ANALES
 DE LA
 FACULTAD DE MEDICINA

METODOS ESTADISTICOS

Dr. ALBERTO HURTADO
Departamento de Fisiopatologia
Facultad de Medicina

PROLOGO

El análisis, interpretación y publicación de datos cuantitativos, asi cono su estudio comparativo con otros datos similares, requiere en Medicina, al igual que en otras ciencias, el empleo de métodos estadisticos. Cierta familiarización con estos métodos. y los términos usados, se ha hecho también conveniente para quien consulta la literatura médica, por la frecuencia de su inclusión en articulos de diversa índole. Esta labor presenta, a menudo, dificultades para el méd'co y estudiante, por la lejania de los dias de matemática escolar y por la falta de texios ade. cuados de consulta.

Hemos creido útil, por estas razones, reunir las instrucciones necesarias para el empleo de algunos de los métodos más usados en Medicina, desarrollándolos en una forma clemental, eliminando en lo posible íoda discusión matemática e ilustrando su aplicación con ejemplos concretos. Además, se ha procurado que cada capitulo se relacione, en forma inde-
pendienté con determinado aspecto estadístico, de tal manera que el lector pueda satisfacer una consulta sin necesidad de referirse a los otros capítulos. Estas consideraciones indican, claramente, que las páginas que siguen no pretenden corresponder a un manual de estadística.

En la preparación de este folleto hemos utilizado apuntes acumulados en este Departamento durante algunos años, notas referentes a charlas que sobre estadistica médica hemos ofrecido y las siguientes obras a las que referimos al lector interesado por una más amplia discusión y desarrollo:

Introduction to Medical Biometry and Statistics.
R. Pearl. W. B. Saunders Co., Philadelphia, 1940.

An Outline of Statistical Methods.
H. Arkin and R. Colton. Barnes \& Noble Co., New York, 1933.

Métodos Estadísticos.
F. C. Mills. Editorial M. Agnilar, Madrid, 1940.

Análisis Estadistico.
Sixto E. Trucen. Editorial El Ateneo, Bufnos Aires, 19.4.

Principles of Medical Statistics.
A. B. Hill. The lancel Limited, London, 1939.

Nociones de Bio. Estadistica.
Frarsz Schruefer. Caja Vacional de Seguro Social, Lima, 1941.

ALFABETO GRIEGO

A	\propto	ALPHA
B	A	beta
T		gamma
Δ	8	delta
E		EPSILON
Z	5	zeta
H	7	ETA
θ	θ	theta
I	\bullet	万'ta
K	κ	KAPPA
\wedge		LAMSDA
M	μ	mu

N	v	no
ㅍ	ξ	x
0	0	omicron
II	π	p
P	¢	вно
Σ	σ	SIGAA
T	τ	tau
Υ	v	upsilon
\$	ϕ	PHI
\mathbf{X}	χ	CH:
Ψ	ψ	Psit
Ω	ω	onega

CONTENIDO

InTRODUCOM-Consideraciones generales relacionadas con el empleo de métodos estadísticos.

Página: 129
Caprolul 1 Análisis y presentrión de datos cuantitativos.

Significado y cálculo de las constantes que indican los valores representativos de tendencia, frecuencia y varia c:ón de los datos analizados:

Media o promedio.
Mediana,
Modo,
Desviación standard, y
Coeficiente de variación.
Significado y calculo del Error standard y del Error probable.
Presentación de lus resultados obtenidos en el análisiz: estadistico de datos cuantitativos.

Página 131
apirulo il Medida de la Asimetria.

Lxpresión cuantitativa de la mat era como se distribuyen los datos analizados alrededor de los valores centrales. Asimetría positiva y negativa.
Significado y cálculo del coeficiente de asimetria.

Página: 147
capitulo in Medida de la relación entre dos o más variables.

Expresión cuantitativa de la relación entre dos o más series de datos.

Relación lineal (que es representada gráficamente por una linea rectal: significado y cáloulo del coeficiente de correlación.
Derivación de la ecuación de regresión para predecir una variable cuando el valor de la otra es conocido.
Relacion no lineal (que es representada gráficamente por una línea curva) : significado y cálculo de la razón de correlación.
Procedimiento para definir si una relación es lineal o no lineal: significado estadístico de la diferencia entre el coeficiente de correlación y la razón de correlación.
Correlación parcial: relación entre dos series de datos cuando una tercera es mantenida constante. Significado y cálculo del coeficiente de correlación parcial.
Presentación de los resultados obtenidos en el estudio estadístico de la relación entre dos o más series de datos.

Paggina: 153
capitulo iv Significado estadístico de las diferencias. Cálculo de probabilidades.

Procedimientos para averiguar si tienen significado estadistico las diferencias hailadas entre dos 0 más:

Medias o promedios,
Desviaciones standards,
Porcentajes, y
Coeficientes de correlación.
Cálculo de probabilidades: probabilidad de encontrar por casualidad o azar una diferencia igual a la encontrada entre dos valores.

Página: 180
capitllo y Representación gráfica.

Características generales de los diagramis.
Construción de diagramas que representan la frecurncia. variabilidad y distribución de los datos analizadus:

1-Diagrama de barras horizontales;

2--Histograma;
3--Poîgono de frecuencia;
4.- Dicgrama de frecuencias acumuladas; y

5-- Diagrama en coordcnadas angulares.
Construcción de diagramas que representan iendencia y relación:

1-Diagrama en coordenadas con escala arstmética;
2-Diagrama en coordenadas con escala logarítmica o semi-logarítmica;
3-Diagrama de dispersión; y
4-Diagrama polar.
Nomograma.
Diagrama que representa comparativamente la variabiİdad hallada en cl análisis estadístico de dos o más series de datos: representación gráfica del coeficiente de variación.
Cálculo de la linea de regresión: representación gráfica de la relación expresada por el coeficiente de correlación.

Página: 189
capitulo vi Construcción matemática de una linea recta o curva.
Procedimiento para construir una línea recta o curva (parabólica o logaritmica) que represente la relación entre dos series datos o variables, cuando esta relación está dada en un diagrama por varios puntos aislados ('curve fitting').

Página: 249
capitulo vil Bio-Estalistica. Coeficientes o tasas; indices.
Procedimientos para calcular los siguientes coeficientes e indices:

A-Mortalidad.
Cocficiente general de mortalidad:

Coeficiente especifico de mortalidad:
Coeficiente de mortalidad infantil;
Coeficiente de mortinatalidad;
Coef:ciente de morbimortalidad: y
Coeficiente de letalidad.
Coeficiente general de mortalidad corregido o ajustado.
B. Natalidad.

Coeficiente genera! de natalidad; y
Coeficiente especifico de natalidad.
C-Morbosidad.

Coeficiente general de morbosidad; y
Coeficiente especifico de morbosidad.
D---Crecimiento de una población.
Crecimiento vegetativo; e Indice vital.

Página: 274

APENDICES

A-Tabla de logaritmos.
Página: 301
B-Ejemplos para efectuar operaciones aritméticas de cantidades con signo diferente.

Página: 302
Indice Alfabético.
Página: 303

INTRODUCCION

Aunque este folleto no corresponde a un manual de estadistica, sino simplemente a una descripción elemental de algunos de los métodos más usados en Medicina, es quizás pertinente señalar, en forma breve, las características y limitaciones más importantes relacionadas con la aplicación de estos métodos.

La mentalidad médica es, por lo general, poco afecta y propicia a la consideración estadistica. Es evidente, sin embargo, que conclusiones experimentales y clínicas reposan, con frecuencia, sobre datos cuantitativos cuya interpretación correcta solo puede ser hecha por medio del análisis estadistico. Dicho análisis, para ser llevado a cabo satisfactoriamente, requiere, aparte del conocimiento de los simples procedimientos matemáticos relacionados, la comprensión de las linitaciones que tienen los resultados hallados. La ignorancia de esta segunda consideración es quizás el factor principal en el mal uso de la estadistica, y de la aparente justificación de la frecuente critica a su empleo.

Señalaremos algunas de las consideraciones principales que deben regir la aplicación de métodos estadísticos:
l-Métodos estadísticos sólo pueden ser aplicados al análisis de datos de carácter cuantitativo.
2 -El significado estadístico no es siempre sinónimo de significado médico o biológico. Por ejemplo, un grupo de sujetos tiene un valor medio de 60 pulsaciones por minuto y en otro grupo dicho valor corresponde a 62 pulsaciones. La diferencia entre ambas medias puede tener significado estadistico (dependiente del número de observaciones y de la variabilidad observada), pero poco o ninguno desde un punto de vista fisiológico o clínico.

Con frecuencia, el corto número de observaciones analizadas no permite generalizar los resultados estadísticos hallados, por precisos que éstos sean desde un punto de vista matemático.
3-Los métodos estadísticos analizan, a menudo, cifras cuya magnitud está sujeta a múltiples influencias, las que son ne-
cesarias tomar en cuenta al interpretar el resultado, o resultados obtenidos, mediante el empleo de dichos métodos. Ajustar, con un criterio inflexible, una cifra o valor, determinado estadísticanente, a la interpretación de un fenómeno biológico o clínico puede conducir a errores lamentables.
4-El análisis estadístico presupone, como condición esencial, que los datos que se analizan representen observaciones precisas. No hay método estadistico que compense o remedie investigaciones carentes de técnica o una recopilación de datos que corresponden a observaciones inexactas.

El significado, pues, del análisis estadistico reposa, fundamentalmente, sobre la veracidad de los datos analizados.

