Estudio de la actividad antiinflamatoria de extractos de Baccharis lanceolata Kunth en animales de laboratorio

HILDA JURUPE, DOMINGO IPARRAGUIRRE, ELEUCY PEREZ
Centro de Investigación Bioquímica y Nutrición U.N.M.S.M.

Abstract

RESUMEN Se ensayó la actividad antiinflamatoria de extractos acuoso, etanólico y diclorometano preparados de hojas de Baccharis lanceolata. Los extractos fueron administrados oral o tópicamente en ratas con edema plantar producida por carragenina o a ratones con edema auricular inducido por aceite de croton, respectivamente. El efecto antiinflamatorio resultó ser dosis-dependiente, presentando el mayor efecto antiedema el extracto diclorometano, con inhibición del 68% en ambos modelos.

Palabras Claves: Actividad antiinflamatoria, extractos de Baccharis lanceolata, experimento, ratas.

STUDY ON THE ANTI-INFLAMATORY ACTIVITY OF BACCHARIS LANCEOLATA KUNTH EXTRACTS IN LABORATORY ANIMALS SUMMARY

Watery, ethanolic and di-chloromethane extracts made of leafs of Baccharis lanceolata, were assayed by their possible anti-inflamatory activity. Extracts were given oral and topically to rats with plantar edema produced by carragenin or to rats with auricular edema induced by croton oil, respectively. This effect was dosis-dependent and the major effect antiedema was the dichloromethane extract which produced 68% of inhibition in both patterns.

Key words: Anti-inflamatory activity, extract of Baccharis lanceolata, experiment, rats.

INTRODUCCION

La inflamación, proceso común en muchas enfermedades, es una respuesta específica que puede ser iniciada por una variedad de medios físicos, mecánicos, químicos e inmunológicos. Estas respuestas tienen mucho en común, sin importar cual fue el origen del estímulo o el animal usado en la prueba.

El uso de plantas medicinales con supuestas propiedades antiinflamatorias es una práctica frecuente en nuestro medio. Muchas de ellas han sido estudiadas desde el punto de vista químico, no existiendo, en la mayoría de los casos, estudios farmacológicos que validen la actividad atribuida a estas plantas.

Basados en información etnobotánica, seleccionamos 10 especies utilizadas en procesos antiinflamatorios. El propósito de esta investigación fue estudiar la actividad antiinflamatoria de la Baccharis lanceolata, conocida popularmente como chilca o chilco, y que en el bioensayo sobre artemia salina resultó ser la más activa de todas la especies sometidas al estudio. ${ }^{(}{ }^{8}$)

MATELRIAL Y METODOS

Extractos: Fueron preparados a partir de hojas secas y molidas, por deccoción para el extracto acuoso y maceración en frío para los extractos etanólico y diclorometano; los solventes orgánicos y el agua fueron evapo-

[^0]rados a sequedad a temperatura no mayor de $35^{\circ} \mathrm{C}$, guardados a $4^{\circ} \mathrm{C}$ y redisueltos apropiadamente en el momento del ensayo.

Edema inducido por carragenina: Ratas machos Wistar (120, 150 g) fueron sometidas a ayuno de 12 horas con libre acceso de agua. El edema fue inducido por inyección de carragenina (Carragenina Sigma USA, 01 $\mathrm{ml}, 1 \% \mathrm{p} / \mathrm{v}$) en solución salina en la aponeurosis subplantar derecha de grupos de 8 animales (Winter y col., 1962; Sugishita y col., 1981). Extractos acuoso, etanólico y diclorometano o vehículo (Tween 80/etanol/agua, 2:2:20) fueron administrados 30 minutos antes de la inyección de carragenina; controles positivos con indometacina (Sigma USA) fueron igualmente administrados por vía oral. El volumen de la pata inyectada y la contralateral fue determinado por pletismometría antes y $0.5,1,2,3$ y 5 horas después de la inducción de la inflamación; el edema fue expresado como el incremento del volumen de la pata producido por la carragenina.

