza \mathbf{H}_0 (la No presencia de Autocorrelación de orden 2) el cuál se sustenta con Prob = 0.0191 < α = 0.05 = 5%; el cual se sustenta con un nuevo Test de Autocorrelación.

En el Análisis Econométrico del VAR con 2 rezagos; todas las variables son explicadas por la misma variable y sus correspondientes dos rezagos.

Dado $\mathbf{Y}_{t} = [PBI_{t-i} IREAL_{t-i} TI_{t-i} TCR_{t-i}] \mathbf{i} = 1,2$ tenemos

 $\begin{aligned} & PBI_{t} = \beta_{1}PBI(-1) + \beta_{2}PBI(-2) + \beta_{3}(IREAL(-1) + \\ & \beta_{4}IREAL(-2) + \beta_{5}TI(-1) + \beta_{6}TI(-2) + \beta_{7}TCR(-1) + \\ & \beta_{8}TCR(-2) + u_{t} \end{aligned}$

TABLA 14

Vector Autoregression Estimates Date: 08/15/15 Time: 12:09

Sample (adjusted): 1/21/1992 2/01/2012 Included observations: 82 after adjustments Standard errors in () & t-statistics in []

	PBI	IREAL	TI	TCR
PBI(-1)	$\beta_1 = 0.144771$	0.169337	0.120033	0.006404
	(0.10819)	(0.18743)	(0.06313)	(0.08230)
	[1.33806]	[0.90346]	[1.90124]	[0.07781]
PBI(-2)	$\beta_2 = 0.233514$	0.149517	-0.010253	-0.088830
	(0.10984)	(0.19028)	(0.06409)	(0.08355)
	[2.12596]	[0.78577]	[-0.15996]	[-1.06315]
IREAL(-1)	$\beta_3 = 0.193800$	0.446354	0.088460	-0.006038
	(0.06603)	(0.11438)	(0.03853)	(0.05023)
	[2.93514]	[3.90228]	[2.29597]	[-0.12022]
IREAL(-2)	$\beta_4 = -0.130529$	0.289515	-0.041638	0.040066
	(0.06305)	(0.10923)	(0.03679)	(0.04796)
	[-2.07021]	[2.65059]	[-1.13173]	[0.83536]
TI(-1)	$\beta_5 = 0.430269$	-0.746144	0.986595	-0.089292
	(0.19442)	(0.33680)	(0.11345)	(0.14789)
	[2.21312]	[-2.21539]	[8.69651]	[-0.60377]
TI(-2)	$\beta_6 = -0.297293$	0.602954	-0.326695	-0.017684
	(0.17930)	(0.31062)	(0.10463)	(0.13639)
	[-1.65804]	[1.94115]	[-3.12245]	[-0.12965]

TCD/ 1)	0 - 0.004552	0.007874	-0.148496	0.598787
TCR(-1)	$\beta_7 = -0.084552$			
	(0.15673)	(0.27152)	(0.09146)	(0.11922)
	[-0.53947]	[0.02900]	[-1.62367]	[5.02238]
TCD(2)	0 0 200522	0.276224	0.144211	0.226641
TCR(-2)	$\beta_8 = 0.208533$	-0.376224	******	
	(0.15756)	(0.27295)	(0.09194)	(0.11985)
	[1.32351]	[-1.37835]	[1.56853]	[1.89097]
С	$\beta_0 = 0.068145$	-0.605481	0.247280	-0.388743
	(0.44497)	(0.77084)	(0.25965)	(0.33848)
	[0.15314]	[-0.78548]	[0.95236]	[-1.14849]
R-squared	0.325373	0.843218	0.755535	0.701988
Adj. R-squared	0.251441	0.826037	0.728744	0.669329
Sum sq. resids	585.9641	1758.503	199.5202	339.0642
S.E. equation	2.833179	4.908064	1.653225	2.155160
F-statistic	4.400994	49.07687	28.20140	21.49459
Log likelihood	-196.9811	-242.0384	-152.8100	-174.5512
Akaike AIC	5.023929	6.122888	3.946586	4.476860
Schwarz SC	5.288081	6.387041	4.210738	4.741012
Mean dependent	-0.490000	-3.165854	0.136585	-1.953415
S.D. dependent	3.274622	11.76742	3.174260	3.747846
Determinant resid covariar	nce (dof adj.)	2108.180		
Determinant resid covariar	nce	1324.170		
Log likelihood		-760.1420		
Akaike information criterio	n	19.41810		
Schwarz criterion		20.47471		