CAPITULOI

ANALISIS Y PRESENTACION DE DATOS CUANTITATIVOS

El análisis; interpretación y presentación de datos cuantitativos requiere su ordenación y el cálculo de algunas constantes que expresen, en forma concisa, los valores centrales de frecuencia y el grado de variación o dispersión. Las constantes más frecuentemente calculadas con este fin son: media aritmética o promedio, desviación standard y coeficiente de variación. En algunos casos puede ser útil el cálculo de la mediana y el modo, pero por lo general estas dos últimas constantes no son incluidas en la presentación de los datos analizados. A las constantes mencionadas se les calcula el error standard.

El significado de estas constantes es como sigue:
Media aritmética o promedio (Símbolo: M).-Cs la constante más común y la más fácilmente entendida. Representa, mecánicamente, el centro de gravedad de los datos analizados. Cuando no se emplean métodos estadísticos adecuados en el análisis de datos cuantitativos, la media generalmente constituye la única constante mencionada. Su valor aislado tiene, sin embargo, un significado muy limitado pues no indica la variabilidad o dispersión de los datos; además, el valor de esta constante puede no ser enteramente típico por la influencia que tienen en su.cálculo los valores extremos.

Desviación standard (Simbolo: 6).-También denominada "des. viación cuadrática media" y "desviación lípica". Esta constante mide, en términos absolutos de la unidad de medida a qu: se refiere los datos analizados, el grado de variación o dispersión de estos datos. Si la distribución de éstos es simétrica (distribuidos proporcionalmente a ambos lados de la media), la resta y la adición de la desviación standard a la media incluye, entre las cifras mínima y máxima obtenidas, el 68.3% de los datos analizados; si las mismas operaciones se hacen con la desviación standard $\times 2$ el 95.5% de los datos están incluídos, y este porcentaje alcanza al 99.7% si las opersciones se realizan con la desviación standard $\times 3$.

Ejemplo: En el análisis estadistico de mediciones de estatura hechas en 90 sujetos se han obtenido las siguientes constantes: Media $=165$ centímetros Desviación standard $=3$ centimetros
(a) -68.3% de las 90 estaturas están comprendidas entre 162 - 168 centimetros:

$$
\begin{aligned}
& \quad \begin{array}{l}
165-3=162 \\
165+3=168 \\
\text { (b) }-95.5 \% \text { de las } 90 \text { estaturas están comprendidas entre } \\
159-171 \text { centímetros: } \\
165-(3 \times 2)=159 \\
165+(3 \times 2)=171 \\
\text { (c) }-99.7 \% \text { de las } 90 \text { estaturas estan comprendidas entre } \\
156-174 \text { centímetros: } \\
165-(3 \times 3)=156 \\
165+(3 \times 3)=174
\end{array}
\end{aligned}
$$

Con fines comparativos es a veces necesario fijar los límites de variación encontrados en el análisis de una serie de datos. Para esto se utilizan los cálculos acabados de mencionar, y es costumbre fijar dichos límites restando y añadiendo a la media la desviación standard $\times 2$, ya que estas operaciones proporcionan valores que incluyen aproximadamente el 96% de los datos analizados.

Ejemplo: Con el objeto de anreciar el aumento y disminución de la hemoglobina (gramos por 100 cc . de sangre) en casos de policitemia y anemia, respectivamente, se ha determinado, previamente, esta substancia en) 200 sujetos sanos hallando los siguientes resultados:

Media $=16.00$ gramos
Deswiacion standard $=0.70$ gramos
Los límites de variación son:

$$
\begin{aligned}
& 16.00-(0.70 \times 2)=14.60 \text { gramos } \\
& 16.00+(0.70 \times 2)=17.40 \text { gramos }
\end{aligned}
$$

Luego, si se acepta gue 200 determinaciones de hemoglobina en sujetos sanos representan fielmente los valores correspondientes a toda la población sana, tenemos, que todo valor por debajo de 14.60 gramos, y por en encima de 17.40 gramos, pueden considerarse como anormales.

Coeficiente de variación (C. V. \%).-Expresa, en porcentaje, la variación o dispersión de los datos analizados. Se calcula:

Desviación standard
Media
$\times 100$

Es una medida útil de variación desde un punto de vista comparativo, ya que no es posible comparar directamente unidades correspondientes a medidas diferentes.

Ejemplo: En los 90 sujetos, citados en un ejemplo anterior, y en quienes se ha medido la estatura (en cemtímetros) se ha determinado también el peso (en kilos). Los resultados obtenidos son los siguientes:

$$
\begin{aligned}
& \text { Estatura- Media }=165 \mathrm{cms} . \\
& \text { Desviacion standard }=3 \mathrm{cms} \text {. } \\
& \text { Peso- Media }=60 \text { kilos } \\
& \text { Desviación standard }=4 \text { kilos }
\end{aligned}
$$

Puede uno preguntarse: ¿Qué varía más en esta serie de sujetos: la estatura o el peso? No siendo posible camparar direc. tamente "centínetros" con "kilos" se emplean los coeficientes de variackón respectivos:

Estalura: Coef. de var. $=\frac{3}{165} \times 100=1.8 . \%$.
Peso: Coef. de var. $=\frac{4}{60} \times 100=6.7 \%$
La respucsta es: el peco varia mais puesto que su coeficiente de variación es más clevado que el correspondiente a la estatura.
Las constantes estadisticas que hemos descrito son las más usadas das y las únicas que generalmente se mencionan en publicaciones. Puede, sin embargo, intercsar el cálculo de las siguientes:

Mediana (Símbolo: Md). - Es la constante por encima de la cual se encuentra el 50% de los datos analizados, hallándose el otro 50% por debajo. El cálculo de la mediana no es influenciado por los valores extremos, y, por consiguiente, puede, a veces, representarse más fielmente que la media el tipo o centro de variación dé los datos. Su desventaja consiste en que no es una constante utilizada con frecuencia en publicaciones y su significado es, por lo tanto, menos comprendido.

Modo (Símbolo: Mo).-Es el valor más frecuente y típico de los datos analizados. En su cálculo no influyen los valores extremos de los datos y puede tener, por consiguiente, un significado más descriptivo que la media y la mediana. Al igıal que esta última constante, el modo tiene la desventaja de no ser utilizado con frecuencia. Además, su valor es limitado cuando el número de datos que se analiza es pequeño, y en estas circunstancias puede aún no existir si ninguno de los datos es re-
petido. No es tampoco posible hacer un cátculo matemáticamente exacto de esta constante.

Error standard \{E. S.).-L\} significado estadistico de las constantes descritas se juzga er relación al error standard calculado para carla una de ellas, y que se expresa a continuación precedido por el signo \pm. Por ejemplo, el valor medio del ácido láctico en la sangre, determinado en una serie de sujetos, es 12.5 miligramos por 100 cc ., y el error standard de esta media es 0.15 . Esto se expresa: 12.5 ± 0.15 miligramos por 100 cc .

El error standard es una medida de precisión y también de variabilidad, aunque no es generalmente usado en este último sentido. El error standard es tanto más elevado cuanto mayor sea la variabilidad y menor el número de observaciones.

Se ha becho costumbre aceptar que una constante, o diferencia, me. nor a dos veces su error standard no tiene significado estadístico; en cambio éste es evidente si es dos o más veces mayor*.

Ejemplo: En dos grupos de sujetos se ha determinado la bilirrubina en el plasma sanguinea.

En el primer prupo la media \pm error standard ontènida es: 0.42 上 0.32 miligramos pur 100 cc . En este caso la media es menor a dos veces su error sandard ($0.32 \times 2=0.54$); lucgo no tiene significato estadistico.

En el acenundo grupo la mestia \pm error standard ubtenida es: 0.53 ± 0.12 miligranos por 100 cc . En este caso la media es mayor a dos veces su error standard ($0.12 \times 2=0.24$); en consecuencia sí tiene significato estadíslico.

Los métodos que se emplean para calcular las constantes descritas varían según el número de datos por analizar es menor o mayor a 20. Ambos procedimientos serán descritos separadamente.

Cálculo de las constantes de frecuencia y variación cuando el mímero de datos por analizar es menor 20^{*}. - Los procedimientos que

[^0]se emplean para determinar la media, desviación standard y el coeficiente de variación (la mediana y el modo son omitidos dado el corto número de observaciones) serán desarrollados utilizando un ejemplo:

Ejemplo: En 12 sujctos se la determinado la hemoglohina (en gramos por 100 cc . de sanyre). Los resultados obtenidos están dados en el Cuadro 1.

