Primera prueba del Concurso de Fisiología

POR EL DOCTOR
MARINO EDMUNDO TABUSSO

Señor Decauo;
 Señores catedráticos;

Señores:
Mi primera palabra ha de ser para una declaracion. La importancia de este momento verdaderamente solemne en mi vida, la autoridad de las personas que me están escuchando handedecir pormí el valorque pretendo dar a taldeclaración. Ahora, si bien es cierto que en el campo del trabajo científico, los confines geográficos tienen un valor relativo; si bien es cierto que 16 años vividos en el Perg, enteramentededicados al servicio del palis, forman lapso de tiempo suficiente para los gue tuvieran que juzgar de mis condiciones personales; a pesar de todo esto, yo he de recordar en este momento que en otra tierra he nacido, que en otro idioma han llegado a miespíritu los factores emotivos que habíande formarlo: que en otra escuela be ido cosechando los elementos de entusiasmo, de fe, para preparar lo que había de ser después el ideal conductor de mis aspiraciones en el campo deltrabajo científico. Ysi ahora me encuentrotan lejos de ese ambiente que fué mío, libre opositor a una cáted ra de enseñanza superior, protegido porla libertad que la ley asegura y sin más deberes que los que esa misma libertad impone, he de reconocer que circunstancias espesiales han de haber actuado en mi favor. Talvezesas circunstancias son muchas, pero yo las reduzco a una sola, fundamental y definitiva, y ésta es el espíritu amplio, grandemente noble, con el cual en todo tiempo la

Facultad de Medicina de Lima ha dejado libre campo a mis aspiraciones amparandolas oportunamente, y preparando el dinamismo de este mismo momento, el cual, aun siendo de prueba y, desde luego de preocupaciones, no deja de ser grandemente honroso. Esto reconozco y esto declaro, y tan profundamente lo siento que me embarga ahora una perplejidad que en la realidad contingente del momento se traduce en untemor grande: el temor que mis condiciones personales, que mis fuerzas resulten demasiado escasas, demasiado inferiores a la honra que se les dispensa.

Otra cosa también deseo declarar. En recientes circunstancias analogas a lat presente, yo he oído a distinguidos catedráticos honrar su discurso rindiendo homenaje a los que fuerongrandes maestros de la Facultad de Medicina de Lima. Yo he oído con profunja emoción ese homenaje, porque en mi espíritu está hondamente arraigado el culto a los que fueron antes de nosotros y fueron tales que han permitido que seamos nosotros lo quesomos. De manera que, por la parte por 10 menos que me corresponde, yo deseo unir el mío a ese homenaje y rendir todos mis respetos a los que han escrito la historia de la Escuela de Medicina de San Fernando. En este orden de sentimientos, quiero rendir un homenaje especial a quien en esta misma catedra, a la cual estoy aspirando, escribía una de las paginas más hermosas de la Historia de la Medicina nacional. Me_refiero al Dr. Celso Bambaren que mucho antes que grandes fisiol6gos la comprobaran en doctrina sistematizada sobre la base del estudio experimental, vislumbraba y enunciaba sobre la simple interpretación de los hechos observados, la fisiología de la revolución cardiaca. Es. to ocurria por el año de 1854 o 1855; mucho antes que Ludwig en Alemania, Ceaveau y Marey en Francia, Albertons, Luciani y Mosso ell Italia, comprobaran la doctrina que hoy forma la base de la fisiología del corazón.

Esto declaro, no s6lo por el deseo de rendir homenaje, sino porque me parece que está página de la bistoria medica nacional merezca ser mayormente conocida. No me sorprende que esté bastante olvidada la historia de la medicina, y que en particular la bistoria de la fisiología estellena de olvidos; pero yo quise recordar este caso para que sirva de faro, de mira a los que pretendiendo ser mañana fisiologos nacionales han de tener en Celso Bambarén un guía y
al mismo tiempo un parangón hacia el cual mirar y con el cual medirse.

