CONTRIBUCION AL ESTUDIO DE LA COMUNICACION INTERVENTRICULAR*

Luisa Pospistl Siegrich

El estudio de la Comunicación Interventricular es importante, dada la gran incidencia en nuestro medio de la mencionada cardiopatía (48%), como se ha puesto de manifiesto en un estudio previo (1).

La comunicación interventricular fue descrita por printera vez por Henry Roger en 1879 en "Academie Francaise" (2). Doce años más tarde, Von Dupré comprobí en una necropsia, la existencia de un defecto interventricular. Dahrymple fue el primero quien describió una comunicación interventricular alta, en la porción membranosa. H . Taussig (3) basándose en sus propios estudios, contribuyó a la descripción clínica de esta malformación en 1947. Las primeras operaciones con éxito, fueron practicadas por Warden y Lillehei en 1956; y en el Perú se opcró por primera vez este defecto en 1962, en el Departamento de Cardiología del Hospital del Niño.

MATERIAL Y METODO

De las 6197 historias clínicas, registradas en el Servicio de Caidiologia del Hospital del Niño, se han escogido 28 casos de comunicación interventricular aislada, cuyo diagnóstico fue confirmado por cateterismo cardíaco. En cada uno de ios pacientes se ha realizado los siguientes estudios: Historia clínica, estudio radiologyico, electrocardiograma, cateterismo carclíaco y algunos fueron sometidos al tralamiento quirúrgico con la circulación extracorpórea.

Los trazos electrocardiográficos se registraron en las 3 derivaciones Standard, las unipolares de los miembros y las 6 precordiales; para su informe se utilizaron medias cscalares y vectoriales, adenás se describieron las morfologías de las ondlas. Se tomaron las tele-radiografías de

[^0]corazón y grandes vasos ell 3 incidencias (anteroposterior, oblicua anterior izquierda y oblicua anterior derecha). Previamente se había realizado el estudio fluoroscópico. Para el cateterismo cardiaco derecho se utilizó un aparato Twin-Viso con cápsula de presiones Statham P23 AA, P23 BB, P23 Ab; y para el dosaje de gases se utilizó aparato de Van Slyke.

RESULTADOS

Las edades de los niños fluctuaron entre los 2 meses y 16 años, siendo la mayor incidencia entre los 3 a los 4 años. 17 eran de sexo masculino (60.7%) y 11 de sexo femenino (39.3%). El lugar de nacimiento en 24 casos (85.7%) era entre $0-2000 \mathrm{~m}$. sobre el nivel del mar y sólo en 4 (14.3%) entre 2000 - 4000 m .

De los 28 enfermos, 12 fueron sintomáticos (42.8%), de ellos, 5 presentaron molestias desde el nacimiento, y en los restantes los presentaron entre un año y 6 meses y 11 años y 6 meses. Bronquitis a repetición y bronconeumonía, estuvicron presentes en 18 pacientes (64.3%).

Los síntomas cardiovasculares encontrados fueron: disnea en 12 (42.9%), palpitaciones en 7 (25%), precordalgia en 3 (10.7%) y astenia en 1 (3.5%). Las manifestaciones clínicas de insuficiencia cardíaca fueron las siguientes: disnea en 12 (42.9%), hepatomegalia en 8 (28.6%), reflejo hepatoyugular positivo en $6(21.5 \%)$, inourgitación de las venas yugulares en 4 (14.3%) y taquicardia en 4 (14.3%).

Al examén clínico encontramos 8 niños con déficit de la curva ponderal del desarrollo. Seis casos (21.4%) presentaron torax asimétrico por abombamiento de la región precordial. No se encontró circulación colateral en la parte anterior del torax. El choque de la punta fue desplazado en 12 casos (42.9%) y amplio en todos. En 17 casos (60.7%), se palpo frémito holosistólico de ++ a +++ (escala de I a IV), en 3° y 4° E.I. [.A. la ascultación se encontró una frecuencia variable entre 143 y 64 latidos por minuto. El primer ruido cardiaco fue de caracteristicas normales en todos los pacientes. El segundo ruido cardíaco pulmonar: reforzado: ++ en 10 casos (35.7%), y descloblado on 5 casos (17.8%). En el 100% de los casos, se ascultó soplo holosistólico, localizado en el 3 y 4 E.I.I. en 20 casos (67.6%) y en 2 y 3 E.I.I. en $8 \operatorname{casos}(32.1 \%$). El timbre fue rudo, tonalidad aguda en 92.9%; la intensidad de +++ $a++++$ en 83%, la propagación amplia. Tres pacientes (10.7%), piesentaron en el foco mitral un soplo protomesosistólico suave, con segundo ruido pulmonar reforzado, seguido del retumbo protodiastólico.