CUADRO 1
determinaciones de hemoblobina
(gramos por 100 cc de sangre) EN 12 SUJETOS

13.20	12.12	13.10	13.50
13.88	14.80	14.60	11.90
14.00	12.10	13.40	13.50

(a) - Con estos datos se construye el Cuadro 2:

CUADRO 2	
$\mathbf{1}$	2
\mathbf{x}	\mathbf{x}^{2}
13.20	
13.88	174.2400
14.00	192.6544
12.12	196.0000
14.80	146.8944
12.10	219.0400
13.10	116.4100
14.60	171.6100
13.40	213.1600
13.50	179.5600
11.90	182.2500
13.50	141.6100
160.10	182.2500

[^1]Columna 1 (x) - Cifras de hemoglobina tal como se han obtenido.
Se suman las cifras de esta columna.
Columna $2\left(x^{2}\right)$ - Corresponde al cuadrado de cada una de las cifras de la Columna 1 (x):

$$
\begin{aligned}
(13.20)^{2}= & 174.2400 \\
(13.88)^{2}= & 192.6544 \\
& y \text { así sucesivamente. }
\end{aligned}
$$

Se suman las cifras de esta columna.
(b) -Se hacen los siguientes cálculos:

$$
\begin{aligned}
\mathrm{V}_{1} & =\frac{\mathrm{Suma}^{\prime} \mathrm{x}}{\mathrm{~N}^{\circ} \text { datos }}=\frac{160.10}{12}=13.3417 \\
\mathrm{~V}_{2} & =\frac{\text { Suma } \mathrm{x}^{2}}{\mathrm{~N}^{\circ} \text { datos }}=\frac{2145.6788}{12}=178.8064 \\
\pi_{2} & =\mathrm{V}_{2}-(\mathrm{V})^{2}=178.8064-(13.3417)^{2}=0.8055 \\
\sigma & =\sqrt{\pi_{2}}=\sqrt{0.8055}=0.8975
\end{aligned}
$$

(.) - Se aplican las siguientes fórmulas":

Media $=\mathrm{Vl}$
Remplazando: Media $=13.34$
Desviación standard $=6$
Remplazando: Desviación standard $=0.90$
Coeficiente de variación $=\frac{\text { Desv. St. }}{\text { Media }} \quad \times 100$

[^2]Remplazando: Coef. de var. $=\frac{0.90}{13.34} \times 100=6.7 \%$
(d)-Para calcular el error standard de la media y de la desviación standard se aplican las siguientes fórmulas:
E. S. de la Media $=\frac{\text { Desv. St. }}{\sqrt{n-l}} \quad n=N^{0}$ de datos

Remplazando:
E. S. de la Media $=\frac{0.90}{\sqrt{12-1}}=0.27$
E. S. de la Desviación standard $=\frac{\text { Desv. St. }}{\sqrt{2(\mathrm{n}-1)}}$

Remiplazando:
E. S. de la Desv. St. $=\quad \frac{0.90}{\sqrt{2(12-1)}}=0.19$
(e) - Los resultados finales obtenidos en el análisis estadístico de los 12 datos de hemoglobina son:

Media \pm E. $S .=13.34 \pm 0.27$ gramos por 100 cc.
Desv. $5 \mathrm{t} . \pm \mathrm{E} . \mathrm{S} .=0.90 \pm 0.19$ gramos por 100 cc .
Coef. de var. $=6.7 \%$
Valores extremos* $=11.90-14.60$ gramus por 100 ce.

Estos resultados pueden ser presentados en el siguiente cuadro:

[^3]
CUADRO 3

determinaciones de hemoglobina kn 12 sujetos

	Media \pm E. S.	Desv. St. \pm E.S.	Coef.devar. $(\%)$	Valores extremos
Hemoglobina gms. por 100 cc.$)$ 13.34 ± 0.27 0.90 ± 0.19 6.7	$11.90-14.60$			

Cálculo de las constantes de frecuencia y variación cuando el mímero de datos por analizar es 20 o más.-Los procedimientos que se emplean para calcular la media, desviación standard y el coeficiente de variación (y también la médiana y el modo! serán desarrollados utilizando un ejemplo:

Ejemplo: En 138 sujetos se ha determinado la bilirrubina (en miligramos por 100 ce. de plasma). Los resultados obtenidos están dados en el Cuadro 4.

CUADRO 4

determinaciones ve bilirrubina
(mgms. por 100 cc . de plasma)
EN 138 SUJETOS

0.59	0.81	0.97	1.88	0.66	0.26
0.75	0.57	1.11	0.73	0.38	0.43
0.45	0.49	0.43	0.86	1.26	0.96
0.75	0.78	0.50	1.36	0.47	0.68
0.90	0.52	0.68	0.59	0.35	0.36
0.61	0.66	0.74	0.42	0.61	0.49
0.54	0.86	0.81	0.54	0.35	0.61
0.70	0.56	0.72	1.44	0.75	0.82
0.97	0.35	1.20	0.56	0.95	0.43
0.47	0.90	0.61	1.03	1.20	0.63
0.86	0.90	1.22	0.61	0.97	0.76
0.64	0.61	0.56	0.68	1.24	1.26
1.20	0.72	1.12	0.61	0.86	0.97
0.38	0.86	0.65	0.54	0.75	0.70
0.47	1.13	0.48	0.52	0.59	0.56
0.64	0.48	0.61	0.48	0.55	0.58
0.54	0.56	0.45	1.23	0.97	0.71
0.77	0.81	0.60	0.49	0.52	1.19
1.20	0.46	0.41	0.62	0.49	0.91
0.60	0.47	0.43	1.61	1.02	0.71
1.50	0.66	1.56	1.2 J	0.54	0.56
0.47	0.48	0.44	0.49	0.49	0.62
1.26	0.56	0.85	0.96	0.69	0.72

(a)-Se amotan las cifras menor y mayor de los datos.

En este ejemplo son: Mcnor :- 0.26
Mayor - 1.88
(b) - En seguida se construye el Cuadro 5 .

CUADRO 5

1	2	3	4	5	6	7
Grupas (myms por 100 $c c)$.	Punto medio	Z	N	x	$Z x$	$Z \mathrm{Zx}^{2}$
$0.10-0.29$	0.20	1	1	0	0	0
$0.30-0.49$	\ldots	31	32	1	31	31
$0.50-0.69$	\cdots	45	77	2	90	180
$0.70-0.89$	\ldots	26	103	3	78	234
$0.90-1.09$	\ldots	14	117	1	56	224
$1.10-1.29$	\ldots	15	132	5	75	375
$1.30-1.49$	\ldots	2	134	6	12	72
$1.50-1.69$	\ldots	3	137	7	21	147
$1.70-1.89$	\ldots	1	138	8	8	64
		138			371	1327

Intervalo de grupo: 0.20
Colunna 1-Corresponde a los 'grupos de irecuencin' ell los cuales se distribuyen los datos analizados; el valor más bajo de estos está incluído en el primer grupo y el más alto en el último grupo. El número de grupus de frecuencia es arbitrario, dependiendo, en parse, del número y naturaleza de los datos, pero es conveniente đue no sean menus de 6 ni más de 25.. El número de grupos empleados no influye en lus resultados que se obtienen para las diversas constantes.
La diferencia cuantitativa entre cada grupo de frecuencia se denomina "intervalo de grupo' cuyo valor, tambien arbitrario, se anota en la parte inferior del cuadro, pues es utilizado en cálculos posteriores.
En nuestro ejemplo hemos distribuído arbitrariamente jos dadatos en 9 grupos y el intervalo entre ellos es 0.20 (diferencia entre los grupos que plincipian en $0.10,0.30,0.50$, etc.). El primero de los grupos twe es $0.10-0.29$ incluye el valor más bajo de los datos analizados: 0.26 y el último grupo que es 1.70-1.89 incluye el valor más alto: 1.88 .*

[^4]Columna 2 (Punto medio)-Corresponde al valor medio del primer grupo de frccuencia. Se calcula añadiendo al limite inferior de este grupo la mitad del intervalo.
En nuestro ejemplo el límite inferior del primer grupo es 0.10 y la mitad del imtervalo es también 0.10. Luego:

$$
0.10+0.10=0.20
$$

Colmma 3 (L)—Corresponde al múnoro de datos que cae entre cada grupo de frecuencia. Si a uno de estos grupos no corresponde dato alguno se anota θ.
En nuestro ejemplo lay 1 determinación de bilirrubina cuyo valor está entre $0.10 y 0.29$, Juego se anota 1. Hay 31 đeterminaciones cuyo valor está entre 0.30 y 0.49 , luego se anota 31 , y así sucesivamente.
La suma de las cifras anotadas en esta columna debe corresponder al número total de datos analizados que en nuestro ejemplo es 138. Es :a:?uortante, antes de seguir adelante, verificar esta correspondencia para estar seguro de no haber omitido dato alguno*.

Columna $4(N)$ —Corresponde a la suma progresiva de las cifras anotadas en la Columna 3. La última cifra de esta columna debe corresponder al número total de datos analizatos, que en nuestro ejemplo es 138.
Nota-Esta columua es omitida si no se calcula la mediana.

Columna 5 (x)-Corresponde a la muneración de las grupos de érecuencia empezando por 0 .
En nuestro ejemplo, en el que hemos usado 9 grupos de frecuencia, el último número de esta columna es naturalmente 8 ; si hubiéramos usado 16 grupas de frecuencia el último número sería 15 , etc.

Columna 6 ($Z x$)-Cada cifra en exta columna corresponde a la multiplicación de los valores anotados en Columna 3 (Z) por los correspondientes en Columna $5(x)$. En nuestro ejempio:

Columna 3 Columna 5
 $\mathrm{Z} \quad \mathrm{x}$

[^5]$\left.\begin{array}{rlll}1 & \mathrm{X} & 0 & =0 \\ 31 & \mathrm{X} & 1 & =31 \\ 45 & \mathrm{X} & 2 & =90 \\ 26 & \mathrm{X} & 3 & =78 \\ & & & \mathrm{y}\end{array}\right)$

Los valores de csa columna se suman y se anota el resultado. En nuestro ejemplo es 371.

Columna $7\left(Z^{2}\right)$ _Cada cifra en esta colutuna corresponde a la muliplica. ción de los valores anotados en Columna $3(Z)$ por el cuadrado de los que les corresponden en Columna 5 (x).