Satisfechas asi las exigencias de mi espíritu, voy a intentarla primera prueba de concurso, la cual, si estoy bien enteradodelespíritude laley, ha de consistir en la exposicion de los criterios didácticos que el opositor crea buenos para la enseñallza de la materia. Procuraré hacer mi exposicion lo menos árida, lo más ordenada y sintética posible. Desdeluego, ruego a los que me están escuchando que, con los muchos otros defectos, disimulen también los defectos de oratoria y las deficiencias de idioma.

Ensenar es difícil, cualquiera que sea la materia que corresponda a la asignatura. Pero esta dificultad adquiere particular relieve cuando trátase de nua materia no solamente vasta por sí, sino de una materia que forma base, que forma elemento fundamental de una carrera de estudios. Ahora, no hay quien no reconoza que este es caracter pecmliar de la fisiologfa. Las ciencias mélicas nacen de la fisiologín, sobre la fisiologia se orientan y hacia la fisiología aspirun, que noson sino otra cosa labor subre base y orientacion fisiolggica la labordel patblogo cuando investiga la maturaleza las modalidades de los procesos morbosos; la labor del higienista cuando pretende cristalizar en *abios dictámenes los preceptos de la medicina prerentiva; la labor del clínico cuando se esfuerza !por encontrar los medios más apropiados para satisfacer las indicaciones terapéuticas, y la misma labor del cirujano general o especializado cuando cumple las maravillas de suciencia interrentora para la restitutio ad integram, sacando de raices el maly pretendiendo restaurar las condiciones ${ }_{4}^{\text {ren }}$ normales. Si tales su posición respecto de las demás ciencias, es fácil convencerse que la Fisiología hade formarno sólo la base sino la atm6sfera, por así decirlo, en la cual el joven que emprende la carrera de estudios médicos ha de respirar. La Fisiología debe formar, mejor que ninguna otra ciencia, la mentalifad bielfgica del médico; ella hade acostumbrarlo a considerar el enfermo no un caso especial para su profesion y para su gamancia inmediata, sino un caso especial de vida, un caso especial en el cual él interviene para reparar los posibles desperfectos. Y no solo ha de formarla base en este sentido, sino ha de formar base también en tiempo oportuno; luego ha deestar en el comienzo, en los primeros años de la carrera de estudios. ¿Porque? Porque tan luego el joven estudiante
traspasa los umbrales de la patología, tanluego va acercándose a aquella época de sus estudios, que no hace mucho un estudiante definía, con rasgo genial, la época en que los estudios van de prisa, cunndo allí llega, el estudiante difícilmente vuelve atrás, a aquellas materias, a aquellos argumentos que hubiera debido estudiar como conocimientos basales. Y este es un error grave. Yo me permito decir que más que un error, es un peligro, porque es algo así como una puerta abierta sobre aquel gran resbaladero rodando por el cuab gran número de profesionales resultan empíricos y rutinarios, y hacen una medicina superficial más o menos bien, se. gán lo que han visto hacer y no segán lo que han debido aprender a interpretar.

Perola Fisiología no es una ciencia tan simple; no es una materia que pueda ser llevada al campo de la enseñanza fácilmente. Aun referente a este punto presenta dificultades muy serias, muy poderosas que precisa especificar.