Edema inducido por aceite de croton en oreja de ratón: Ratones Swiss ($30-34 \mathrm{~g}$) fueron divididos en lotes de 8 animales; cada ratón recibió 20 ul de aceite de croton (Sigma USA 2.5% en acetona preparado al momento del ensayo) por oreja; esta dosis de agente flogógeno fue aplicada mediante una pipeta automática, 10 ul en la superficie interna y externa del pabellón auricular derecho; la oreja izquierda recibió solamente el vehículo. Los extractos disueltos en acetona fueron aplicados tópicamente a dosis de $1,2,4 \mathrm{mg} /$ oreja, al mismo tiempo que el inductor de la inflamación. Indometacina, aplicada de igual forma, fue usada como fármaco de referencia (0.5 $\mathrm{mg} /$ oreja). Se dejó desarrollar la inflamación por 4 horas, al cabo de las cuales los animales fueron sacrificados por dislocación cervical, obteniéndose mediante un perforador una porción de 6 mm de diámetro de la parte central de ambas orejas. El edema producido por el aceite de croton fue determinado por el incremento del peso de la oreja derecha respecto a la izquierda.

Prueba estadística: Los grupos tratados, fueron comparados con los controles no tratados para determinar diferencias estadísticamente significativas ($\mathrm{p}<0.05 ; \mathrm{p}<0.01$), usando la prueba t de student.

RESULTADOS

Efectos sobre el edema inducido por carragenina: La inyección subplantar de carragenina causa edema progresivo, con efecto máximo a las tres horas. Los tres extractos ensayados han presentado actividad antiinflamatoria dependiente de la dosis administrada por vía oral. A la dosis
más baja utilizada $50 \mathrm{mg} / \mathrm{kg}$, sólo el extracto diclorometano muestra actividad antiedema, produciendo una inhibición del 39,5\% a las 2 horas ($\mathrm{p}<$ 0.05). A dosis de 100 y $200 \mathrm{mg} / \mathrm{kg}$., los tres extractos tienen actividad antiinflamatoria. Pero el mayor efecto se obtiene con el extracto diclorometano, 45,5 y $67,9 \%$ de inhibición, respectivamente ($p<0.01$), comparado con 25,6 y 33.1% de inhibición ($\mathrm{p}<0.05$), producido por el extracto acuoso.

El efecto es máximo a las 2 horas para el extracto acuoso y a las tres horas para los demás extractos. Los resultados son mostrados en la tabla 1 y figura 1 .

TABLA 1.- Actividad antiinflamatoria de extractos de Baccharis lanceolata frente a inflamación inducida por Carragenina en ratas

Tratamiento	Volumen del Edema X 10 ($\mathrm{M} \pm$ DSM)					
	Dosis	0.5 h	1 h	2 h	3 h	5 h
Control (Vehículo)	--	6.3 ± 1.3	8.0 ± 1.0	12.1 ± 1.5	14.3 ± 0.9	10.0 ± 0.2
	50	6.8 ± 1.2	7.8 ± 1.1	11.3 ± 0.3	13.5 ± 0.4	9.9 ± 0.6
Extracto acuoso	100	6.2 ± 1.5	6.5 ± 0.9	9.0 ± 1.2	11.2 ± 0.3	8.5 ± 0.4
	200	6.0 ± 0.9	6.0 ± 0.6	$8.1 \pm 0.9^{\text {a }}$	10.3 ± 1.2	8.0 ± 1.1
	50	6.4 ± 1.5	7.5 ± 0.5	$10.8 \pm 0.5{ }^{\text {a }}$	11.9 ± 0.3^{3}	9.4 ± 1.2
Extracto Etanólico	100	6.0 ± 0.8	$5.9 \pm 0.7^{\text {b }}$	$8.2 \pm 0.7{ }^{\text {b }}$	$7.9 \pm 0.6{ }^{\text {b }}$	7.3 ± 0.5
	200	5.5 ± 0.6	$5.0 \pm 0.4{ }^{\text {b }}$	$6.1 \pm 0.5^{\text {b }}$	$5.7 \pm 0.3{ }^{\text {b }}$	5.2 ± 0.9
	50	5.8 ± 0.9	$6.4 \pm 1.7^{\text {b }}$	$7.2 \pm 1.5{ }^{\text {b }}$	8.9 ± 1.1	8.4 ± 1.6
Extracto diclorometano	100	5.5 ± 2.4	$5.3 \pm 0.8^{\text {b }}$	$6.8 \pm 0.8{ }^{\text {b }}$	$7.8 \pm 0.9{ }^{\text {b }}$	7.8 ± 0.9
	200	5.2 ± 1.5	$4.8 \pm 0.3^{\text {b }}$	$4.2 \pm 0.9{ }^{\text {b }}$	$4.6 \pm 1.3{ }^{\text {b }}$	4.8 ± 1.8
Indometacina	10	$4.8 \pm 0.7^{\text {b }}$	$4.2 \pm 0.5^{\text {b }}$	$3.5 \pm 0.7{ }^{\text {b }}$	$2.9 \pm 1.0^{\text {b }}$	2.9 ± 0.6