En nuestro ejemplo:
Columna 3 Columana 5
$Z \quad x$
$1 \times(0)^{2}=0$
$31 \times(1)^{2}=31$
$45 \times(2)^{2}=180$
$26 \times(3)^{2}=234$
y asi sucesivamente.
Los valores de esta columna se suman y se anota el resultadn. En ruestro ejemplo es 1327.
(c) - En seguida se procede a las operaciones siguientes:

$$
\begin{aligned}
& \mathrm{V} 1=\frac{\text { Suma } \mathrm{Zx}}{\mathrm{~N}^{0} \text { datos }}=\frac{371}{138}=2.6884 \\
& \mathrm{~V} 2=\frac{\text { Suma }^{2} \mathrm{Zx}^{2}}{\mathrm{~N}^{0} \text { datos }}=\frac{1327}{138}=9.6159 \\
& \pi_{2}=\mathrm{V}_{2}-\left(\mathrm{V}_{1}\right)^{2}=9.6159-(2.6884)^{2}=2.3884 \\
& \mu_{2}=\pi_{2}-0.0833=2.3884-0.0833=2.3051
\end{aligned}
$$

$$
(0.0833=\text { constante })
$$

$$
\sigma=\sqrt{\mu_{2}}=\sqrt{2.3051}=1.5182
$$

(d) --Se aplican las siguientes formulas:

Media $=(V 2 x$ intervalo de grupo $)+$ Punto medio del primer grupu

Remplazando: Media $=(2.6884 \times 0.20)+0.20=0.74$
Desviación standard $=\sigma \times$ intervalo de grupo

Remplǎando: Desv. st. $=1.5182 \times 0.20=0.30$

Cocficiente de variación $=\frac{\text { Desviación standard }}{\text { Media }} \times 100$
Remplazando: Coef. de var. $=\frac{0.30}{0.74} \times 100=40.5 \%$
(e)-Para calcular el exror standard de la media y de la desviación standard se aplican las siguientes fórmulas:

Desv. st.
E. S. de la Media $=\frac{\overline{\sqrt{n}}}{}$

$$
\left(\mathrm{n}=\mathrm{N}^{0}\right. \text { de datos) }
$$

Remplazando:
E. S. de la Media $=\frac{0.30}{\sqrt{138}}=0.03$
E. S. de la Desviación stardard $=\frac{\text { Desv. st. }}{\sqrt{Z \times \pi}}$

Remplazando:
E. S. de Ia Desv. st. $=\frac{0.30}{\sqrt{2 \times 138}}=0.02$
(f) - Los resultados finales obtenidos en el análisis estadístico de los 138 datos de bilirrubina son:

Media \pm E. S. $=0.74 \pm 0.03$ miligramos por 100 ce. de plasma. Desv. St. \pm E. $\mathrm{S} .=0.30 \pm 0.02$ miligramos por 100 cc. de plasma. Coef. de var. $=40.5 \%$
Valores extremos $=0.26-1.88$ miligramos por 100 cc. de plasma.

Estos resultados pueden ser presentados en el siguiente cuadro:

CUADRO 6

Determinaciones de Bilirrubina en 138 sujetos

	Media \pm E. S.	Desv. St. \pm E.S.	Coef. de var $(\%)$	Valores extremos
Bilirrubina (mgms por 100 cc. plasma)	.	0.74 ± 0.03	0.30 ± 0.02	40.5

Las constantes (media, desviación standard y coeficiente de variación), cuyo cálculo hemos descrito, son generalmente las únicas que se incluyen en la presentación de datos cuantitativos sometidos a un análisis estadístico. Pero puede ser útil, en ciertos casos, la determinación de la mediana y el modo. Los cálculos que se emplean con este fin los aplicaremos al mismo ejemplo.

Ejemplo: 138 determinaciones de Bilirrubina. (Ver el Cuadro 5).
A-Para calcular la mediana se procede de la manera siguiente:
Suma Z
(1) - El n^{0} total de datos se divide entre 2 :

$$
2
$$

En nuestro ejemplo : $\frac{136}{2}=69$
(2) -Se busca en la Columna 4 (N) la cifra próxima jnferior a la obtenida en (1):

En nuestro ejemplo es 32
(3)-Réstese (2) de (1):

En nuestro ejemplo : $69-32=37$.
(4) - Se busca en la Columna 4 (N) la cifra prúxima superior a da obtenida en (2) :

En nuestro ejemplo es 77
(5) -Réstese (2) de (4):

En nuestro ejeniplo : $77-32=45$
(6) -Dividase el rcsultado obtenido en (3) cntre el resultado obtenido en (5):

37
En nuestro ejemplo : $\overline{45}=0.8222$
(7)-Multiplicpuese el xesuitado obtenido en (6) por el intervalo de grapo:

En nuestro ejemplo : $0.8222 \times 0.20=0.1644$
(8)-Añadase el resulado obtenido en (7) al limite inferior dek grupo de frccuencia a que corresponde la cifra encontrada en (4) :

En nuestro ejemplo: la cifra de (4) es 77 y el grupo de \{recuencia que le corresponde en la Columna 1 es 0.50 - 0.59 . Luego:
$0.1644+0.50=0.5644$ que es el valor de la icdiana.
La formula del aror standard de la mediana es :
E. S. de Ia Mediana $=1.2533 \mathrm{X}$

Desv. st

$$
(1.2533=\text { constante })
$$

Reemplazando:
E. S. de la Mediana $=1.2533 \times \frac{0.30}{\overline{\overline{138}}}=0.04$
l:-I'ara calcular a modo se pracede de la manera siguiente (Ver el Cuadro 5):

Se aplica la siguiente fórmula:

$$
\text { Modo }=\text { l.mo }+\left(\frac{f a}{f a+f b} \times c\right)
$$

> Lmo = límite inferior del qrupo de frecuencia que inclu. ye el mayor número de datus Illamado grupo mo(dal) ;*
> fa $=$ número de datos en el trupo de frecuencia próximo superior al grupo modal;
> fb $\quad=$ número de datos en el grupo de frecuencia próximo inferior al grupo modal;
> c $\quad=$ intervalo de grupo

Remplazando en nuestro ejemplo:
Lino $=0.50$ linite inferior del grupo de frecuencia 0.50 - 0.69 que incluye el mayor número de datos: 45 (grupo modal);
fa $=26$ Número de datos en el grupo de frectacncia próximo superior al grupo modal;
fb $\quad=31$ Número de datos en el grapo de frecuencia próximo inferior al grupo modal;
c $=0.20$ Intervalu de grupo.
Juego:

$$
\text { Mudo }=0.50+\left(\frac{26}{26+31} \times 0.20\right)=0.59
$$

C-I.Ios resultados finales obtenidus son:
$\begin{aligned} & \text { Mediana } \pm \mathrm{E} . \mathrm{S} .=0.66 \pm 0.04 \\ & \text { Modo miligramos por } 100 \mathrm{cc} . \text { de plasma, } \\ &=0.59\end{aligned}$

[^6]
CA1) I TILO I I

MEDIDA DL LA ASIMETRIA

Los datos de una serie analizada estadisticamente pueden distri. buirse de una manera uniforme alrededor del valor central. En este caso la media y la mediana tiene un valor igual y ia serie es simétrica. Si la distribución no es uniforme la serie analizada es asimétrica. Esta asimetria puede ser positiva (tendencia a desplazarse hacia valores bajos. presentando la mediana un valor menor al de la media; o negativa (ten-

FIGURA 1- Medición del diametro de 300 hematies en :3 sujetos.
Cirrva 1- Corresponde a una distribución asimètrica positiva (construida con los datos del Cuadro 7):
Curba 2- Corresponde a una distribución simétrica;
Citta 3- Corresponde a una distribución asimétrica negativa (consruida con los datos del Cuadro 8).
dencia a desplazarse hacia valores altos) teniendo la mediana un valor más alto que la media.

La simetría y asimetría, pusitiva o negativa, de una serie de datos pueden ser apreciadas gráficamente en la Figura 1.

La diferencia pues entre la media y la mediana permite apreciar la existencia y clase de asimetría, pero, con fines comparativos, puede ser interesante, en deteminados casos, medir cuantitativamente el grado de asimetría, y esto es posible calculando el llamado coeficiente de asimetria, representado por el simbolo: a. El coeficiente de asimetria puede variar entre +1 (asimetria máxima posiliva) y -l (asimetria máxima negatival. Cuando es igual a o la simetría es perfecta. Un coeficiente de 0.1 indica una asinetría modielada;si es mayor a 0.3 el gradu de asimetría es marcado.

Desarollaremos los procedimientos necesarios para el cálculo del cocficiente de asimetría utilizando dos ejemplos. uno de los suales se refiere a un coeficionte de asimetria pusitivo y el otro a uno nçativo.

Ejemplo: En una lámina de sangre se ha determinado el dánketro (en mictas) de 300 hematier. Con los resultados ibtenidos se construye el Cuadro 7*.