La ecuación estimada para el PBI es $PBI_{t} = 0.068145 + 0.144771PBI_{t-1} + 0.233514PBI_{t-2} +$

 $\begin{array}{lll} \textbf{Prueba t} & [\ 0.15314\] & [\ 1.33806\] & [\ 2.12596\] \\ & 0.193800 \textbf{IREAL}_{t\text{-}1} & - & 0.130529 \textbf{IREAL}_{t\text{-}2} \\ & + 0.430269 \textbf{TI}_{t\text{-}1} & - 0.297293 \textbf{TI}_{t\text{-}2} \\ & [2.93514] & [-2.07021] & [2.21312] & [-1.65804] \end{array}$

-0.084552TCR_{t-1} + 0.208533TCR_{t-2} + u_t [-0.53947] [1.32351]

dF(x, 2, 77) = 3.115 dF(x, 2, 77) 0.4 0.2 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.3 0.4 0.2 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.

 \textbf{PBI}_{t} resulta significativa para explicarse asimisma en el segundo rezago $\textbf{PBI}_{t\text{-}2}$ [2.12596] dado que $t_{\beta 2}$ = 2.12596 > t_{t} (73 , 0.05) = 1.994 y por tanto se Rechaza H_{0} : β_{2} no es significativa

F – **statistic** Ajuste Poco Significativo. Existen algunos estimadores como β_0 , β_1 , β_6 , β_7 , β_8 que individualmente no son significativos, sin embargo, en conjunto sí resultan significativos

 $(\mathbf{F}_{t} = 4.400994 > \mathbf{F}_{tabla} = 3.115)$

 $F_{\text{stadistic}}$ 4.400994 > $\mathbf{q}F_{\text{ta-bla}}$ (2.77) = 3.115

Por lo tanto, se Rechaza

 H_0

 H_{0} Los parámetros β en conjunto No resultan significativos

 \mathbf{H}_1 Los parámetros $\boldsymbol{\beta}$ en conjunto Sí resultan significativos

Por lo tanto, se acepta $\mathbf{H}_{\mathbf{I}}$

Sin embargo, no hay mucha crítica, a que algunos coeficientes no sean significativos, dado que los modelos VAR presentan por teoría multicolinealidad.

IREAL_t resulta significativo para explicar el **PBI** en el primer rezago **IREAL**_{t-1} y en el segundo rezago **IREAL**_{t-2} dado que t_{β3} = 2.93514 > t_t (73, 0.05) = 1.994 para rechazar H₀: $β_3$ no es significativa y t_{β4} = |-2.07021| > t_t (73, 0.05) = 1.994 para rechazar H₀: $β_4$ no es significativa

TI resulta significativa para explicar el **PBI** en el primer rezago TI_{t-1} dado que $t_{\beta 5} = 2.21312 > t_{t}$ (73, 0.05) = 1.994 y por tanto se rechaza $H_{0}: \beta_{5}$ no es significativa

TCR resulta significativa para explicar el PBI

en el segundo rezago TCR_{t-2} sí consideramos un α = 0.20

Para el intercepto β_0 tenemos $t_{\beta 0}$ = [0.068145] el cual significa que el hiperplano de la función PBI corta el eje de la ordenada PBI desde el lado positivo.

Considerando que la bondad de ajuste es poco representativa para la ecuación del PBI con R^2 = 0.3253 (32%) esto se compensa para las demás ecuaciones, pues dicha bondad de ajuste resulta representativa con 84%, 75% y 70% respectivamente lo cual nos indica que el sistema VAR (2) es estable.

Se analiza los resultados de la función impulsorespuesta que es significativa; y de la descomposición de la varianza; para evaluar las diferentes políticas; y el poder predictivo del sistema VAR(2).