En el estudio electrocardiográfico: 26/28 presentaron ritmo sinusal, $2 / 28$ ritmo nodal. La frecuencia cardiaca media fue de 96 ciclos por
minuto, con una mínima de 64 y una máxima de $143 ; 4 / 28$ presentaron taquicardia sinusal. $3 / 28$ mostraron bloqueo aurículo-ventricular. La duración del complejo QRS, arrojó una medja de 0.07" ± 0.0034, con valor máximo de 0.12° y una mínima de 0.04" D.St.: 0.0 ± 0.024.

Fig. Ni 1. Correlación de la duración del complejo ORS en segundas con la presión sistólica del ventriculo derecho ert mm, de Hg .

La correlacion entre la duración del complejo QRS con la presión sistólica del ventrículo derecho es significativa ($r=0.58$) (Fig. 1). Eje instantáneo de P en el plano frontal, en $26 / 28$ se encontró entre $+10^{\circ} y+65^{\circ}$ y en $2 / 28$, dirigido hacia el primer y tercer sextante, estos últimos presentaron ritmo nodal. 25/28 mostraron una orientación espacial del eje eléctrico instantánco de P, hacia abajo, la izquierda c intermedia: $2 / 28$ hacia la derecha, arriba y aclelante.
$2 / 28$ presentaron P binoclales, con una duración de $0.12^{\prime \prime}$ en DII.
Eje eléctrico instantáneo de QRS , se estudió en 3 grupos. En el primero, se encuentran los casos cuyas presiones sistólicas en la arteria pulmonar eran menos de 30 mm . de Hg ., en el segunclo de $31-60 \mathrm{~mm}$. Hg. y en el tercero de más de 61 mm . Hg. Para el primer grupo la orientación en el plano frontal fue de lo más variada (entre $+133^{\circ}$ a - 85°) (Fig. 2). En plano horizontal, $10 / 15$ se orientaron hacia atrás, $3 / 15$ hacia adelante y $2 / 15$ fueron intermedios. En el segundo grupo: $4 / 7$ se dirigieron hacia adelante, $2 / 7$ hacia atrás y $1 / 7$ fue intermedio. En el tercer grupo: plano frontal fue entre $+90^{\circ} y-150^{\circ}$, en el plano horizontal $2 / 4$ hacia adelante y $2 / 4$ intermedios.

La correlacion del eje eléctrico de AQRS en el plano frontal, con la presión sistólica de la arteria pulmonar, fue significativo ($r=0.7$) (Fig. 3).

Eje eléctrico instantáneo de T, se distribuyó en general en el plano frontal entre $+80^{\circ} \mathrm{y}+30^{\circ}$, a excepción de 6 casos: $3 / 6$ en $+20^{\circ}$, uno en $+90^{\circ}$, uno en $+10^{\circ}$ y uno en -75°. En el plano horizontal $14 / 28$ se oponían en dirección al eje AQRS.

Fig. N* 2. Orientación en el plano frontal de los eies eléctricos instantáneos: AP, AQRSE, AT. So observa que la mayoria de AP se encuentra entre $+10^{\circ} \mathrm{y}+65^{\circ}$, la mayoria de AT en tre $+30^{\circ} \mathrm{q}+80^{\circ}$, siendo AQRS de lo más variada.

El grado de correlación entre la presión sistólica del ventrículo derecho, con la altura de R (mm) en VI , resultó moderadamente significativo ($r=0.46$), sometido a la prueba de Student, se demostró que la correlación era real (Fig. 4). La correlación de la presión sistólica en la arteria pulmonar con R (mm) en aVR, es significativa ($\mathrm{r}=0.5$) (Fig. 5).

Indice White-Bock era normal en 21 casos (media $=+3.35=$ 0.75 , D.St. $=4.9 \pm 1.0$) mostró crecimiento derecho en 2 casos (media $=15.5 \pm 0.3, \mathrm{D} . \mathrm{St} .=0.7 \pm 0.5)$ y crecimiento izquierdo en $5 \mathrm{ca}-$ sos (media $=16.3 \pm 0.8, \mathrm{D} .5 \mathrm{t} .=2.8 \pm 1.2$). Cociente $\mathrm{R} / \mathrm{R}+\mathrm{S}$ en VI era aumentado en 9 (media $=0.82 \pm 0.02$, D.St. $=0.1 \pm 0.04$) y normal en 19 (media $=0.3 \pm 0.02$, D.St. $=0.1 \pm 0.02$). Coeficiente R / S en VI era aumentado en $10 / 28$ casos (media $=6.5 \pm 1.2$, D.St. $=5.3 \pm 1.7$) y normal en 18 (media $=0.7 \pm 0.07$, D.St. $=0.4 \pm$ 0.1). Cocficiente de R / S en V6 era normal en 21 casos (media $=4.7 \pm$ 0.05, D.St. $=3.6 \pm 0.07$), aumentado en 6 (media $=18.7 \pm 3.1$, D.St. $=10.9 \pm 4.4$) y disminuído en 1 (media $=0.8 \pm 0, \mathrm{D} . \mathrm{St} .=0$). Tiempo de deflexión intrinsecoide en VI ara normal en 18 casos (media $=$ 0.001 ± 0.001, D.St. $=0.009 \pm 0.002$) y aumentado en 10 casos (media $=0.3 \pm 0.002$, D.St. $=0.01 \pm 0.002$). Tiempo de deflexión in-

