AFINIDADES FISIOLOGICAS EN ALGUNOS HONG()S FILAMENTOSOS DEL MEDIO AMBIENTE.

Estudio Preliminar*

W. E. Gardini; C. R. Valles; J. H. Velásquez; y Nancy Canales**

El diagnóstico y la taxonomía de los hongos filamentosos está basado en los caracteres morfológicos de sus órganos de reproducción (3,6). Estas estructuras diferenciales no siempre se presentan típicas debido a la existencia de innumerables especies y a la dificultad que estas no son estables en los medios de cultivo. Las investigaciones recientes se orientan hacia e! estudio de la fisiologia de los hongos con el fin de encontrar nuevas bases taxonómicas más simples y precisas.

El propósito del presente trabaıo es estudiar la acción fermentativa de los hongos contaminantes sobre los carbohidratos, la producción de la enzima desoxirribonuclec:sa y señalar algunos aspectos del anlagonismo existente entre la flora ambiental.

MATERIAL Y METODOS

Se hace el estudio de 14 cepas de hongos aislados del medio ambiente donde una de ellas, la cepa Penicillium ACl-9 tuvo efectos inhibitorios sobre lias demás. La cepa del Blastomyces dermatiticis (Bd-1159-Sao Paulo), fue incluida en el experimento para yorobar el efecto inhibitorio que sobre ésla podria tener la cepa de Penicilium ACI-9. El aislamiento se hizo en medio agar-tomate, preparado en nuestro laboratorio a partir de fomates frescos sin adición de otra sustancia nutriti-

[^0]

Fotogratia No 1: Acción inhibitoria morcodo del Penicillium (cepa AC1-9) sobre uno cepo de Aspergillus.

Fotografio N° 2: Acción inhibitorio escoso del Penicillium (Cepa ACI-9) sobre el Blastomyces dermotitidis.
va ni el ajuste del pH. El medio agar-tomate resultó ser excelente inhibidor de las bacterias ambientales por su $\mathrm{pH} .4 .2-4.5$, permitiendo solo el desarrollo de los hongos filamentosos.

La clasificación, se hizo por sus caracteres morfológicos siquiendo el sistema propuesto por Coudert (3), Atlas de Iconographia Mycologica de Verona y Benedek (8).

Para determinar la acción fermentativa se usó la neopeptona purificada (4). Se prepararon series del medio con 18 carbohidratos diferentes a una concentración final del 3% después de haber agregado púrpura de bromocresol y cloromicetina 0.2 mg . por cc. de medio. Los carbohidratos se esterilizaron por filtración. Las siembras se dejaron a $25^{\circ} \mathrm{C}$. hasta los 15 días. La reacción positiva estaba dada por un viraje total del medio hacia el color amarillo y por la formación de colonias exuberantes.

En la determinación de la producción de la DNAsa por los hongos se empleó el medio con pH. 8.0 a base de 15 gr. de agar, 20 gr. de triptosa, 2 gr. de ácido desoxirribonucleico altamente polimerizado, 5 gr. de cloruro de sodio, recomendado por Jeffries y Col. (5). El medio esterilizado a $121^{\circ} \mathrm{C}$. x 15^{\prime}, se vertió sobre placas que previamente contenían una capa de agar en solución salina al 2%. A los 15 días de sembradas las placas, se investigó la producción de DNAsa por el método de Osowiecki y Dobrzanski (7). Sobre los cultivos se dejó caer 5 cc. de una solución acuosa de verde de metilo al l\%. La presencia de DNAsa, fue objetivada por la oparición de un halo azul oscuro al rededor de las colonias en contraste con la coloración verde del resto del medio y por la posterior decoloración del mismo a las 20 3 horas.

Pora demostrar los efectos inhibitorios del Penicillium, cepa ACI-9, sobre las demás cepas de hongos filamentosos se sembró ésta en agartomate y en medio de Sabouraud y después de 5 días de desarrollo a $25^{\circ} \mathrm{C}$. se sembraron cada una de las demás especies a una distancia de $1-2 \mathrm{~cm}$. Los efectos se registraron en grados de inhibición de marcado, moderado y ninguno.

RESULTADOS Y DISCUSION

En el Cuadro No l, se muestra los resultados de la fermentación de carbohidratos y la producción de DNAsa por cepas de hongos filamentosos. Se aprecia que en la fermentación hay preferencia por determinados carbohidratos tales como la sacarosa, galactosa,, manosa, mal-
tosa, rafinosa, melibiosa, en orden decreciente. Puede notarse en las diferentes especies de Aspergillus una marcada diferencia para fermentor el adonitol, arabinosa, dulcitol y melecitosa. Esta diferencia se manifiesta de una manera más estable entre variedades de un mismo género, así la cepa Penicillium (ACI-9) fermentó sólo la galactosa, manosa y rafinosa; mientras que el Penicillium bicolor, fermentó un mayor número de carbohidraios. En el mismo Cuadro No 1 , se encuentra que todas las cepas producen la enzima DNAsa. Los resultados de esta enzima concuerdon con los hallazgos de Jeffries y Col. (5) para el Penicillium y el Aspergillus, usando técnica diferente. Es de remarcar que si bien no se pueden establecer diferencias entre los hongos en cuanto a la producción de DNAsa, sin embargo puede servir de base para posteriores investigaciones como los referidos en las bacterias ($1,5,7,8$).