TABLA 15

Ramsey RESET Test Equation: REGREPBI1

Specification: PBI C PBI(-1) PBI(-2) IREAL(-1) IREAL(-2) TI(-1) TI(-2) TCR(-1) TCR(-2)

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.954754	72	0.0545
F-statistic	3.821064	(1, 72)	0.0545
Likelihood ratio	4.240222	1	0.0395
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	29.53014	1	29.53014
Restricted SSR	585.9641	73	8.026905
Unrestricted SSR	556.4340	72	7.728249
Unrestricted SSR	556.4340	72	7.728249
LR test summary:			
	Value	df	
Restricted LogL	-196.9811	73	
Unrestricted LogL	-194.8610	72	

Unrestricted Test Equation:
Dependent Variable: PBI
Method: Least Squares
Date: 11/13/15 Time: 17:48
Sample: 1/21/1992 2/01/2012
Included observations: 82

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.059294	0.441454	-0.134315	0.8935
PBI(-1)	0.146339	0.106166	1.378397	0.1723
PBI(-2)	0.222463	0.107925	2.061281	0.0429
IREAL(-1)	0.302323	0.085320	3.543378	0.0007
IREAL(-2)	-0.162866	0.064041	-2.543176	0.0131

TI(-1)	0.586337	0.206800	0.0059	
TI(-2)	-0.403125	0.184078 -2.189964		0.0318
TCR(-1)	-0.124856	0.155165	0.4237	
TCR(-2)	0.335233	0.167640	0.0493	
FITTED^2	0.140288	0.071768 1.954754		0.0545
R-squared	0.359371	Mean dependent var		-0.490000
Adjusted R-squared	0.279293	S.D. dependent var		3.274622
S.E. of regression	2.779973	Akaike info criterion		4.996609
Sum squared resid	556.4340	Schwarz criterion		5.290111
Log likelihood	-194.8610	Hannan-Quinn criter.		5.114445
F-statistic	4.487735	Durbin-Watson stat		2.013389
Prob(F-statistic)	0.000107			

Para contrastar H_0 es correcta la especificación del modelo CICLOPBI; se hace uso de la Prueba de Ramsey, cuyo resultado considerando un α = 5% y α = 1% de confianza F(1.72, 0.05) = 3.96; F(1.72, 0.01) = 7.03 respectivamente que suponen un F-statistic = 3.821064

Por lo tanto, Aceptamos $\rm H_0$, es decir, está estrictamente especificado y por tanto, no necesita una Reparametrización o Especificación Alternativa.

Así, $\alpha = 5\%$ y Probabilidad 5.45% entonces 5.45% > 5% y Aceptamos H₀

La respuesta del **PBI** a su propio shock se muestra volátil desde el primer hasta el quinto período, el cual decrece para el siguiente período, para luego mostrar un comportamiento convergente para los siguientes períodos (estabilidad del **PBI**)

La respuesta del PBI al shock de la tasa de interés real IREAL en el período 1 es positivo y luego se hace negativo para el período 2 el cual se amortigua hacia su posición de convergencia (estabilidad del PBI). Así, las reducciones de IREAL en la fase de auge tuvieron menor capacidad para expandir la producción. Una razón para explicar este hallazgo fue la existencia de restricciones de capacidad instalada, la cual ha impedido la capacidad para expandir la producción de ese estímulo monetario (de esas reducciones de IREAL en esa fase de auge). En cambio las reducciones de IREAL en la fase recesiva tuvieron mayor capacidad para expandir la producción. Los aumentos de IREAL en la fase recesiva tuvieron mayor capacidad para contraer la producción; en comparación con los aumentos de IREAL en la fase de auge, cuya capacidad para contraer la producción fue menor.

La respuesta del PBI al shock de los TI es positivo en el primer y tercer período; y negativo en el segundo y cuarto período, luego continua su senda de convergencia (estabilidad del PBI). Así, la importancia de los TI en la evolución cíclica del PBI ha sido fuerte a lo largo del período 2002-2014, pero particularmente en el período 1994-1999 donde los TI se convirtieron en un determinante de los ciclos económicos. Así, para el período 1994-2012 la correlación **TI** y **PBI** fue de 0,78 aunque en el período 1992-1993 la correlación **TI** y **PBI** fue de -0,45. Los TI han mostrado una tendencia creciente a partir del año 2001, no obstante, fue difícil predecir qué tan permanentes fueron esos incrementos. Sin embargo, fue posible inferir su impacto de largo plazo, a partir del comportamiento observado de la economía en el período 2002-2014. Con esta finalidad, se usó la información de los TI y el PBI de la economía peruana para el período 2002-2014, y se aplicó la metodología para separar el componente transitorio y permanente de los TI. Usando esta descomposición se estimó la importancia del componente permanente de los **TI** en la varianza del PBI.