CUADRO 7

1	2	3	4	5	6	7
Gripors	Punto medio	Z	N	x	Zx	Z x^{2}
6.00-6.49	6.25	10	10	0	0	0
$6.50-6.99$		320	130	1	120	120
$7.00-7.49$		60	190	2	120	240
$7.50-7.99$		40	230	3	120	360
$8.00-8.49$		30	260	4	120	480
$8.50-8.99$		20	280	5	100	500
$9.00-9.49$		10	290	6	60	360
$9.50-9.99$		10	300	7	70	490
		300			710	25.30

Intervalu de srupo : 0.50

[^7][ivilizando los datos de] Cuadro 7:
(a) - Se calculan la nedia y la mediana $\%$ obteniéndose los resultados signientes:
\[

$$
\begin{array}{ll}
\text { Media } & =7.43 \text { micras } \\
\text { Mediuna } & =7.17 \text { micras }
\end{array}
$$
\]

(b) - Se calcula el primer cuartil (Q7):
(1)-El no total de datos se divide entre 4: \qquad

$$
\text { En nuestro ejemplo : } \frac{300}{4}=75
$$

(2) - Búsquese en Columna 4. (N) la cilra próxima inferior a la obtenita en (1):

En nuestro ejensplo es 10
(3)-Réstese (2) de (1):

En nuestro ejemplo : $75-10=65$
(4) - Búsquese en Columna 4 (N) la cifra proxima superior a la obtenida en (2). Amotese el grupo de frecuencia en Columna 1 y el númoro de datos en Columna 3 (Z) yut carresponden a esla cifra.

En nuestro ejpmplo la cifra próxima superior a 10 (obtenida en (2)) es 130 en la Columna $4(N)$, y los valores que corresponden a esta cilra son:

$$
\begin{aligned}
& \text { En Columna } 1=6.50-6.99 \\
& \text { En Columa } 3(Z)=120
\end{aligned}
$$

(5) -Dividase el resultade obtenido en 13) entre el segundo desultarlo obtenido en (4):

En nuesiro ejemplo: $\frac{65}{120}=0.5416$
(6) - Multiplíquese el resultado obtenido en (5) por el intervalo de grupo:

[^8]\[

$$
\begin{aligned}
& \text { En nuestro ejemplo : } 0.5416 \times 0.50=0.2708 \\
& \text { (7)-Añádase el resulado ontenido en } 16) \text { al limite inferiur dit } \\
& \text { grupu de irechencia anotado an (4). } \\
& \text { En nuestro ejemplo: la cifra de (6) es } 0.2708 \text { y el grupo de } \\
& \text { frecuencia anotado en } 141 \text { v } 5.50-6.99 \text {. Luegu: } \\
& \qquad 0.2708+6.50=6.7708 \\
& Q 1=4.7708
\end{aligned}
$$
\]

(c) -Se calcula al tercer ctarril (Q3):

1) - Multipliquese el número toral the datos $X 3$ y dividase el re-
sultado entre $4: \frac{\text { Suma } 7 \times 3}{4}=225$
En nuestro ejenplo : .- $\frac{300 \times 3}{4}=2$,
(2)-Bústuese © Columna 4 N) la cifra próxima inferior a la abtenida en (1):
En nuestro ejempio es 190
(3)-Réstese (2) de (1):

En nuestro ejempla: $225-190=35$
14 - Búsquese en Columna 4 Ni) la cifra próxima superior a la obtenida en 121 . Anotese el grupo de frecuencia en Columna y el número de datus en Columna 3 17.) que eorresponden a esta cifra.

En muestro rejemplo la cifra prúsina superior a 190, Cobtenida en (2)), es 230 en la Columna 4 (N), y los valores que corresponden a esta cifra son:

$$
\begin{array}{ll}
\text { En Culumna] } & =7.50-7.99 \\
\text { En Columna } 3(\%) & =40
\end{array}
$$

(5)-Dividase el resultado obtenido en (3) entre el segundo resultado ubtemido en (4):

En muestro ejemplo: $\overline{40}=0.8750$
(6) - Multiplíquese el resultado obtenido en (5) por el intervalu de gropo:
En nuestro ejamplo: $0.8750 \times 0.50=0.4375$
(7) - Anadase el resultado obtemido en (6) al limite inferior del ermpo de frecuencia anotactor en (4).
En nuestro ejempla: la cifra de 161 es 0.4375 y el grupo de frephencia anolada en (4) es $7.50-7.99$. J.nego:

$$
0.4375+7.50=7.9375
$$

$$
03=7.9375
$$

(d)-En scguida se aplica la siguiente fórmula:

$$
\text { Coeficiente de asimetria }=\frac{Q 3+\mathrm{Q1}-(2 \times \text { Mediana })}{Q 3-\mathrm{Ql}}
$$

Remplazandn en nuestro ejemplo:

$$
\text { Coef. de asimetría }=\frac{7.9375+6.7708-(2 \times 7.17)}{7.9375-6.7708}=+0.3157
$$

Interpretación-EI coeficiente de asimetria de +0.3157 indica un grado, de asimetria positiva marcado en la distribución de los datos rorrespondientes a 300 diámelros de hemalíps.

NOTA.-La curva N". l de la Figura l represenla gráficamente ja distribación de los daros amalizados.

Fjemplo: En una lámina de sangre se ha determinado el diámetro (en micas) (le 300 hematies, (ion los resultades nbtenidos se construye el Cuadro 8 *

CLIADRO 8

1	2	3	4	5	6	7	
Crupos	Punto medio	Z	N	x	Zx	Zx^{2}	
$6.00-6.49$	6.25	10	10	0	0	0	
$6.50-6.99$		10	20	1	10	10	
$7.00-7.49$		20	40	2	40	80	
$7.50-7.99$		30	70	3	90	270	
$8.00-8.49$		40	110	4	160	640	
$8.50-8.99$		60	170	5	300	1500	
$9.00-9.49$		120	290	6	720	4320	
$9.50-9.99$		10	300	7	70	490	
		300			1390	7310	

Intervalos de grupa : 0.50

[^9]Utilizando los datos del Cuadro 3:
(a)-Se calcula la media y la mediana * obteniéndose los resultados siguientes:

$$
\begin{aligned}
& \text { Media }=3.57 \text { micras } \\
& \text { Mediana }=3.33 \text { inicras }
\end{aligned}
$$

(b)-Se calcula el primer cuatil (Q1) ** obteniéndose el resultado sigujente:

$$
\mathrm{Q} 1=8.0625
$$

(c) -Se calcula el tercer cuartil (Q3) obteniéndose el resultado siguiente:

$$
\text { Q3 }=9.2292
$$

(d) - Se aplica la siguiente fórmula:

$$
\text { Coef. de asimetría }=\frac{9.2292+8.0625-(2 \times 8.83)}{9.2292-8.0625}=-0.3157
$$

Interpretación-El coeficiente de asimetria de - $0.315 \overline{7}$ indica un grado de asimetría negativa marcada en la distribución de los datos correspondientes a 300 diámetros de hematies.

NOTA.-La curva N ${ }^{0} 3$ de la Figura 1 representa graficamente la distribución de los datos analizados.

[^10]
C. A P IT Ii LO l I I

MEDIDA DE LA RELACION LNTRE DOS O MAS VARIABLES

Constituye un probirma frecucnte en el análisis estadistico de dos o más series de datos averiguar si existe alguna relación o asociación entre ellos. Por ejemplo: se ha determinado la capacidad vital (en litros) y la estatura (en centimetros) en 150 sujetos, y se desea averiguar si existe o no relación alguna entre estas dos características; 0 en 2.50 muestras de sangre, tomadas en igual número de sujetos, se ha hecho detcrminaciones del número de hematíes (en millones por mm^{3}.) y del volumen de los hematies (en micras ${ }^{3}$) y se desea investigar si existe o no relación alguna entre estas dos variables: número y tamaño de los hematies.

Cuando es necesario relacionar una variable con otras varias, y averiguar con cuál de estas últimas está más reíasionada la primera, es aún más importante aplicar métodos estadísticos. Por cjemplo: en los 1.50 sujetos citados en el párrafo anterior, no solo se ha determinado la capacidad vital (en litros) y la estatura (en centímetros), sino iambién el peso (en kilos), el área de superficie corporal (en metros cuadrados) y la circunferencia torácica (en centímetros), y es conveniente establecer, como parte del objetivo de la investigación realizada, con cual de estas medidas físicas (estatura, peso, área de superficie y circunferencia torácica) tiene mayor relación la capacidad vital. Utilizando procedimientos estadisticos es posible determinar, en forma precisa y cuantitativa, la relación de la capacidad vital con cada una de las características físicas citadas para concluir: $|a|$ - si existe relación en grado significativo, y (b) - en caso afirmativo, con cuál es más alta.

Si entre dos series de datos existe una relación ésta puede ser (1) - lineal o (2) - no lineal.

Relación lineal.--En este caso la relación puede ser representada gráficamente por una línea recta, porque al aumento o disminución en una de las variables corresponde variación porporcional en la otra. Si la variación ocurre en el mismo sentido en ambas variables la relación es directa; si, al aumento en una variable corresponde una disminución proporcional en la otra, o vice versa, la relación es inversa.

La existencia de una relacion lineal entre dos series de datos o variables se determina calculando el llamado coeficiente de correlación, re-
presentado por el simbolo: r, y duyo valor puede fluctuar entre +1 (correlación máxima directa) y - l (correlación máxima inversa). La correlación, directa o inversa, será tanto mayor cuanto más se acerque el valor de este coeficiente $a+1$ o -1 , respectivamente. siendo perfecta si adquiere uno de estos valores. Cuando el coeficiente es 0 no existe correlación alguna entre las dos variables. En general. si r es menor a 0.3000 , el grado de correlación es muy limitado o ausente; si es 0.5000 . o mayor, la correlación existe.

El significado estadístico del coeficiente de correlación es juzgado en relación a su error standard (E. S.) : y para tener significado estadistico tiene que ser dos o más veces mayor que este último.