En primerlugar, es una ciencia cuya vastedad es enorme, cuyos límites podríamos decrr son ilimitados, porqué los conocimientos biologicos parecen algo que no tiene confin, que no tiene límites, que no tiene dónde concluír. Pordemás, a es. ta vastedad, a esta amplitud de materia, se añade la lentitud del procesode investigación, la lentitud del proceso de progre. so de avance. Esta declaración puede llamar la atención de quien no está muy al corriente con la marcha que en sus progresos esta ciencia ha realizado, y en tal caso, con razon, podrá preguntar: ¿Peroquéhasidodelos 150 añosquehantranscu. rrido, más o menos, desdeque La vorsier fundara la fisiología cientifica cuando primeramente afirmaba que la vida es una combustion? ¿Quć ha sido de esas grandes escuelas que han sido clásicasen el siglo pasado; de la escuela alemana que na. cida conSchmann y Müller, pasando por Pfrüger, Kühne, Ludwig. Heidenhan, etc., asombróal mando entero con sus descubrimientos; de la escuela francesa, en donde brillarou Chauveau, Marey y Bernard; de la escuela italiana, que ilustraran Albertoni, Luciani, Mosso? Efectivamente, muchose ha hecho. Con un trabajo de cerca!de un siglo de duración, ha sido demostrado que la vida está puestá a continuación de todos los demás fenómenos cósmicos; que sus leyes se compenetran y completan las leyes cósmicas; que si nosotros no sabemos de dónde venimos y hacia donde caminamos, si sabemos que somos un conjunto, una masa de materia organica, organizada que vive sobre un pequeño mundo, éste y
aquella en transformación continua, sacándole a la materia energía y trasformando esa energía. Otra cosa no es la vida. Pero muchas cosas más se ha demostrado, se ha logrado definir, con valor de doctrina, en esos 150 años de trabajo. Toda la Fisiología física, diremos toda la mecánica de la vida ba sido perfectamente estudiada y compenetrada, y era lógico que así tuese para poder llegar a poner en el justo punto de estudio la vida, bajo el punto de vista de su verdadera naturaleza como fenfomeno químico. Ahora precisa afirmaren seguida que en el campo propio de esta labor recién iniciada se encuentran muchas grandes laguoas, lagunas que podemos decir existen en todos los párrafos de la fisiología y que representan tal vez la más gran dificultad para ordenar las relativas doctrinas como materia de enseñanza. Esta afirmacion también pudiera sorprender, así es que me apresuro hacer alguuas consideraciones al respecto.

Generalmente, refiriendonos a la fisiologia, hay muchas cosas que creemos saber y no las sabemos sino muy incompletamente. Yo hablo de la fisiología ciencia, de la fisiología que estudia e interpreta los fenbmenos vitales yno de la fisiología que enseña a controlar, v. g., pulsaciones, a a auscultar el corazón, o aplicar un esfigmomanómetro; yo hablo de la fisiología que interpreta porquecontando las pulsaciones encontramos tal nómero, y porque auscultando encontramos tales ruidos cardiacos; luego yo me refiero a la verdadera fisiología, a la que investiga para explicar. Pues bien, a este respecto, y como ejemplo, ¿qué sabemos nosotros sobre las funciones nerviosas? Yo me limitaría a preguntar que sabemos de la sensación que es el gran puente que une la psicología a la fisiología? Nada o casi nada. Joo que saben los fisiológos son unas cuantas nociones que son más de histologia que de fisiologia. Pero sin llegar tan alto como a las fuluciones nerviosas podemos averiguar lo que pasa con los demás capítulos. Veamos con la fibrocélula cardiaca. ¿Que sabemos nosotros de esta célula diferenciada en célula contractil? Sabemos que tiene la propiedad de contriterse loajo elestímulo como otras celulas, peroc6mo secontricu ritmicamente? No sabemos por cuál mecanismo el corazón se contrate ritmicamente; no lo sabemos tampoco si aplicamos la misma pregunta a lá fibrocélula; y sin embargo el ritmo cardiaco es la base, es el fondo de toda la fisiología cardiaca.

Otro ejemplo: ¿Qué sabemos nosotros de otrascélulas di-
ferenciadas, por ejemplo, de la celula secretora? Sabemos que secreta y excreta su producto. Pero ¿por cuál proceso? ¿C6mo explicamos el hecho por el cual una célula de la glándula mamaria saca de la sangre los elementos para formar lactosa, caseína, grasas, etc., productosque después excreta en las vías lácteas? Nada. Contestamos sí, más o menos perentoriamente, que es un trabajo biológico, que se acompaña de alteraciones histológicas. Todo esto es muy cierto, pero hay que convenir en que esto es presentar el argumento bajo otra forma sin darle explicacion.