La respuesta del **PBI** al shock del **TCR** tuvieron un impacto negativo en el primer y segundo período y un impacto positivo en el tercer período y luego alcanza su convergencia a partir del cuarto período. Así, las depreciaciones del **TCR** (variable relevante en Perú que tiene un alto grado de dolarización) causaron efectos contractivos en el **PBI** en el corto plazo. Esos efectos contractivos en el **PBI** causado por esas depreciaciones del tipo de cambio real fueron de mayor magnitud y duración cuando la economía estuvo en la fase recesiva; por la posición financiera más frá-

7

8

9

10

TABLA 16

Variance Decomposition of PBI:					
Period	S.E.	PBI	IREAL	TI	TCR
1	2.833179	100.0000	0.000000	0.000000	0.000000
2	3.088456	85.96646	8.953715	4.774481	0.305349
3	3.244815	86.87177	8.132054	4.451066	0.545106
4	3.298561	85.20818	9.647898	4.609283	0.534638
5	3.323204	85.02823	9.718156	4.541359	0.712252
6	3.335338	84.69014	10.02239	4.509579	0.777886

84.50522

84.36963

84.28485

84.23089

3.341552

3.345082

3.347071

3.348265

gil que tenían las empresas en esa fase recesiva. Así, estos efectos contractivos fueron más perjudiciales en la fase recesiva del ciclo económico. Las apreciaciones del **TCR** causaron efectos expansivos en el PBI en el corto plazo, debido al abaratamiento del valor real de los pasivos de los agentes endeudados en dólares.

La descomposición de la varianza del PBI se muestra en la columna SE (Desviación Estándar) que define el error de predicción del PBI para 10 períodos futuros. En el primer período futuro, el error de predicción del PBI es de 2.833179 error que se va incrementando en los períodos futuros hasta alcanzar el valor de 3.348265 para el décimo período futuro; cuya fuente es la variación de los errores corrientes y futuros de los shock.

Las demás columnas muestran el porcentaje de la variación de los errores de predicción del PBI debido a shock específicos:

En el primer período futuro, el 100% de la variación del error de predicción del PBI se debe a su propio shock.

En el segundo período futuro, el 85.96646% de la variación del error de predicción del PBI se debe a su propio shock; el 8.953715% de la variación del error de predicción del PBI se debe a shock de la tasa de interés real IREAL; el 4.774481% de la variación del error de predicción del PBI se debe a shock de los términos de intercambio TI y el 0.305349% de la variación del error de predicción del PBI se debe a shock del tipo de cambio real TCR.

Del tercer al décimo período futuro, el error de predicción del PBI se incrementa pasando: del 8.132054 hasta el 10.32558 debido a shock de la

tasa de interés real IREAL; del 4.451066 hasta el 4.514458 debido a shock de los términos de intercambio TI; y del 0.545106 hasta 0.929070 debido a shock del tipo de cambio real TCR.

4.507749

4.509892

4.512987

4.514458

0.857589

0.896755

0.919701

0.929070

10.12944

10.22372

10.28246

10.32558

CONCLUSIONES

De la estimación del Modelo VAR (período trimestral 2002-2014) resulta que la Tasa de Interés Real influyó significativamente sobre el Producto Bruto Interno en sentido positivo y negativo respectivamente con un primer y segundo rezago. La política monetaria de mantener reducida la tasa de interés de referencia y aumentar la cantidad de dinero a disposición de los bancos mantuvo reducida la tasa de interés real alterando las decisiones del gasto y afectando la producción. Así, la evolución de la tasa de interés real influyó en el ciclo económico peruano; toda vez que esa reducción de la tasa de interés elevó el valor presente de los proyectos de inversión de largo plazo haciendo que los empresarios ejecutaran esos proyectos. Cuando se frenó la expansión del crédito se detectó que la falsa impresión de rentabilidad creada por esa expansión del crédito conducía a inversiones poco rentables. Muchas empresas que se habían iniciados gracias a esa reducción del interés, y que se habían sostenido gracias al aumento del dinero, ya no eran rentables. Algunas empresas redujeron su escala de operación y otras cerraron. La crisis y la recesión le siguió a ese auge. El período de recesión era la culminación del período de inversiones poco rentables. Esas empresas que debían su existencia al hecho de que alguna vez parecían rentables en las condiciones creadas por la expansión del crédito; dejaron de ser rentables. La economía se adaptaba a estas pérdidas y a la situación que resultaba de ella.