Fig. N ${ }^{\text {3. }}$ Correlación del ele eléctrico de $A Q R$ en el plano frontal con lin presión sistólica de la arteria pulmonar en mm. de Hg . Correlacián fue significativa.

Fig. N^{9} 4. Correlación entre la presión sistólica del ventrículo derecho de mm. de Hg. con la altura de \mathbb{R} (mm.) en $V 1$, rosultá moderadamente significativa.
trinsecoide en V6 era normal en 27 casos (media $=0.02 \pm 0.01$, D.St. $=0.01 \pm 0.002$) y aumentado en un caso (media $=0.05 \pm 0, \mathrm{D} . \mathrm{St}$. $=0$).

Radiología: por fluoroscopía encontramos hiperactividad ventricular izquierda en todos los pacientes; en 17 se encontró además hiperactividad de la arteria pulmonar.

Fig. Ni 5. Cortelación entre la presión sistólica de la ortería pulmonar en mm. de Hg . con R (mm.) en aVR es significotive.

El parenquima pulmonar era sano en 27 (96.4%) y uno presentó complejo tuberculoso primario (3.6%) ; congestión pulmonar por flujo de tipo arterio-venoso presentó 100% de los casos, congestión pulmonar pasiva, determinada por insuficiencia ventricular izquierda 2 casos (7.1%), e hilios de calibre aumentados 27 (96.4%).

En 17/28 pacientes encontramos cono pulmonar convexo. Hemos clasificado las diferentes formas de la silueta cardiovascular en tres grupos:
I. Silueta cardiovascular de características normales $5 / 28$ (10.7\%) . -
II. En este grupo se encuentra arco medio e inferior izquierdo convexo $16 / 28$ (57.9%). Aqui diferenciamos dos sub-grupos:
A. Arco inferior izquierdo y punta con características del crecimiento izquierdo: $11 / 16$.
B. Arco inferior izquierdo y punta con caracteristicas del crecimiento derecho: 5/16.
III. Con arco medio recto o ligeramente convexo, arco inferior derecho convexo y arco inferior izquierdo convexo y largo, dando en conjunto, la forma de corazón globuloso: 7/28 (Fig. 6).

Hemodinámica: El gradiente de Vol. $\% 02$ entre venas cavas y aurícula derecha, en la gran mayoria de casos, $26 / 28$ (92.9%), lo encontramos entre 0 y 1 Vol $\%$ 02, con media de 0.4 y valores exiremos entre 0 y 1.65 ; las gradientes señaladas anteriormente no son significativas. Entre auricula derecha y ventrículo derecho, la gradiente de saturacion de 02 en $V 01 . \%$, se distribuyó en $22 / 28$ casos entre 1.1 y 4 Vol. \% 02, y, 6/28 presentaron gradiente de 0 a 1 Vol. $\% 02$; la media total fue de 1.9 Vol. $\% 02$, con valores extremos de 0.21 a 4.32 . En lo referente a los 6 casos con diferencias de Vol. \% 02 menores de uno; 2 de ellos tuvjeron comprobación operatoria, los 4 restantes fueron objeto de un estudio especial, aplicando la tabla de probabilidades de Luric (f), nos da la posibilidad de cortocircuito arteriovenoso de $99 \%, 77 \%$ y 77% respectivamente.

En lo referente a la manometria, en la auricula derecha, el valor de la presión media expresada en promedio fue de $3.45 \mathrm{~mm} . \mathrm{Hg}$. con variaciones extremas de 1 a 7 . En el ventrículo derecho, en 10 casos (37.3%) se encontró entre $0.30 \mathrm{~mm} . \mathrm{Hg}$., en 10 casos entre 31 y 60 mm . Hg. y en 7 casos (25.9%) entre 60 y 90 mm . Hg.; con media de $42.2 \mathrm{~mm} . \mathrm{Hg}$. En la arteria pulmonar en $15 / 28$ (57.7%) la presión sistólica estuvo entre 0.3 y 30 mm . Hg., en $7(26.9 \%)$ entre 31 y $60 \mathrm{~mm} . \mathrm{Hg}$. y en 4 casos (15.4%) entre 61 y 90 mm . Hg.