Sería fácil multiplicar los ejemplos. Setá sufficiente uno más. Hasta hace poco la correlacción nerviosa era interpretada como el finico medio de coordinacion de la vida en el organismo metazoario. Se conoció luego la correlacion endócrina, otro medio que no sólo tiene igual importancia que el otro, sino que tal vez domina a ese mismo. Ni esto es definitivo. En el filtimo congreso de los fisiologos, Hamburger anuncióo que además de la nerviosa, además de la humoral, hay una tercera correlación que es la relación orgánica debida a la función, es decir que las funcio. nes de los órganos se acompañarían de la producción de factores, de estímulos, de algo que todavía noestá bien precisado peroque influye solre losdemás órganos. De manera que ya tenemos vislumbrado an tercer sistema de correlación.

Pero hay otra dificultad inherente a la enseñanza de esta ciencia. Todaslasciencias tienen almargende los límites que han alcanzado en su desarrollo, unazona que muy oportunamente fué dicha zona neutral; la zoná donde termina lo que ya se sabe y en donde comienza o comenzará lo que sabremos. Una zona obscura, confusa, indecisa: lo fuico cierto es que allí hay algo, hay material con el cual se construita las nuevas verdades que por lo pronto $n o$ conocemos. Ahora, esta zona neutral representa ungran peligro cuando tiene que ser aprovechada para la enseñanza, porque de allí uno puede con facilidad salir equivocado y seguir en forma de doctrina, datos que son simplemente de hipótesis, que son simplemente de suposicion, que son simplemente, y esto ocurre a menudo, tendencian que en general no tienen otra autoridad que la que le viene de algun nombre; hipótesis, suposición o tendencia que al poco tiempo, cuando vuelve la materia bajo la revisión, bajolacrítica exacta de los hechos mejor comprobados, desaparecen. Ahora, estazona neutral es enorme, es ilimitada por cuanto se refiere a la fisiologia.

Todos estos recuerdos los estoy haciendo para llegar a esta conclusión: que estas dificultades, que las diticultades intrínsecas a la materia, se proyectan, por así decirlo, sobre quien tiene que enseñar; sobre el profesor, sobre quien ha de ser el interprete entre la ciencia misma y los quetienen queadquirita. Esto quite decir, que paral la enseñanza aprovechable de la fisiologia hay que mirar dos grupos de dificultades: unas propias del profesor y otras propias de la materia. Esta es una distinción, digamos así, delmomento; de las que la primera depende de la segunda. Sin embargo, ¿cómo se resuelven esas difeultades? Por parte del protesor, con criterie didáctico; por cuanto se refiere a la materia, orientándola oportunamente como prosrama.

Veamos, primero, lo que corresponde a los criterios didícticos.

La primera condicion paraque el profesor pueda cumplir con su misión es tener una irlea exacta de la misión misma. Lamisón es de enseñar, es decir de simplificar; de exponer con método lo que referente a una ciencia forma doctrina y que como doctrina pueda servir para la preparación científica de los alumnos. En este preciso marco el catedrático no debe presentarse como un académico, como un sabio disertador más o menos completo sobre los puntos de su programa. Quien se presenta simplemente con tendencia de saber o académica, podrá soltar clases altisonantes, suntuosas, peroal aire, en general sin provecho alguno para los alumnos. Hay que recordar cómo está formado el conjurto de alumnos en una aula de enseñanza y recordar luego lo que ya decía ungran maestro de fisiologia: que los allumnesen clase-digo esto sin hacer alusión-son en general come todos los oyentes cuando alguien habla; son un cerebro atravesado por un tubo cayas aberturas externas coinciden con las aberturas de los oídos; de manera que lo que llega puede pasar al cerebro y puede también pasar simplemente por ese tubo. A este respecto ha y que recordar las condiciones en que noshallábamos nosotros cuando sentaclos en los bancos escuchábamos al maestro. Reviviendo esos recuerdos, comprenieremos bien el papel que nos corresponde estando ahora en el pupitre. Entonces ¿qué hay que hacer? Hay que tratarque las Heasno pasen porel tubo, si bien lleguen al cerebro, y para eso !hay que llamarla atención del alumno, tratarde interesarloy convencerlo, llevando a la cátedra el entusiasmo propio, las manifestaciones de aquella fe, por la cual uno mismo se ha meti-
do en el camino de esa ciencia; hay que llevar a la clase una obra propia, una obra que siendo naturalmente propia tiene todos aquellos encantos grandes o pequeños, segán la personalidad, que no pueden dejar de llamar la atención al alumno. Se. bre esta base se procurará entonces llevar adelante una ciase en forma liviana, en forma simple, librándola de lo que es excesivamente pesado; particularmente de teorías antigua. das, cle citas, de nfimeros, de la descripcion inútil de aparatos, de esa tremenda aparatologia, que yo llamaría aparatomanía, que hace las clases sumamente soporificas, sumamente insoportables y áridas, sumamente inaprovechables para el alumno. Al alumno hay que darle ideas simples, ideas a veces de carácter elemental, pero ideas firmes, ideas basales, que puedan allí sentarse como valores definitivosen los cimientos de ese granedificio de cultura especial que el allumno necesita.