De la estimación del Modelo VAR (período trimestral 2002-2014) resulta que el Tipo de Cambio Real influyó significativamente sobre el Producto Bruto Interno en sentido negativo y positivo respectivamente con un primer y segundo rezago. En particular; luego de las depreciaciones del tipo de cambio real; la tasa de interés real aumentó con mayor magnitud en la fase recesiva indicando un mayor temor a esas depreciaciones contractivas del tipo de cambio real (por parte del BCRP) cuando las condiciones de la economía eran frágiles.

De la estimación de la estimación del Modelo VAR (período trimestral 2002-2014) resulta que los términos de intercambio influyeron significativamente sobre el Producto Bruto Interno en sentido positivo y negativo respectivamente con un primer y segundo rezago. En particular, los aumentos en los TI causado por el aumento del precio esperado de las exportaciones de metales y alimentos provocaron un aumento de la demanda de inversión del sector exportador, favoreciendo al crecimiento del PBI potencial de la economía; y los aumentos en los TI causado por la caída de precios de los insumos importados (como el petróleo) representaron (para las empresas en sus procesos de producción) ahorros en sus costos de producción y mejoras en su competitividad que las indujeron a producir más. Los TI tuvieron efectos en el ciclo económico y en el comportamiento de largo plazo de la economía. Así, la evolución de los términos de intercambio durante 2002-2014 influyó en el ciclo económico peruano.

Por lo tanto, tal período registró un continuo progreso económico. Este progreso económico se produjo a un ritmo tan rápido que compensó y superó las pérdidas provocadas por el excesivo consumo de bienes de capital y las torpes inversiones de la política monetaria expansiva. En tales casos, el sistema económico gozó, después de los auges, de mayor prosperidad que antes de producirse esos auges; sin embargo, la gente se consideró con menos recursos; al darse cuenta de las aún enormes posibilidades de mayor prosperidad que han sido debilitadas y desperdiciadas.

REFERENCIAS BIBLIOGRÁFICAS

- Armas, Adrián; Grippa, Francisco; Quispe Misaico, Zenón y Valdivia, Luis (2001). "De metas monetarias a metas de inflación en una economía con dolarización parcial: el caso peruano". PERÚ. Revistas de Estudios Económicos N° 07 BCRP.
- Bigio, Saki y Salas, Jorge (2006). "Efectos no lineales de política monetaria y de tipo de cambio real en economías parcialmente dolarizadas: un análisis empírico para el Perú". PERÚ. Serie de Documentos de Trabajo. N° 2006-008 BCRP.
- Cabrera Pascal, Nilda Mercedes; da Silva Bejarano Aragón, Edilean Kleber y Savino Portugal, Marcelo "Preferencias del Banco Central de Reserva del Perú y reglas óptimas de política monetaria en el régimen de metas de inflación". PERÚ. Documentos de Trabajo N° 10. Junio 2011. BCRP.
- Castillo, Paul; Montoro, Carlos y Tuesta, Vicente "Estimación de la tasa natural de Interés para la Economía peruana". PERÚ; Documentos de Trabajo N° 03. Junio 2006. BCRP.
- Castillo, Paul; Pérez Forero, Fernando y Tuesta, Vicente (2011). Los mecanismos de transmisión de la política monetaria en Perú. PERÚ; Revistas de Estudios Económicos N° 21. BCRP.
- FRIEDMAN, Milton (1993). The Plucking Model of Business Fluctuations Revisited. EEUU. Economic Inquiry, volumen 31 número 2, páginas 171-1767.
- RIVAS SANTOS, Pablo (2013). Algunas notas a considerar en el análisis monetario de los ciclos económicos. PERÚ. Universidad Nacional Mayor de San Marcos, páginas 131-142.
- Von Hayek, F. A. von (1931 [1967]). Prices and Production. 2ª Edición. Nueva York: Kelley. Difundido por Alonso Neira, Miguel A. Las teorías monetarias del ciclo en el marco de la literatura sobre ciclos económicos. Revista Libertas XII: 43 (Octubre 2005) Instituto Universitario ESEADE www.eseade.edu.ar
- Von Mises, Ludwig (1966). *Teoría de la moneda y el crédito*. España. Fundación Ignacio Villalonga, páginas 239-452.