Presentamos a continuación, el estudio de tres casos, que expresan tres modalidades en la comunicación interventricular, desde la forma más benigna hasta la más grave:
I. Un niño de 9 años de edad, es enviado por el médico escolar, por encontrarle un soplo cardiaco. Antecedentes: Bronquitis a repetición. Exploración clínica: frémito sistólico $+t+$, en 4 E.I.I., ruidos cardíacos normales, soplo holosistólico, +++ , en 4 E.I.l., agudo, rudo con propagación amplia, frecuencia cardíaca 85 por minuto, pulsos periféricos normales, P.A.: $100 / 75 \mathrm{~mm}$. Hg. Electrocardiogramas dentro de limites normales. Estuclio radiológico mosiró solamente circulación pulmonar aumentada a predominio arteriovenoso. En el cateterismo, se encontraron

24

25

3

Fig. No 6. Las diferentes siluetos cardiovasculares, encontradas on los 28 pacientes estudiados: 1, siluetos de caracteristicas normales; 2. los que presentaron orco medio e inferior izdos convexto. A, Crecimiento ventricular izquierdo. B, Crecimiento ventricular derecho; 3, formo de corazón globulaso per crecimienta biventricular.
las presiones intracavitarias en límites normales y un cortocircuito a nivel ventricular. En conclusión, se trata de un niño poriador de comunicación interventricular de pequeño tamaño, antes llamada Enfermedad de Roger, cuyo pronóstico es favorable y no requiere tratamiento.

Fig. \mathbf{N}° 7. Electrocardiograma, del segunda caso presentado, en el cual observamos: erecimienta del ventricula izquierdo par sobrecarga diastólica.
II. Una niña de 3 años, asintomática, enviada en un examen casual se le descubre un soplo cardíaco. Antecedentes: Bronguitis a repetición. Exploración clínica: Coque de la punta en 5 E.I.I. por fuera línea medioclavicular amplio e intenso, frémito sistólico ++++ en $3-1$ E.I.I. segundo ruido pulmonar reforzado, soplo holosistólico, ++++ , en 3-4 E.I.l., rudo, agudo, de propagación amplia, frecuencia cardiaca 94 por minuto, P.A.: $120 / 65 \mathrm{~mm}$. Hg. Electrocardiograma reveló: crecimiento del ventrículo izquierdo por sobrecarga diastólica (Fig. 7). Es-
tudio radiológico mostró: cardionegalia grado II a expensas del venteiculo izquierdo, cono pulmonar convexo $+\dagger$, circulacion puimonar aumentada ++ ; en la radioscopia se encontró hiperpulsatilidad del borde izquierdo de la silueta cardíaca (Figs. 8, 9 y 10). Ea el catcterisino cardíaco se encontró además de cortocircuito arteriovenoso a nivel ventricular, hipertension en el ventrículo derecho ($50 /-2 / 4 \mathrm{~mm}$. H g.) y moderada hipertensión en la arteria pulmonar ($48 / 18 \mathrm{~mm} . \mathrm{Ilg}$). (Fig i1). Por los datos del cateterismo y por el antecedtene de bionquiris a repetición se concluyó, que el cortocircuito es impertante y la ninia fue so-

Fig. N^{*} 28. Estudio rodiológico del seguncio caso presontado. Radiografio onteroposterior.
metida a intervención quirúrgica. En el acto quirúrgico se encontró defecto interventricular, localizado en la porción meribranosa del sepium, por detrás de la cresta supraventricular, de 2.5 cm . de diánctro mayor. Actualmente, 3 años después de la intervención, la ninisa se encuentra en buenas condiciones, habiendo desaparecido los cuadros bronquiales, Al examen clinico se encuentra un soplo sistólico suave de inconsidad -ien 4 E.I.I. El electrocardiograma es normal y la silusta cardiaca e; el ceamen radiológico ha disminuido considerablemente de tamaino. Fiste caso es típico de una comunicación interventricular alta, con gran fituio pulmonar, con hipertensión pulmonar moderada, la cual se bencficia coa d tratamiento radical.

Figs. 9, 10. Esfudio radiológico del segundo coso presentada. Radiografics; oblicua anterior inquiarda y oblicua anterior derechal. Se puede epreciar crecimiento del venfrículo izquierdo.
III. Una niña de 7 años de edad presenta disnea de esfuerzo progresiva y precordalgia desde los cuatro años de edad. Antecedentes: Bronquitis a repetición. Exploración clínica: deformación del torax por abombamiento de la región precordial; choque de la punta en 5 E.I.I. por fuera de la línea medioclavicular, amplio e intenso; Signo de Harizer positivo, frémito sistờico ++ en 4 E.J.I. ; segundo ruido pulmonar reforzado ++ , soplo holosistólico de intensidad ++++ en 4 E.I.I., rudo, agudo con propagación amplia, soplo protomesosistólico suave y retumbo