No importa que esas ideas basales sean pocas. Las otras vendrán oportunamente. El mismo alumno irá a su encuentro tan luego comienza a mirar la materia con mayor cariño, dejando de juzgar la ciencia pesada, cual acostumbra. ba interpretarla antes, considerando los voluminosos libros de texto.

Además yo diré que la Fisiología comoninguna otrama. teria, se presta para llamamientos, consideraciones, reflexio. nes que de tiempo en tiempo avivan el espíritu que ha de llevar a maestro y a alumnos en su trabajo común. Efectivamente la Fisiología es la ciencia que investiga la vida y la vida, aunque vista desde nuestro ególatra centro, es el más bello, el másinteresante entre los infinitos fenómenos cósmicos.

Resultado seguro de este sistema será que el maestro además de despertar el interés del alumno, conquistara su confianza. El alumno dejará de ver en el maestro el juez del próximo exámen y en sus clases la pesada materia objeto del exámen en el que el maestro será de antemano considerado como excesivamente severo, de mayor o menor antipatía segán el caso. Si bien verá en la materia una ciencia que inte. resa y en el maestro un guia, una mente directora y auxilia. dora, un espíritu amigo, al cual se sentirá instintivamente atraído y al cual se acercará en busca de consejos y de auxilio. En esta forma el maestro tendrá verdaderos alumnos y los alumnos un maestro. Estarán así afirmados los justos terminos de un binomio cuyo valor es el aprovechamiento de la enseñanza; a saber: por un lado el aprovechamiento del alumno, por el otro el brillo de la cátedra.

Para ilustrar mejor el valor de estos criterios didácticos en la exposición magistral de la materia, me serviré de algunos ejemplos. Escogeré ejemplos de diferente clase; una funcion en general, un detalle de funcion, un mecanismo de regulación, y después algunos ejemplos de fisiología general del organismo humano.