Los resultados fueron obtenidos por administración oral de extractos acuosos, etanólico y diclorometano a dosis de 50,100 y $200 \mathrm{mg} / \mathrm{Kg}$ y 10 mg de Indometacina, expresados como media \pm desviación estándar de volumen $\times 10(n=8)$.
a) $p<0.05$; b) $p<0.01$ prueba t-student

Fig. 1.- Porcentaje de inhibición del edema subplantar por extractos de Baccharis lanceolata, cuando se empleó carragenina como agente flogógeno. Resultado a las tres horas.

La tabla 2 y la figura 2 muestran los resultados obtenidos por administración tópica de extractos a las dosis de 1,2 y $4 \mathrm{mg} /$ oreja frente al edema inducido por aceite de croton en la oreja de ratones, determinados a las 4 horas de aplicación.

Fig.2.- Porcentaje de inhibición del edema auricular por extractos de Baccharis lanceolata, en experimentos utilizando aceite de croton como flogógeno

En este ensayo, todos los extractos muestran actividad antiedema, también dependiente de la dosis; sólo el extracto acuoso no presenta efecto significativo a la dosis más baja empleada, $1 \mathrm{mg} /$ oreja.

Las inhibiciones del edema van de 32 a 67.2%, siendo el mayor efecto
para el extracto diclorometano; aunque no existe diferencia significativa con el extracto etanólico.

TABLA 2.- Actividad antiinflamatoria de extractos de Baccharis lanceolata frente a inflamación inducida por aceite de croton en ratones

Tratamiento	Dosis mg/oreja	Edema (mg) $\mathrm{M}+$ DSM
Control (Vehículo)	$\ldots-$.	11.6 ± 0.3
Extracto	1.0	10.0 ± 1.6
Acuoso	2.0	$7.9 \pm 0.4^{\mathrm{a}}$
	4.0	$6.4 \pm 0.6^{\mathrm{b}}$
Extracto	1.0	$8.0 \pm 0.8^{\mathrm{a}}$
Etanólico	2.0	$6.1 \pm 0 . \mathrm{h}^{\mathrm{b}}$
	4.0	$4.3 \pm 0.2^{\mathrm{b}}$
Extracto $^{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$	1.0	$8.0 \pm 0.5^{\mathrm{a}}$
Indometacina	2.0	$5.6 \pm 0.3^{\mathrm{b}}$

Resultados obtenidos por administración tópica de 1, 2, $4 \mathrm{mg} /$ oreja y $5 \mathrm{mg} /$ oreja de indometacina expresados como $D \pm D S M$ el peso $n=8$
a) $p<0.05$ b) $p<0.01$ pruebat-student

DISCUSION

Los resultados obtenidos en este estudio, utilizando extractos polares y no polares de Baccharis lanceolata administrados oral o tópicamente a animales de laboratorio en los cuales se ha inducido inflamación con carragenina y aceite de croton, parecen validar el uso popular de esta planta como antiinflamatoria.