Fig. Ni 11. Curvas de presiones en mm. de Hg., en ventriculo derecho (50/-2/1) y arteria pulmonar $\{48 / 19\}$, encontraoos durante al caterorismo cardíaso derecha, practicado en el segundo caso presentado.
protodiastólico en la punta, irradiados a la axila, frecuencia cardíaca 143 por minuto, P.A.: 105/75; hepatomegalia, reflujo hepatoyugular positivo; luxación congénita de la cadera. Electrocardiograma mostró: crecimiento de la aurícula izquierda, crecimiento del ventrículo derecho por sobrecarga sistólica, crecimiento del ventrículo izquierdo por sobrecarga diastólica, bloqueo auriculo-ventricular de primer grado (Fig. 12). El cstudio radiolćgico arrojó: cardiomegalia de grado III, crecimiento biventricular, crecimiento de auricula izquierda y cono pulmonar convexo +++ , la circulación pulmonar aumentada a predominio arteriovenoso +++ (Figs. 13, 14, 15). En el cateterismo cardíaco se encontró un cortocircuito a nivel ventricular, hipertensión ventricular ($75 / 0 / 2 \mathrm{~mm}$. Hg.) e hipertensión pulmonar ($62 / 32 \mathrm{~mm}$. Hg.) (Fig. 16). Este caso corresponde a una comunicación interventricular con hipertensión pulmonar.

Fig. Ni 12. Electrocardiogramp, del tercer coso presentado, en ef cual se observa: crecimiento de curicula izquierda, crecimiento del ventriculo ixquierdo por sabrecarga diastólico, crecimiento del ventriculo derecho por sobrecarga sistólica y blaqued quriculoventricular del primer grado

Figs. Nos. 13 y 14. Estudio radiologico del tercer coso presentado. Se aprecia crecimiento biventricular de la quricula ixquierdo y del cono de
la pulmonar.

Fig. No 15. Estudio radiológico del tercer grodo presentado, en el cual se aprecia: crecimiento bivenfricular, cresimiento de la auricula jzquierda y cono pulmonar y sirculacion pulmonar aumenteda a predominio arterio-venoso.

Fig. N^{2} 16. Curvas de presiones en mm . de Hg ., encontrodas durante el cateterismo carcliaco derecho, en el tercer coso presentado, tomadas en auricula derecha, venjriculo derecho, arteria pulmonar y capilar pulmonar. Se puede observar la hipertensión marcada en la orteria pulmonar y el ventrieulo derscho.

COMENTARIO

Dada la índole de nuestro hospital, la gran mayoría de nuestros casos fueron estudiados por primera vez entre los dos meses y 10 años, por lo cual los datos obtenidos son válidos para las comunicaciones interventriculares en los niños. La mayoría de estos niños (24/28), procedía de los lugares, crya altitud no era mayor de 800 mts . sobre el nivel del mar, lo que se debe a que nuestro hospital está situado en la provincia de Lima, y la mayoría de los enfermos procedia de la costa.

De acuerdo a la sintomatología y la edad de inicio de ésta, encontramos que $12 / 28$ eran sintomáticos y 5 de ellos presentaron manifestaciones clínicas desde el nacimiento; para total de nuestro enfermos, estos 5 representan el 17.8%; Beverly encontro en su serie, que 14% de comunicación interventricular presentaron insuficiencia cardíaca en los primeros 6 meses. Esta sintomatologia tuvo su expresión en el cateterismo derecho; en todos ellos la presión diastólica en el ventrículo derecho la encontramos por encima de los valores normales. Clínicamente, el mayor flujo pulmonar de nuestros pacientes se manifestó por cuadros bronquiales a repetición; este flujo aumentado tambiến se encuentra en relación con el gradiente en Vol. \% 02 entre aurícula derecha y ventrículo derecho.

En $\operatorname{los} 7$ casos restantes las manifestaciones de insuficiencia cardiaca aparecieron desde el año y modio hasta los 15 años. En 3 de ellos, hemodinámicamente se puso en evidencia la presión telediastólica elevada por encima de los valores normales; en dos de ellos la presión sistólica ventricular se encontraba $45 / 72 \mathrm{~mm}$. Hg. respectivamente; de acuerdo a la presión sistólica alta y sontenida, son explicables las manifestaciones de estos pacientes (5). Dos de nuestros enfermos, que a pesar de obtener datos negativos en el interrogatorio, la exploración fue positiva, comprobada por hemodinámica, uno de ellos tenía presión sistólica del ventriculo derecho de $80 \mathrm{~mm} . \mathrm{Hg}$. y telediastólica de 10 y el otro presión sistólica de $40 \mathrm{~mm} . \mathrm{Hg}$.