Como función, tomaré la funcion renalque se presta muy bien porser una de las más complicadas, de las más difíciles por enseñar con toda la precisión que la enseñanza de fisiología requiere, y comenzaré con hacer una observacion al comenzar el estudio de una función, la primera cosa que precisa detallar bien es la posición, el valor fisiologico que la función tiene no solo en sí, sino en su relación con el organismo. Una función esencialmente vale en cuanto forma parte de la conomía orgánica general. Ahorá bien, creo que nadie se asombrará cuando yo afirme que el mayor número de estudiantes hacen de la fisiología del rin̂bn la fisiología de la orina. Nada mas errbneo; la orina es interesante, pero como proclucto de la función; ni es posible interpretar el riñon reduciéndolo a un simple productory excretor de orina. Laego hay que apreciar la funcion interpretándola aplicada al organo; y entonces en lugar de empezar con una complicada exposicion de teorías principales, de hipótesis, suposiciones, números, etc., precisa comenzar segán el criterio lógico de la anatomía y de la histología. Elalumnodebe acostumbrarse a interpretar en las que son o fueronsusdisecciones anatomicasla materia donde la funcion secumple, recordando que los órganos son como la función los hizo. Luegocomienza con criterio natural a ver quéle dice la anatomía referente al riñóu. Dice, por ejemplo, que el riñón tieneuna posición central, una posición en donde estáa asegurada una abundante irrigación savguínea y así sucesivamente vamos apuntando una serie de detalles anatomicos que nos indicanque este brgano ha detener unsignificado fisiologico particularmente importante. Después recordamos quedice la histología. La histología nos dice que el riñon es una glándula tubulosa, cuya unidad anatómica es el tubo urinítero. Tenemos luego como sentar una primera afirnación. Si sabemos que elorgano es la expresionanatómica de la función y en el tubo urinfero tenemos una unidad anatomica, hemos de tener neosariamente una unidad fisiológica. Pero vamos a demostrarlo. Recordemos la estructura del tubo urinífero; siendo el tubo urinítero la unidad anatómica, estudiando a este hemos
estudiado todo elórgano. El tubo urinífero está formado por una ampolla terminal, seguida por un tubo que toma disposiciones diferentes que poriel momento no nos interesan; pero si nosinteresaloque la histología nos dice respecto de esa ampolla y una parte de los tubos mismos. Esa a mpolla es una bolsa* doble, formada por elementos chatos, muy delgados, que envuelvena unovilloarterial. Nosllamanenseguida la atención dos o tres hechos: La membrana que tapiza en doble forma el ovillo tiene ensu estructura elementos chatos que nos recuerdan otros elementos más o menos de la misma estructura y contormación que hemos estudiado, probablemente ya o que estudiarmos en otros organos también de función glandular. En seguida observaremos que en la formación del ovillo del glomiérulo hay dos ramas: ulua que entra, aferente, y otra que sale, eterente; y anotaremos que la rama que sale en lugar de tener los caracteres de todas las ramas venosas que salen de un órgano, en lugar de ser más grande, es más chioa, su dodiametro es más reducido; y que despaés de pequeño trayecto en lugar de ir alamentando de diámetro anastomosándose con otras ramas y formars un grueso tronco, vuelve a capilarizarse. Luego hay un sistema capilar en el ovillo, y un sistema capilar a continuación. Losanatomistas llaman esta disposición sistema porta. Pero la naturaleza nada hace por capricho; luego debe haberal guna finalidad que ya veremos; mientras tanto sentamosesta nocion también. Despues observamos el túbulo verdadero y constatamos que los elementos anatómicos cambian de carácter; ya no son achatados sino elevados, granulosos y si oluservamos bien, constatamos que la parte que corresponde a la membrana basal presenta un aspecto turbio que varía segun el momento en que lo observamos, aunque esta variación sea poco acentuada, porque el riñón es un órgano de secreción y excreción continua. Anotamos luego que tenemos de trente un elemento especial, cuyo caracteres morfológicos nosautorizan compararloconlos elementos de otrosórganos glandulares, elementos defunción secretora y excretora ya definitivamente demostrada, Para corroboraresta interpretación recordamosque inoculando a un animal de experimento un material que no pueda entrar a formar parte del orga. nismo, un cuerpo extraño o una sustancia que podamos reconocer en el momento oportuno, pongamos una sustancia colorante, y al cabo de algunas horas sacrificamos al animal para practicar el examen microscópico del riñón, encon-
tramos en el protoplasma de los elementos del tábulo la sustancia inyectada.