Cuando el coeficiente de correlación entre dos variables es elevado y significativo es posible derivar una fórmula (ecuación de regresión), por medio de la cual, conocido el valor de una de las variables se predice el que le debe corresponder en la otra. Esta fórmula puede ser representada gráficamente por una linea recta (linea de regresión).

Relacion no lineal.--En este caso la relación entre dos variables no puede ser representada gráficamente por una linea recta, sino por una línea curva, porque al aumento o disminución en una de ellas no corresponde variación proporcional, directa o inversa, en la otra.

La existencia de una relación no lineal se averigua calculando la llamada razón de correlación, representada por el símbolo: n. El valor de la razón de correlación fluctúa entre 0 y 1 , siendo la relación expresada tanto más elevada cuanto más se acerque a la unidad.

Cuando se tienen dos series de datos cuya relación se desea averiguar no es posible, a priori, saber si se trata de una relación líneal o no lineal. y por lo tanto es necesario calcular r y n, y determinar, en seguida, para conchír sobre la clase de relación existente, si la diferencia entre ambos valores tiene significado estadistico. En la práctica, y en la gran mayoria de las publicaciones médicas, para determinar el grado de relación entre dos variables sólo se utiliza el cálculo del coeficiente de correlación (r). Sin embargo, en determinado caso, puede ser interesante, o necesario, determinar tanto r como u por lo que indicaremos, utilizando ejemplos, las operaciones necesarias para calcular ambas medidas de relación.

Significado general del coe/iciente de correlación y de la razón de correlacion.-Es muy importante tener en cuenta que tanto el coeficiente como la razón de correlación representan una medida de la relación o asociación estadística entre dos variables, pero que en el caso de
ser significativos mo indican necesariamente que tal relación tiene un caracter catesal.

Lin ejemplo ilustrará fácilmente, este criterio: en el estudio sanitario de varias poblaciones se ha encontrado un coeficiente de correlación significativo entre el número de casos de tuberculosis y el número de sujetos desocupados. Dicho coeficiente. expresando cierto grado de asociación entre ambas variables, no significa que la causa de la enfermedad es la desocupación.

Correlacion parcial.-Si se analizan estadisticamente varias series de datos puede ser conveniente establecer la relación entre dos variables manteniendo constante una o varias de las otras. Este procedimiento, denominado correlación parcial, es útil para establecer los factores que influyen en determinar tal relación. Por ejemplo: en los 150 sujelos, ya mencionados en parrafos anteriores y en quienes se han hecho diversas mediciones, se ha encontrado cierta relación entre la capacidad vilal (en litros) y la estatura (en centímetros), pero se desea averiguar si la relación encontrada es la misma en el caso de que todos los sujetos tuvieran el misıno peso. Es posible, por medio de la correlación parcial. establecer el grado de relación entre la capacidad vital y la estatura, manteniendo un peso idénticn en todos los sujetos estudiados. De esta manera, puede obtenerse cierto conocimiento de la influencia del peso corporal sobre la relación que existe entre la capacidad vital y la estatura.

La aplicación de los métodos correspondientes a la correlación parcial sólo es posible cuando previamente se ha hallado un coeficiente de correlación significativo entre las variables cuya relación se estudia.

Cálculo del coeficiente de correlación (r) entre dos series de datos. Los métodos que se utilizaṇ varian según que el número de observaciones por relacionarse sea mayor o menor a 25 . Ambos procedimientos serán descritos utilizando ejemplos separados*.

A-Procedimiento a seguir cuando el número de observaciones es menor a 25 - :

Ejemplo:--Se ha determinadio en 12 sujetos el número de hemalies len miHones por mm^{3}.) y la cantidad de hemoglobina fen gramos por 100 ce.) en la sangre circulante. Se trata de determinar si existe relación alguna entre ambas variahles (hematies y hemuglohina). Los resultados obtenidos en Jas riterminaciones hechas estan dados en el Cuadro 9.

[^11]
CTADRO 9

DETERMINACIONES DE HEMATIES (mill. por mms.) y HEMOGLOBINA
(gms. por 100 cc.) EN 12 SUJETOS.

Sujeto	Hematies (mill. por mm^{3})	Hemoglobina rams. pur lon ec.)
1	4.15	13.20
2	3.89	12.12
3	4.20	13.10
4	4.10	13.50
3	4.45	13.88
6	4.39	14.80
7	1.72	14.60
8	3.97	11.90
9	4.56	14.00
10	3.95	12.10
11	4.31	13.40
12	4.26	13.50

(a)-Con estos datos se contriye el Cuadro 10:

CUADRO 10

Columata l (x)-Corresponde a los resultados obtenidos en la numeración de liematíes en los 12 sujetos.
Se suman las cifras de esta colmma.
Columna $2\left(x^{2}\right)$-Corresponde al cuadrado de cada una de las cifras de la Columna 1 (x).

$$
\begin{aligned}
& (4.1 .5)^{2}=17.2225 \\
& (3.89)^{2}=15.1321
\end{aligned}
$$

y así sucesivamente.
Se suman las eifras de esta columna.

Columart 3 (y)-Cumpesponte a les resulados obtenidos en el dosaje de he. hemoghohira en los 12 sujetos.
Se suman las cilra; de esta columna.
MOTA-M Ada mo de los valores en esta columa, y su correspondienfe en Columba l. debell referirse al mismo sujelo. Es decir, que en la anotación de los datos en ambas columnas hay que ceguir el mismu orden del Cuadro 9.

Colummi $4\left(y^{2}\right)$-Corresponde al cuadrado de cada una de las cifras de la Columna $3(y)$.

$$
\begin{gathered}
\begin{array}{rl}
(13.20)^{2} & =174.2400 \\
(12.12)^{2} & =116.8944 \\
y & y \text { asi Eucesivament. }
\end{array} \\
\text { Sc suman Jas cifras de esta columma. }
\end{gathered}
$$

Columua $\overline{3}$ (xy)—Cada cifra en esta columma corresponde a la multiplicación de lus valores anotardos en Cohumna $1(x)$ por los corrcspondientes en Colmmina 3 (y).

		Columbar y		Columna xy
4.15	x	13.20	=	54.7800
3.89	x	12.12	=	47.1468
4.20	X	13.10	$=$	55.0200

Se euman las cifras de esta columna.
(b) -En seguida se procede a las operaciones siguientes*:

[^12]\[

$$
\begin{aligned}
& \mathrm{Vlx}=\frac{\text { Suma } \mathrm{x}}{\mathrm{~N}^{3} \text { datos }}=\frac{51.24}{12}=4.2700 \\
& \mathrm{~V} 2 \mathrm{x}=\frac{\text { Suma } \mathrm{x}^{2}}{\mathrm{~N}^{2} \text { datas }}=\frac{219.5006}{12}=18.2917 \\
& \pi 2 \mathrm{x}=\mathrm{V} 2 \mathrm{x}-(\mathrm{V} 1 \mathrm{x})^{2}=18.2917-(4.2700)^{2}=0.0588 \\
& \sigma x=\sqrt{\pi} 2^{x}=\sqrt{0.0588}=0.2425 \\
& V_{l y}=\frac{\text { Suma } y}{N^{\circ} \text { datos }}=\frac{160.10}{12}=13.3417 \\
& \mathrm{~V} 2 \mathrm{y}=\frac{\text { Suma } \mathrm{y}^{2}}{\mathrm{~N}^{0} \text { datos }}=\frac{2145.6788}{12}=178.8066 \\
& \pi_{2 y}=\mathrm{V} 2 \mathrm{y}-(\mathrm{V} 1 \mathrm{y})^{2}=178.8066-(13.3417)^{2}=0.8057 \\
& \sigma y=\sqrt{\pi 2 y}=\sqrt{0.8057}=0.8976
\end{aligned}
$$
\]

(c)-Se aplica la siguiente förmula:

Coeficiente de correlación (r) $=\frac{\mathrm{A}}{\mathrm{B}}$
En la que $\Lambda=\frac{\text { Suma } x}{N^{o} \text { datos }}-($ V1x \times Vly $)$

$$
B=\sigma \times \sigma y
$$

Remplazando "n muestro ejemplo:

$$
\begin{aligned}
& \left.\lambda=\frac{685.9908}{12}-14.2700 \times 13.3417\right)=0.1968 \\
& B=0.2425 \times 0.8976=0.2177 \\
& \text { Luego } r=\frac{0.1968}{0.2177}=+0.9040 \\
& \text { NOT'A-..EL coeficiente de correlación lleva el simno - cuando el va } \\
& \text { for de (Vlx } X \text { Vly) excede al de Suma } x y
\end{aligned}
$$

Pur cjemplo: en un caso dado tenemos los siguientes valores:
$\frac{\text { Suma } x y}{x}=7.6375$
$\sqrt{\sigma}$ datos
$(V 1 y \times V l y)=8.5733$
$\sigma x \times \sigma y=1.1341$

Luego:

$$
r=\frac{7.6375-8.5733}{1.1341}=-0.8251
$$

(d)- Para calcular el error standard ded cocficiente de correlación se aplica ba siguiente frimula:

$$
\begin{aligned}
\text { E. } S \text { del Cocf. de correlacion }= & \frac{1 \cdots r^{2}}{\sqrt{n-2^{2}}} \\
& \text { in }=n^{0} \text { de datos) }
\end{aligned}
$$

Remplazando en nuestro ejemplo:
E. \leq del Covef. de corrclacion $=\frac{1-10.9040)^{2}}{V^{\prime} 12-2}=0.0573$
(c) --El resultado final obtenido en el ralculo del coeficiente de correlación (r) entre los datos de hematies y hemoglobina, deterninados en 12 sujctes, ez el siguiente:

Coef. de correl. (r) \pm E. $S .=+0.9040 \pm 0.0578$
Interpretación-EI coeficiente de correlación de +0.9040 es mayor a dos veces s error standard $(2 \times 0.0578=0.1156$) y por lo tanto es significativa essarlísticamente. Indica una elevada correlación pousitiva lifecta potre ambas variables: bematies y hemoglobina.