En los 6 casos, en los cuales se encontró deformación precordial, en 5 de ellos la silueta cardiovascular estuvo aumentada de tamaño a expensas de ambos ventriculos, con el electrocardiograma de crecimiento biventricular en dos casos y crecimiento ventricular izquierdo en otros dos casos, a excepción de un caso, que sólo tuvo bloqueo de rama derecha; en todos estos casos, las presiones en ventrículo derecho estuvieron aumentadas; además, 3 de ellos tuvieron antecedentes de bronquitis a repetición por aumento de flujo. Por los datos expuestos, consideramos que, probablemente, la deformación tofácica es consecuencia de la cardiopatía
(6). El sexto caso de torax deformado, con cardiomegalia discreta, probablemente se debía a falla de osificación primaria.

Cuando el choque de la punta se encontró descendido y desplazado a la izquierda, el estudio radiológico mostró crecimiento biventricular. En los casos que al estudio radiológico presentaron cardiomegalia a expensas del ventrículo izquierdo, todos ellos tenían punta desplazada a la izquierda. El frémito sistólico se encontró en 12 de nuestros enfermos, en la mayoría de ellos $11 / 12$ se pudo determinar aumento del flujo pulmonar descle el punto de vista clínico. Esta relación la encontramos señalada por Hollman (7). Cuando la presión sistólica de la arteria pulmonar se encontraba por encima de 40 mm . Hg., el segundo ruido pulmonar se encontraba reforzado. ($(8,9)$. Como ya ha sido señalado por otros autores ($2,3,10,8,11,12,13,14,15,16$) el soplo fue holosistólico, de gran intensidad, rudo, agudo, excepto en dos casos, en los cuales fue grave y suave. Retumbo mitral se encontró en $3 / 28$ de nuestros pacientes (10.7%), Nadas lo encuentra en 19\% (17) acompanando a la comunicación interventricular. Los tres de nuestros casos tenían presiones sistólicas en la arteria pulnonar y ventrículo derecho elevadas y diferencia de los volúmencs $\%$ de 02 entre aurícula derecha y ventrículo derecho: $3.7,4.3$ y 2.1 respectivamente. Radiológicamente tenían aurí. cula izquierda crecida e irrigación pulmonar aumentada, por lo demás, todos ellos tenían insuficiencia carclíaca. Por lo expuesto, y de acuerdo con los autores ($11,13,17$) pensamos que el soplo diastólico mitral se debe al aumento de flujo pulmonar.

Los datos de correlación entre el eje eléctrico de $\triangle Q R S$ en el plano frontal, con la presión sistólica de la arteria pulmonar (18, 19), los encontramos con significado estadístico, esto se explica lógicamente, porque a mayor presión en la arteria pulmonar, hay mayor sobrecarga del ventriculo derecho y por lo tanto éste se hipertrofia; una de cuyas repercusiones en el electrocardiograma es la clesviación del eje AQRS.

Hemos dividido nuestros trazos electrocardiográficos en los siguientes grupos. En el primero, se encuentran todos los trazos, dentro de límites normales: en mayoria de ellos, la presión sistólica de la arteria pu!monar no sobrepasaba los $30 \mathrm{~mm} . \mathrm{Hg}$. El segundo grupo mostraba crecimiento izquierdo por sobrecarga diastólica, sugerido por R altas, con empastamiento de la rama ascendente de R , el segmento RST de desnivel positivo y de concavidad superior y retardo de aparición de la flexión intrinsicoide. En este grupo las presiones en la arteria pulmonar eran variables. En el tercer grupo, consideramos los trazos que presentaban crecimiento del ventrículo derecho por sobrecarga sistólica y crecimiento del
ventrículo izquierdo por sobrecarga diastólica. En este grupo la mayoría tenían presiones sistólicas en la arteria pulmonar clevadas. El cuarto grupo, se encuentra formado por los trazos que presentan bloqueo de rama. Ellos fueron tres.

La duración de QRS tuvo un buen índice de correlación positiva con la presión sistólica del ven:riculo derecho, esto se explicaria, porque al aumentar la presión sistólica del ventrícu'o derccho, se desarrollaría hipertrofia de dicho ventrículo y ésta, a su vez, retarda la conducción ventricular. Otro indice con correlación positiva fue la amplitud de onda R en aVR y la presión sistólica de la arteria pulmonar, este indice en su mayoría correlacionaba las variaciones del potencial en regiones basales, hipertrofiadas, con la sobrecarga qeu existe en cavidades derechas a consecuencia esencial del aumento cle la presión sistólica.