Así comprobamos por el método experimental la interpretación, fundada sobre la base anatómica, que las células de la primera porción del tubo urinífero han de ser elementos con función secretora. Pretendemos de tal modo establecer, sobre la base de los datos anatónicos, el doble mecanismo de la compleja fanción renal o, mejor dicho, la doble función renal: Una funcion que necesita un mecanismo rápido y simple a la vez, cual ofrece el glomérulo renal, brgano de filtración, de funcionamiento esencialmente físico, apropiado para climinar en corto tiempo agua y seles; y una función de eliminación de los productos cataboblicos del metabolismo nitrogenado y mineral. pero por un mecanismo lento, en trabajo continuo por ser su finalidad la de impedir que la acumulación de dichos productos pase los límites de condensación normal en la sangre. A la segunda función corresponde un verdadero trabojo de selección, separación y eliminaciún de elementos; en casos especiales, como para el ácido hiparico. de síntesis de productos por eliminar; en suna, una función en los límites más amplios de función de secreción, cuall lógicamente aparece propia de los grandes elementos del tíbulo urinífero. Sentado así el estudio de la funcién remal sobre su verdadera base, ya sera más fácil, introducir en la exposición e interpretación de los fenomenos y modalidades correspondientes, los demás elementos de deducción experimental o clínica. Después de pasar en revisión las clásicas teorías de la difusión-secreción y de la difusiónreabsorción, se pasará al estudio de los fenómenos circulatorios, fundamentales para completar la interpretación del mecanismo y lat finalidad funcional del glomérulo como órgano regulador de la presión sanguínea; se llegará así a demostrar la razón fistologica que nos explica las disposiciones anatómicas que aseguran al riñon una irroración sanguinea particularmente abundante y de gran velocidad, etc. De modo análogo se procederá con lo referente a la función tubular propiamente dicha. En altimo se expondrán, a manera de doctrina sintética, las conclusiones principales sobre la función renal, suficiente para tener conocimiento exacto de la posición y significado fisiológico del riñon en la economía orgánica general. Nos hallaremos entouces en condiciones de interpretar la fisiología de la urina, no solamente como producto de la actividad renal, interpretada esta
como el principal mecanismo dé regulacion de la composicion de la sangre, sino alin como producto del metabolismo orgánico.

Para aclarar el método expositivo que considero más apropiado a losfines didácticos, tomaré, como segundo ejemplo, una demostracion experimental.

Todas las funciones tienen una finalidad fisiológica, cuyo significado se juzga por los fenómenos a que dan lugar. Si trátase de función glandular, el producto de secreción estudiado en sus caracteres, composición y acción formara el término de juicio; si trátase de una función muscular, serála contraccióny susefectos directos comotrabajo mecánicoe indirectos, y así de seguida. Por otra parte ninguna funciónes absoluta enel tanto y en el valor intrínseco de los fenómenosa que da lugar. Estos varían entre límites cuyo margen representa la posibilidad de las variaciones fisiológicas. Dichus límites son elementos importantísimos entre los conocimientos fisiológicos. Etectivamente demarcan el punto de separación entre las condiciones normales y anormales; el punto donde la fisiología termina y la patologia comienza De alif ha de arrancar el fisiopatólogo para la exposición e interpretación de la doctrina que le corresponde. Xo pienso que en el estudio de las diferentes funciones, el maestro ha de poner particular cuidado para que las variaciones fisiológicas de las funciones sean de dominio, de interpretacion fácil y fundada por parte de tos alumnos. Ahota bien, siendo que el organismo, mejor dicho los mismos sistemas orgánicos que son sede de las funciones en estudio, poseen admirables mecanismos de regulación para que la fanción quade en los límites normales, interpretándolos oportunamente el maestro dará la mejor enseñanza posible al fin antedicho. Alguno de esos mecanismos son susceptibles de interesantes demostraciones experimentales. Este es el caso del ejemplo que preten. do desarrollar.

Aunque la afirmación haya de pesar a los que tienen culto de romanticismo, el corazón es un órgano insensible. El corazon no posee la sensibilidad fisiologica general, pero si tiene la sensibilidad de su trabajo, la sensibilidad por lo cual interpreta el estuerzo funcional que ha de cumplir. La percepción del esfuerzo es coman a todos los casos de trabajo mecánico dependiente de contracción muscular. Por ella se da cuenta del esfuerzo que debe realizar y áfo se apercibe si podrárealizarlo, quien tenga que levantar un peso, etc.