B--Procedimiento a seguir cuando el número de observaciones es 25 o más:
Ejemplo: En 100 muestras de sangre obtenidas en casos de Enfermedad de Carrion se ha determinatu el Vodumen relobular (en micras ${ }^{3}$) y la Hemoglobina globular ten micromicrogramos!. Se trata de investigar si exjete alguna relación entre el tamano de los hematies, representado pur al volumen globular, y el contenido de hemoglobina de los hemaries, dado por la hemoglobina globular.
Los resultados obtenidos en las determinaciones están dados en el Cuadro 11.

CLADRO 11

$\begin{gathered} \text { Muestra } \\ \mathbb{N}^{*} \end{gathered}$	Volumen globular (micras ${ }^{3}$)	Hb globular (micrmicrems)	Muestra N°	Volumen globular (micras ${ }^{3}$)	Hb globular (micrmicrgms)
1	114.7	31.6	54	104.4	31.1
2	148.2	44.2	55	95.9	30.5
3	114.7	30.7	56	98.7	31.2
1.1	118.9	33.1	57	102.0	32.9
15	103.4	27.7	58	90.9	28.5
6	106.3	28.6	59	99.1	31.4
17	92.1	26.3	60	111.3	32.2
13	105.5	30.3	61	130.4	36.6
19	93.4	26.9	62	111.4	30.3
10	85.3	26.1	63	14.5 .0	38.2
; 11	89.5	27.3	64	152.9	41.8
112	134.4	43.6	65	127.1	36.5
13	123.2	34.2	66	162.7	44.5
14	125.3	36.2	67	143.3	41.8
1 15	137.1	38.0	68	108.1	29.1
16	138.1	40.1	69	119.1	34.2
17	111.4	34.0	70	76.2	24.3
18	150.3	41.1	71	115.3	34.0
19	122.4	39.2	72	97.4	29.7
20	130.9	34.5	73	98.8	30.5
21	138.1	38.3	74	98.5	30.0
22	125.9	37.6	75	140.3	41.2
23	112.2	32.8	76	108.8	33.2
24	128.0	36.0	77	132.2	39.2
25	120.1	37.8	78	13.5 .5	42.2
26	137.3	42.2	79	103.8	34.3
27	106.9	34.9	80	131.3	39.9
28	94.2	29.5	81	96.0	30.8
29	103.9	32.1	82	100.0	32.1
30	105.8	31.2	83	96.4	30.4
31	112.8	32.3	84	100.4	33.5
32	97.0	30.6	85	108.8	34.7
33	84.1	26.8	- 86	94.7	31.3
131	110.1	31.9	87	108.4	33.2
135	176.4	42.5	88	101.4	31.0
136	113.8	36.1	89	97.4	28.7
37	102.3	30.3	90	94.4	28.0
38	122.5	33.3	91	101.5	31.8
- 39	97.5	34.0	92	81.2	26.0

(Continúa)
(Continuación)

Muestra N^{8}	Volumen glo- bular (micras ${ }^{3}$)	Hb globular (micrmi- crgms)	Muestra N^{0}	Volumen glo- bular (micras ${ }^{3}$)	Hb globular (micrmi- crgms)
40	91.8	31.7	93	87.1	31.4
41	90.1	31.8	94	78.0	24.0
42	117.1	39.0	95	95.8	26.8
43	122.2	36.6	96	85.8	25.8
44	96.7	31.2	97	69.3	22.4
45	110.8	34.1	98	83.5	30.4
46	112.3	29.2	99	86.2	28.0
47	100.5	26.9	100	76.0	24.8
48	112.0	31.4	101	111.2	31.5
49	105.5	29.6	102	91.7	32.1
50	104.0	31.1	103	91.7	29.1
51	80.8	23.6	104	99.7	31.7
52	156.7	42.8	105.	87.4	29.4
53	108.7	40.6	106	89.2	29.7

(a) - Con estos datos se construye el Cuadro 12, denominado Cuadro de Correlación. Se procede de la manera siguiente:

Grupos de frecuencia de Volumen Globular y de Hemoglobina Globular *Se anotan el valor más alto y el más hajo de ambas series de datos:

Volumen globular: 69.3
 Hemoglobina globular: 22.4

 176.4Tanto los datos de volumen globular como los de hemoglobina globular se dividen en cierto número de "grupos de frecuencia", el primero de los cuales incluye el valor más hajo y el último el valor más alto.
El número de grupos de frectencia. y la magnitud del intervalo que los separa, es arbitrario, pero en un cuadro de correlación es conveniente gue no sean menos de 6 ni más de 15.
En nuestro ejemplo, hemos dividido los datas de volumen globular en 12 grupos, el primero de los males: 65.0 - 74.9 incluye el valor más bajo de esta serie: 69.3, y el b́timo grupo: 175.0 - 184.9 incluye el valor más alto: 176.4. El interialo fue separa los grupos es 10.0
Los datos de hemoglobina globular también se han dividido en 12 grupos, el primero de los cuales: 21.0 - 22.9 incluye el valor más bajo: 22.4 , y el último grupo: $43.0-44.9$ incluye el valor más alto: 44.5. El intervalo que separa los grupos es 2.0 .

NOTA--En nuestro ejemplo es por simple coincidencia que el número de grupos de frecuencia es igual (12) en ambas series de datos. Esto no es necesario.

[^13]CUADRO 12

Los grupos de frecuencia de volumen globular se anotan en la primera columna vertical, a la izquierda, y los que corresponden a la hemoglobina globular en la primera columna horizontal, en la parte superior.

En seguida, en el espacio dividido en casilleros y limitado por lineas gruesas, se anota el número de datos de hemoglobina globular que co. rresponde a cada grupo de frecuencia de volumen globular. Para esto hay que consultar el Cuadro 11.

Correspondiendo a un volumen globular de 65.0 - 74.9 hay sólo un dato de hemoglobina globular: 22.4, Luego sc anota 1 en el casillero correspondiente a 21.0 - 22.9 porquc dicho valor corresponde a este grupo de írecuencia.

Correspondiendo a un volumen globular de 75.0 - 84.9 tenemos los siguientes valores de hemoglobina globular:
26.8
23.6
24.3
26.0
24.0
30.4
24.8

De estos datos hay 4 (23.5, $24.3,24.0$ y 24.8) que corresponden al grupo de frecuencia 23.0 - 24.9 , luego se anota 4 en el casillero correspondiente a este grupo de frecuencia; hay 2 valores (26.8 y 26.0) que corresponden al grupo de frcenencia 25.0 - 26.9, luego se anota 2 en el casillero respectivo. Finalmente, hay 1 valor (30.4) gue corresponde al grupo de frecuencia $29.0-30.9$, luego se anota 1 en el casillero respectivo.

Y así, sucesivamente. se va anotando ol número de datos en cada grupo de frecuencia de hemoglohina slofolar fue corresponde a cada grupo de frecuencia de volumen triobular.
En seguicla se procede a calcular las otras columnas del misno Cuadro 12 :

Columnas horizontales:

Columna 1 (Zx)-Corresponde a la suma de las cilias anotadas en cada grupo de frecuencia de hemoglobina globular.

Columna (2 (x)-Si el número de grupos de frecuencia es impar se coluca el 0 correspondiendo al grupo contral, es decir al grupo a cuya izpuierda y derecha se enchentre ighal mimero de grupos.
Si el número de grupos de frecbencia es par se coloca el 0 correspondiendo a N^{o} grupos de frecuencia
$\div 1$.

En nuestro ejemplo el número de grupos de frecuencia de hemoglobina globular es par: 12; luego se coloca el 0 correspondiendo al grupo:

$$
\frac{12}{2}+1=7
$$

Contando de izquierda a derecha el Grupo 7 de hemoglobina globular es el de 33.0 - 34.9 ; luego ss coloca 0 correspondiendo a este grupo.

En seguida se numera, comenzando por l y en forma ascendente, todas las columnas situadas a la izquierda y a la derecha del 0; las de la izquierda llevan el signo - y las de la derecha el signo +

Columna 3 ($\mathrm{ZXX}_{\mathrm{X}}$)-Corresponde a la multiplicación de cada cifra en Columna 1 (Zx) por su correspondiente en Columna $2(\mathrm{x})$. En nuestro ejemplo:

$$
\begin{gathered}
\text { I } \times-6=-6 \\
4 \times-5=-20 \\
4 \text { así sucesivamente. }
\end{gathered}
$$

Se suman los valores correspondientes a esta columna y se anota el resultado. En nuestro ejemplo es -60 .

Columna $4\left(\mathrm{Zxx}^{2}\right)$---Corresponde a la multiplicación de cada cifra en CoJumna 1 (Zx) por su correspondiente en Columna $2(\mathrm{x})$, elevada al cuadrado.
En nuestro ejemplo:

$$
\begin{aligned}
& 1 \times(-6)^{2}=36 \\
& 4 \times(-5)^{2}=100 \\
& 8 \times(-4)^{2}=128
\end{aligned}
$$

y así sucesivamente.
Se suman los valores obtenidos en esta columna y se anota el resultado. En nuestro ejemplo es 710 .