En el estudio radiolugico, si relacionanos la cardionegalia co: la presión sistólica de la arteria pulmonar (20), to podemos dividir en los siguientes grupos: I. Cuando Ja silueta cardíaca fuc normal o ligeramente aumentada (grado I), la presión sistólica on la arteria pulmonar estuvo normal. II. Cuando la cardionegatia fue de grado [I, las presiones fucron variadas. JII. En este grupo con cardiomegalia marcada, todos tenían la presión sistơlica en la arteria puhmonar por encima de 61 mm . Heg. En nuestros casos encontramos la aurícula izquierda crecida en $13 / 28$ de ellos, todos tenían datos clinicos y hemodinamicos de insuficiencia cardiaca y gran flujo pulmonar. El botón aórtico lo encontramos normal en $21 / 28$ casos y no se ha observado en $7 / 28$, dato este último considerado por otros autores $(12,14)$ como típico de comunicación interventricular. El cono de la pulmonar estuvo recto en 10 casos, de los cua'es todos tenían la presión sistólica en la artería pulmonar debajo los 35 min. de Hg ., cuando el arco pulmonar era convexo marcadanente, todos tenían presión sistólica de la arteria pulmonar elevacla por encina de los $61 \mathrm{~mm} . \mathrm{Hg}$. Por lo cual se puede deducir que si la presión de la arteria pulnonar está en limites normales o discretamente aumentada. el cono pulmonar es normal, y al crecer la presión en dicho vaso, carabia su morfología.

De acuerdo al gradiente de volúnenes por ciento de oxígeno entre la aurícula y ventriculo derechos, encontramos en $22 / 28$ de nuestros pacientes, las cifras señaladas como significativas de cortocircuito a nivel ventricular (más de I Vol.\% 02) . 6/28, aparentemente no se pueden colocar en el grupo señalado anteriormente, sill embargo, en 2 de ellos el diagnóstico fue confirmado durante el acto quirúrgico y ellos tenían sólo una gradiente de 0.33 y $0.71 \mathrm{Vol} \%$ 02. Estas cifras no invalidaron el diagnóstico. Casos similares se citan en la literatura (21). Los 4 casos res-
tantes de cortocircuito menor de un Vol. $\% 02$, les presentamos por lo dicho anteriormente y lo señalado en bibliografía, confirmados con el porcentaje de probabilidades de cortocircuito según la tabla de Lurie.

De acuerdo al estudio manométrico de nuestros pacientes, se pueden dividir en tres grupos: I. Cuando la presión sistólica en la arteria pulmonar era debajo de 30 mm . Hg., la mayoría era asintomática. II. Cuando la presión de la arteria pulmonar se encontraba entre 31 y 60 mm . Hg., los datos clínicos más frecuentes eran antecedentes respiratorios y cardiomegalia en el estudio radiológico. III. Cuando las presiones sistólicas en la arteria pulmonar eran mayores de 61 mm . Hg., la manifestación clínica más frecuente era la insuficiencia cardíaca y cardiomegalia II a III en el estudio radiológico.

CONCLUSIONES

50% de los casos eran sintomáticos y la mayoría de ellos presentó la insuficiencia cardíaca dentro de primeros 2 años.

Los hallazgos clínicos encontrados fueron: Soplo holosistólico, intenso, rudo, en $3-4$ E.I.I. en 100% de los casos, acompañado de frémito en 60%; soplo protomesosistólico, suave con retumbo protodiastólico en la punta en 10%; todos estos casos tenían manifestaciones clínicas y hemodinámicas de gran flujo pulmonar. Segundo ruido pulmonar aumentado en 36% coincidiendo con las presiones sistólicas en la arteria pulmonar por encima de 40 mm . Hg.

Desde el punto de vista electrocardiogrăfico se establecieron 2 grupos: I. Cuando el electrocardiograma era normal, las presiones eran también normales. II. Cuando el electrocardiograma se encontraba alterado, especialmente si mostraba crecimiento del ventriculo izquierdo por sobrecarga diastólica, crecimiento biventricular, las presiones en la arteria pulmonar eran aumentadas.

Se encontraron correlaciones entre el electrocardiograma y el estudio hemodinámico: A) Hay buena correlación entre la presión sistólica de la arteria pulmonar y la desviación del eje $A Q R S$ a la izquierda. B) La duración de QRS está en relación directa con la presión sistólica del ventrículo derecho. C) Existe correlación positiva entre la onda R en aVR y R en Vi , con la presión sistólica del ventrículo derecho.

El crecimiento de la silueta cardiaca en el estudio radiológico reveló: A) 15% silueta cardíaca dentro de limites normales. B) Crecimiento a predominio de cavidades izquierdas 50%. C) Crecimiento biventricular 18%. Circulación pulmonar aumentada 100%.

El diagnóstico de cortocircuito arteriovenoso al nivel ventricular, establecido por la diferencia de más de $1 \mathrm{Vol} . \% 02$ entre aurícula y ventriculo derechos, es valedera en la mayoría de los casos, sin embargo, algunos presentaron la gradiente menor de 1 Vol.\% 02 y correspondieron a comunicaciones interventriculares importantes.

La insuficiencia cardíaca no guarda relación solamente con el aumento de la presión diastólica ventricular derecha, sino también, con el aumento sostenido de presión sistólica sostenida en dicha cavidad.