En el Cuadro N° 2, se muestra los resultados del antagonismo entre el Penicillium cepa ACI-9 y los 14 tipos de hongos (13 contaminantes y 1 patógeno). Se ha encontrado efectos inhibitorios marcados con el Aspergillus fumigatus, Aspergillus orizae, Cunninghamella, Penicillium bicolor, Rhizopus; el efecto fue escaso con Aspergillus nigricans, Aspergillus ochraceus, Alternaria, Blastomyces dermititides cepa Bd-1159-Sao Paulo. En la Fotografía N° 1, se demuestra el efecto inhibitorio marcado del Penicillium cepa ACI-9 sobre una variedad de Aspergillus y en la Fotografía № 2 se observa que la misma cepa inhibe escasamente el desarrollo normal del Blastomyces dermatitidis. Por los resultados se aprecta que dentro de la flora ambiental hay variedades de hongos que viven en simbiosis y en un antagonismo manifiesto. Asimismo, es de importancia señalar el efecto que el Penicillium cepa ACl-9 produce sobre el Aspergillus fumigaius y sobre el Blastomyces dermatitidis, especies vinculadas a infecciones en el hombre y los animales.

SUMARIO Y CONCLUSIONES

Se ha aislado del medio ambiente 14 grupos de hongos filamentosos contaminontes empleando el medio de agar-tomate fresco. En ellos se investigó las reacciones de fermentación selectiva a 18 corbohidratos, sus reacciones mutuas y la producción de desoxirribonucleasa (DNAsa).

Se encontró que había preferencia por fermentar determinados carbohidratos como la sacarosa, galactosa, manosa, maltosa, rafinosa, melibiosa, por el Aspergillus fumigatus, Aspergillus nigricana, Aspergillus
Cuadro No 1. Fermentacion de Carbohidratos y producción de DNAsa
Producción
de
Desoxirri-
bomucleasa
(DNAsa)
(DNAsa) Marcada Moderada epeoxew eperinin EPEOIRN

 epes.ren

 ереэлен epesrew
 Trehalosa $+1+++ \pm+1+||+1|+1$ Salicina $+1+++1|++1||1|$ Sorbiltol $1+++++1 \mid+1$ FERMENTACION
en Neopeptona e indica
 Rafinosa $+++++1++1+++1$ \therefore Melibiosa $\mid++++1++1+++$

Mannosa $+1+++++++++++++$
Maltosa $\quad+\quad+++\quad+\quad++++$
Levulosa $+++1+1+1+1+1+1++1$
Lactosa $1+1+1++1+1+++1+\ldots$
Inositol
Glucosa $:++\quad+\quad+1+1+1+1+1$
Galactosa +++++++++++

Arabinosa $\mid+++\quad+1+1+1+1$

Hongos Contaminantes	家
Aspergillus fumigatus $(A-6)$	-
Aspergillus nigricans (A-17)	-
Aspergillus ochraceus $(A-11)$	-
Aspergillus oryzae $(A-12)$	$+$
Alternaría (A-2)	+
Cunninghamella $(\mathrm{A}-16)$	-
Cladosporium herbarum $(A-19)$	-
Fusarium roseum (A-3)	+
Glenospora (A-22)	+
Hormodendrum ($\mathrm{A}-1$)	+
Penicillium, bicolor (A-5)	$+$
Penicillium, sp. (ACI-9), con efectos antagónicos	-
Rhizopus	-
Trichophyton, sp. (A-13)	\pm

[^1]ochraceus Aspergillus orizae, Alternaria, Cunninghamella, Clados porium herbarum, Fusarium roseum, Glenospora, Hormodendrum, Penicillium bicolor, Penicillium sp. cepa ACI-9, Rhizopus y Trichophyton sp.

Que las variedades de hongos dentro de un mismo género tienen diferente poder fermentativo tal como sucede con el Aspergillus fumigatus, Aspergillus nigricans, Aspergillus ochraceus y Aspergillus orizae, sobre ei adonitol, arabinosa, dulcitol y melecitosa.

Los 14 grupos de hongos filamentosos ambientales han producido DNAsa, empleando como medio de cultivo el agar-triptosa-ácido desoxirribonucleico y como reactivo el colorante verde de metilo.

La variedad de Penicillium, cepa ACI-9, de escaso poder fermentalivo sobre la mayoría de los 18 carbohidratos, presentó poder inhibitorio sobre el desarrollo del Aspergillus nigricans,. Aspergillus ochraceus, Alternaria, Blastomyces dermatitidis y en mayör grado sobre el Aspergillus fumigatus, Aspergillus orizae, Cunninghamella, Penicillium bicolor y Rhizopus.

CUADRO $\mathrm{N}^{\circ} 2$

Cuadro N^{0} 2. Antagonismo del Penicillium aislado del medio ambiente sobre los hongos filamentosos

Hongos afectados		Efectos inhibitorios del Penicillium, cepa ACL-9
Aspergillus fumigatus	(A-6)	MARCADO
Aspergillus nigricans	(A-17)	ESCASO
Aspergillus ochraceus	(A-11)	ESCASO
Aspergillus oryzae	(A-12)	MARCADO
Alternaria	(A-2)	ESCASO
Cunninghamella	("A-16)	MARCADO
Cladosporium herbarum	(A-19)	Ninguno
Fusarium roseum	(A-3)	Ninguno
Glenospora	(A-22)	Ninguno
Hormodendrum	(A-1)	Ninguno
Penicillium bicolor	(A-5)	MARCADO
Rhizopus	(A-9)	MARCADO
Trichophyton, sp.	(A-13)	Ninguno
Blastomyces dermatitidis		ESCASO
cepa Bd-1159-Sao Paulo		

[^0]: * Trabajo presentado al Primer Congreso Nacional de Microbiología y Parasitologia, Fac. Med., Univ. Nacional de San Agustín de Arequipa (Perú). Del 8-12 Oct. 1964.
 ** Departamento de Microbiologia, Sección de Micologia, Facultad de Medicina, Universidad Nacional Mayor de San Marcos

[^1]: * Se utilizaron carbohidratos al 3% y las reacciones se registraron hasta los 15 dias.