Profesor Doctur
MakiNo E. Tableso
Catedrítico Princirai de Fisigiogia Generai y Illinana

El trabajo muscular cardiaco, está representado por la enerfía de su contracción y car repercasión la presión de la sangre en las grandes arterias. En cualquier momento la presión arterial puede aumentar por causas extracardiacas hasta un grado excesivo para el corazon; excesivo en el sentido que este no pucde dominarlo sino por cierto tiempo, variando su ritmo y la energía de su contracción. Para evitargraves consecthencias, el corazon ha de ser protegido, a la breredad posible, contra tal exceso de trabajo; ha de hallarse en condicion de no tener que salir de los limites de sus varia. siones funcionales nomates. Para ese fin posee un mecanismo de regulación, sobre la base de un reflejo, sumamente interesante. El reflejo nace, es decir tiene su excitacion inicial, en el mismo corazón y particularmente cerca de la abertura de las grandes arterias, por medio de la sensibilidad antedichacuyoúgano forman las terminaciones sensitivas del nervio depresor o nervio de Lunwig-Cyon. En el hombre este nerviono existe como figano especial. Las fibras que le corresponden corren mezchadas a las demás fibras nerviosas del X par cránico, de ese gran nervio que los antiguos anatomistas, con may fina ironía, llamaron vago. En realidad no hay nervio más complicado en sus málifiples funciones. Por el vago puede decirse que, en subida y en bajada, pasa una tercera parte de la fisiología; como si la naturaleza lo hubiese forjado para dar que hacera los fisiblogos. Y a los patólogos también.

El nervio depresor existe como organo anatómicamente bien definido en muchos herbivoros y particularmente en el conejo, el que en consecuencia hemos de aprovechar para la demostración experimental que nos interesa.

Aplicado al animal anestesiado el clásico dispositivo para la medición de la presión de la sangre en la carótida, excitaremos el nervio depresor cuyo significado de nervio contripeto, es decir sensitivo, se habrá controlado previamente estando todavía el animal en semianestesia. A la excitación 'del depresor, el dispositivo de registacibu acusará fuerte caída de la presión arterial y ralentamiento del ritmo cardiaco. Para interpretar los dos hechos, se nos ofrece una ló. gica suposición. Sabiendo que el depresor es nervio sensitivo y el vago nervio inhibidor, de arresto de la contracción miocárdica, pensamos que con la excitación del depresor se ha provocado un reflejo del que el depresor es la vía centrípeta, el úcleo del vago ell centro de recepcion y el mismo va-
go la vía centrifuga de conducción de la reacción, la que corresponde precisamente al relentamiento del ritmo curdiaco y como consecuencia de este, la baja de la presion. Ahora es tácil comprobar si la interpretación del fenómeno es exacta. Eliminando la segunda rama del arco reflejo, a saber el vago, repetimos la excitacion del depresory con sorpresa observamos que el dispositivo registrador señala si una variación, pero 110 la esperada. Efectivamente no se repite el relentamiento del ritmo cardiaco, pero si se mantiene la caída de la presion. La primera interpretación resulta en parte inexacta. Precisa luego buscar otra explicación sobre la base de los conocimientos sobre las funciones de la inervación vasal. Está forma otro de los mecanismos de regulación de la presión de la sangre. F'rocedemos luego a eliminar del campoexperimental, cortando la medula cervical y el gran simpático, los organos de dicha función, a saber los nervios vaso-motores y repetimos la excitacion del nervio depresor, Esta vez no se observará ya caída de la presión. Ahora tenemos los elementos suficientes para dar la interpretación definitiva de los fenómenos. En el experimento, la excitacion del depresor provoca n doble reflejo, uno sobre el corazón que se tradace en unt ralentamiento de suritmo, otro sobre la inervación vasal, cuyo mecanismo de vasodilatación en las redes vasales periféricas, particularmente las viscerales, entran ell juego para disminuir la presión inicial endoarterial. En condiciones normales, en el corazon sobrecargado por un exceso de presión, pongamos endoaórtica, el nervio depresor recoge como excitaciones los efectos debidos a ese mismo exceso de presion y despertando, por idéntico mecanismo, los reflejos vistos en campo experimental, determina con la vasodilatación visceral el alivio inmediato del miocardio obligado a un esfuerzo excesivo, permitiendole mantener su trabajo, su funcion en los límites de las variaciones normales.

El señor Decano (interrumpienđo). -Está bien, doctor Tabusso.