Para establecer un diagnóstico de comunicación interventricular se necesitan los siguientes datos: Antecedentes respiratorios, insuficiencia cardíaca precoz, soplo sistólico con caracteres descritos anteriormente, crecimiento del ventrículo izquierdo o biventricular, dilatación del cono pulmonar, aumento de la circulación pulmonar, gradiente entre aurícula y ventrícula derechos mayor de un Vol.\% 02.

Sin embargo, hay comunicaciones interventriculares sin sintomatologia, con el corazón de tamaño normal, con gradiente de Vol. \% 02 menor de uno, que sólo tienen el soplo típico y aumento de circulación pulmonar.

BIBLIOGRAFIA

1 Mispireta, A., Corneio, G.; Escudero, M.A.; Solos, V.; Heliriegel, K.; Ladero, M.: Incidencia de los cardiopatios congénitas en relación a la altura tRev. Peruana Cardiol.]. 9: 15, 1962.
2. Roger, H.: Recherches slinique sur la comunicotion congenitoles des deux coeurs, par inocclusión de septum intorventriculaire. Bull. Acad. de Méd. Paris. 8: 1074, 1879 sirodo por E. Donzelot).
3. Taussig Helene: Malformaciones congénitas del corozón (traducido de la primera edición publicada por la Funoiación Commonwealth en 1947). Ed. Aftecria. Bue. nos Aires.
4. Lurie, P.R.; Croy, F.D.; Whitemore, J.: Cardioc Catheterization and other Physiologic Studies in Fifty Coses of Congenitol Heart Diseases. Angiology 3: 98. 1952.
5. Hegglin, R.: Special Forms of Heort Falure. Pag. 18.53. Cardiology Vol. IV. Ed. Mc. Graw - Hial Book Compony Inc. London, 1959.
6. Corone, P.; Vernont, P.; Emerit, T.: Les deformations thoracique des Cordiopothies congenitoles et plus particulierment des comunicotions interventriculaires. Arch. Mal de Coeur et Voiss. 56; 267, 1963.
7. Hollman, A.; Morgon, J.J.; Goodwin, J.F.; Fields, H.: Auscultatory and Phonocardiogrophic Findings in Ventricular Septol Defect. Cire. 28: 94, 1963.
8. Gérard, R.; Louchet, E.: Cardıologie de Lenfont. Pag. 1,116.131, Ed. Masson et cie. Paris, 1962.
9. Barbosa, J.; Burlamaqui, B.: Achados de escuta e fonocardiograficos nos defeiros do septoventriculor. Arch. Bros. Cordiol. 14: 327, 1961.
10. Bloomfield, D.K.: The Natural History of Ventricular Septal Defect in Patiens Surviving Infoncy, Circ. 29; 914, 1964.
11. Nadas, A.: Pediatric Cardiology. Pag. 304-333. Ed. W.B. Saunders Campany. Phila. delphia and London, 1957.
12 Espino Vela, J.: Ma'formaciones cardiovasculares congénitas. Pag. 143, Ed. Linión Gráfica, México, 1859.
13. Friedberg, Ch.K.: Enfermedades del corczón. Póg. 758-762, Ed. Interamericona, 1958.
14. Woad, P.:Enfermedades del corazón y de la circulación. Pág. 385-393, Ed. Toray S. A. Barcelona, 1961.
15. J.P.; Phonocardiographie des cardiopothies congenitoles, communications interventriculoires. Arch. Mol de Coeur er Vaiss. 56: 55, 1963.
16. Soulier, P.: Cardiopathies congentales. Pág. 197, Ed. Exponsion Scientifique Francaise, 1956.
17. Nadas, A.S.; Alimurung, M.: Apical diastolic murmurs in congenital Heart disease. Am. H.J. 43: 691, 1952.
18. Dennis, J.: Vince, J.; Keith, D.: Electrocardiogram en Ventricular Sepral Defect. Circ. 23: 225. 1961.
19. Dressler, F.: Der Systaiische Druck in der Belmonorterie und das Elektrakardiogramm als Kriterien fur die Prognose des Venlrikelseptumdefektes im Kinderalter. Zeitschr, Kreilaufst. 23/24: 1196, 1961.
20. Young, D.; Rubinstein, 8.; Schöedel, J.8: The Roentgenographic Spectrum in Ventricular Septal Defeer. Am, J. Cardiol. 5; 208, 1960.
21. Jolly, F.: Corlorti, J.; Sicor, J.R.: Les Communicarions interventriculaires. Etude clinique et physiologique. Arch. Mol Coeur Vaiss. 44: 602, 1951.

[^0]: * Resumen de la resis preseniada por la autoro paro optor el lítulo de Bachuler en Medicina, en setiembre de 1963. Facultad de Medicina, Universidad Nacional Mayor de Son Marcos.