El edema producido por carragenina es una prueba muy utilizada y apropiada para evaluar drogas y fármacos antiinflamatorios y determinar efectos antiedematosos de productos naturales (Alcaraz y col., 1987, 1988, 1989, Ferrandiz y col., 1991). Este modelo muestra proporcionalidad entre las dosis ensayadas en el laboratorio y las dosis clínicas (Otterness y col., 1988). Por otro lado, es sabido que los ésteres de forbol, como el acetato de 12-O-tetra-decaonoilformol (TPA), producen eritema, edema, degranulación de mastocitos y degeneración de cartílago y son además protumorales; el uso del modelo utilizando aceite de croton o TPA, uno de los principios activos presentes en el aceite de croton, tiene ventaja con el estudio de productos naturales, porque utiliza pequeña cantidad de muestra, factor impor-
tante en las diferentes fases de investigación de la actividad antiinflamatoria. Además, sólo involucra respuesta local de la piel de la oreja, evitando de esta manera interferencias con la excreción y metabolismo de la droga (Jacobs y col., 1985). Es por esta razón que los efectos obtenidos con este modelo con las pequeñas dosis empleadas son semejantes a los producidos por administración oral, pero con dosis mucho más elevadas.

Desde que los extractos acuoso, etanólico y diclorometano muestran actividad antiinflamatoria, podemos suponer que los principios activos involucrados sean de naturaleza polar y no polar, aunque el hecho de que el extracto diclorometano presente la mayor potencia podría hacer pensar que la mayor actividad estaría dada por compuestos no polares.

Con los estudios realizados no es posible determinar mecanismos de acción, desde que los mecanismos de producción de edema son diferentes con ambos agentes flogógenos usados (Lo y col, 1987; Carlson y col, 1985) varios mecanismos podrían estar involucrados. En recientes ensayos realizados in vitro hemos encontrado actividad antibradikinina, pero se requiere más estudios.

BIBLIOGRAFIA

1) Alcaraz MJ, Ferrandiz, ML. Modification of arachidonic metabolism by flavonoids J. Etnopharmacol. 1987; 21: 209-229.
2) Alcaraz MJ, Jimenez MJ. Flavonoids as antiinflammatory agents. Fitoterapia, 1988; 59: 25-38.
3) Alcaraz MJ, Jimenez MJ, Valverde S.Sans J. et al. Antiinflamatory compounds from Sideritis javalambrensis n-hexan extract. J.Nat.Prod., genasa, 1989; 52: 1088-1091.
4) Carlson RP, et al. Modulation of mouse ear - edema by cyclooxigenasa and lipoxigenasa inhibitors and other pharmacological agents. Agents Actions. 1985; 17: 1978-204
5) Ferrandiz ML, Alcaraz JM. Antiinflammatory activity and inhibition of arachidonic acid by flavonoids. Agents Actions 1985; 32: 283-288.
6) Jacobs TS, Culver P, Langdom R, O'Brien T. and White S. Some pharmacological observations on marine natural products. Tetrahedrom 1985; 41: 981-984.
7) Lo TN, Sayl, Lauy SS. Carragenin stimulated release of lactate dehydrogenase from pleural cells. Biochem Pharmacol 1987; 36: 2405-2413.
8) McLaughlin JL, Chsg Ching-Jerm Smith D. Bench Top, Bioassays for the Discovery of Bioactive Natural Products: and update. Studies in Natural Products Chemistry Elsevier, Science Publishers B. V. Amsterdam 1991;9: 383-405.
9) Suggishita E, Amagawa D, Agihara Y. Antiinflammatory testing methods: comparative evaluation of mice an rats. J. Pharmacobiodynam 1981; 4: 565 575.
10) Otterness, IG, Gans DL. Nonsteroidal antiinflammatory drugs: an analysis of the relationship between laboratory animal and clinical doses. J. Pharm. Sci. 1999; 77: 790-795.
11) Winter G, Risley E. Nuss G. Carragenin-induced edema in hind paw of an assay for antiinflammatory drugs. Prod. Soc. biol Med. 1962; 111: 544-547.

[^0]: Correspondencia:
 Hilda Jurupe Ch.
 Facultad de Medicina U. N. M. S. M.
 Av. Grau 755. Lima I - Perú