Columnas verticales:
Columna 1 (Zy) -Corresponde a la suma de las cifras anotadas en cada grupo de frecuencia de volumen globular.
Se suman las cifras anotadas en esta columna. La suma debe corresponder el número fotal de observaciones, En nuestro ejemplo: 106.
Columna 2 (y) -Para colocar el 0 en esta columna se procede de idéntica manera a lo indicado en Columna 2 (x), página 163.

En nuestro ejemplo el 0 corresponde al grupo $\frac{12}{2}+\mathrm{I}=7$.
El Grupo 7 es, contando de arriba a abajo, el grupo de 125.0 134.9; luego se coloca el 0 correspondiendo a este grupo.

En seguida, se numera, comenzando por 1 y en forma ascendente, las columnas siluadas arriba y abajo del 0 . Las de arriba llevan el signo - y las de abajo el signo +

Columna 3 (Zyy)-Corresponde a la multiplicación de cada cifra en Co. lumna l (Zy) por su correspondiente en Columna 2 (y). En nuestro ejemplo:

$$
\begin{array}{rlrl}
1 \times-6 & =-6 \\
7 \times-5 & =-35 \\
17 \times-4 & =-68 \\
y & =-2 \text { asi } & \text { sucesivamente. }
\end{array}
$$

Se suman los valores correspondientes a esta columna y se anota el resuliado. En nuestro ejemplo es - 216 .

Columna 4 (Zyy2)-Corresponde a la multiplicación de cada cifra en Columna I (Zy) por su correspondiente en Columna 2 (y), elevada al cuadrado.
En nuestro ejemplo:

$$
\begin{array}{r}
1 \times(-6)^{2}=36 \\
7 \times(-5)^{2}=175 \\
17 \times(-4)^{2}=272
\end{array}
$$

y así sucesivamente.
Columna 5 (Zxyx)-Corresponde a la multiplicación de cada una de las cifras anotadas en los grupos de frecuencia de volumen globular por su correspondiente en Columna 2 (x).
Se procede separadamente con cada línea horizontal, incluída en el espacio limitado por líneas gruesas; se suman los resultados obtenidos y se anota el producto de esta suma en la Columna 5 (Zxyx).
En puestro ejemplo:

Grupo 65.0-74.9 | $\mathrm{l} \mid \mathrm{I}$ |
| :--- |
| X |

Columna 2 (x)

-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5

Resultado:
Se anota -6 en Columna 5 (Zxyx).
$=-6$

Se anota - 30 en Columna 5 (Zxyx)

Columna 2 (x)

Resultado:

$$
-16-12-8-5
$$

$$
=-41
$$

Se anota - 41 en Columna 5 (Zxyx).

Y así sucesivanente,
Se suman los valores correspondientes a esta columna y se anota el resultado; este debe ser igual al obtenido en la suma de la Columna 3 (Zxx).
En nuestro ejemplo el total de la suma es -60, cifra igual a la obtenida en la suma de los valores correspondientes a la Columna 3 (Zxx).

Columna 6 (Zxyxy) -Corresponde a la multiplicación de cada cifra en Columna 5 ($Z \mathrm{xyx}$) por su correspondiente en Columna 2 (y). En nuestro ejemplo:

$$
\begin{aligned}
& -6 \times-6=+36 \\
& -30 \times-5=+150 \\
& -41 \times-4=+164
\end{aligned}
$$

y así sucesivamente.

Se suman los valores correspondientes a esta columna y se anota el resultado. En nuestro ejemplo es +602.
(b) - En seguida se procede a las operaciones siguientes:

$$
\begin{aligned}
& \text { Vlx }=\frac{\text { Suma } \mathrm{Zxx}}{\mathrm{~N}^{0} \text { datos }}=\frac{-60}{106}=-0.5660 \\
& \text { V2x }=\frac{\text { Surna } \mathrm{Zxx}^{2}}{\mathrm{~N}^{0} \text { datos }}=\frac{710}{106}=6.698 \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
& T\left(2 \mathrm{x}=\mathrm{V} 2 \mathrm{x}-(\mathrm{V} 1 \mathrm{x})^{2}=6.6981-(-0.5660)^{2}=6.3777\right. \\
& \sigma x=\sqrt{72 x}=\sqrt{6.377}=25954 \\
& \mathrm{Vly}=\frac{\text { Suma Zyy }}{\mathrm{N}^{0} \text { datos }}=\frac{-216}{106}=-2.0377 \\
& \mathrm{~V} 2 \mathrm{y}=\frac{\text { Suma } \mathrm{Zyy}^{2}}{\mathrm{~N}^{0} \text { datos }}=\frac{884}{106}=8.3396 \\
& J\left(2 y=V 2 y-(V 1 y)^{2}=8.3396-(-2.0377)^{2}=4.1874\right. \\
& \sigma y=\sqrt{\overline{\pi z y}}=\sqrt{4.1874}=2.0463
\end{aligned}
$$

(c) -Se aplica la siguiente formnta:

$$
\begin{aligned}
& \text { Coeficiente de correlación }(r)=\frac{A}{B} \\
& \text { En la que } A=\frac{\text { Suma Zxyxy }}{N^{0} \text { datos }}-(\mathrm{Vlx} \times \mathrm{V} y \mathrm{y}) \\
& \Gamma=\sigma: \times \sigma_{y}
\end{aligned}
$$

Remplazando en nuestro ejemplo:

$$
\begin{aligned}
A & \left.=\frac{+602}{106}-1-0.5660 \times-2.0377\right)=+4.5259 \\
B & =2.5254 \times 2.0463=5.1677 \\
\text { Lucgo } r & =\frac{+4.5259}{5.1677}=+0.87 .58
\end{aligned}
$$

(d)-Para calcular el error standard del coeficiente de correlación se aplica la siguiente íórmula:
E. S. del Coef. de correlació: $=\frac{1-\mathrm{r}^{2}}{\sqrt{\mathrm{n}}}$

Remplazando en nuestro ejemplo:
E. S. de Coef. de correlación $s=\frac{1-(0.8758)^{2}}{\sqrt{106}}=0.0226$
(e) - El resultado final obtenido en el cálculo del coeficiente de correlación (r) entre los datos de Volumen Clobular y Hemoglobina Globular, de terminados en 106 casos de Enfermedad de Carrión, es el siquiente:

Coef. de correl. (r) \pm E. S. $=0.8758 \pm 0.0226$
Interpretación-El coeficiente de correlación de +0.8758 es mayor a dos veces sul error standard $12 \times 0.0226=0.0452$ y por lo tanto es significativo estadisticamente. Indica una elevada correlación positiva directa thtre amlas variables: volumen globular y hemoglohina glubular.

Cálculo de la razón de correlación (n) entre dos series de datos.Los métodos que se emplean para este cálculo serán demostrados utilizando un ejemplo.

Ejemplo: En la sección anterior hemos hallado que el cueficiente de correlación entre el Volumen Globular y la Hemoglobina Globular, caracterislicas hemáticas determinadas en 006 casos de Enfermedad de Carrión, es significativo, indicando una relación positiva directa entre ambas varia. bles.

Utilizaremos el mismo ejemplo para calcular el valor de la razón de rarrelación (n) entre ambas caracteristicas: Volumen Globular y Hemoglobina Globular.
Con los datos contenidos en los Cuadros 11 y 12 se construye el Cuadro 13.

CUADRO 13

1	2	3	4	5	6
Volumen globula Grupos	$\begin{aligned} & \text { b globu } \\ & \text { Media } \end{aligned}$	x	x^{2}	Zy	$\mathrm{Z}_{\mathrm{Y}} \mathrm{x}^{2}$
$65.0-74.9$	22.4	-10.5	109.20	1	109.20
$75.0-84.9$	25.7	-7.2	51.81	7	362.88
$85.0-94.9$	29.0	- 3.9	15.21	17	258.57
95.0-104.9	30.9	- 2.0	4.00	26	104.00
105.0-114.9	32.3	- 0.6	0.36	23	8.28
115.0-124.9	35.7	2.8	7.84	9	70.56
125.0-134.9	37.8	4.9	24.01	9	216.09
135.0-144.9	40.5	7.6	57.76	7	404.32
145.0-154.9	41.3	8.4	70.56	4	282.24
155.0-164.9	43.6	10.7	- 114.49	2	228.98
$165.0-174.9$	-	--	-	0	-
$175.0-184.9$	42.5	9.6	92.16	1	92.16
$\ldots \|$ 106 2137.28					

Columna 1 (Volumen globular-Grupos)-Corresponde a la división de los datos de Volumen globular en H 2 grupos de frecuencia. Estos son idénticos a los dados en la primera columna vertical del Cuadro 12.

Columna 2 (Hb globnlar-Media)-Corresponde a los valores medios o promedios de H b globular gue se refieren a cada grupo de frecuencia de Volumen globular. Para estos calculos se utiliza el Cuadro Il con los datos originales.
En nuestro ejemplo:
Correspondiendo a un Volumen slabular de 65.0-74.9 hay un sólo dato de Hl g globular: 22.4. En este caso. este es el vator medio o promedio de este grupo.
Correspondiendo a un Volumen globular de $75.0-84.9$ tenemos los siguientes valores de Hb globular:

$$
\begin{aligned}
& 26.8 \\
& 23.6 \\
& 24.3 \\
& 26.0 \\
& 24.0 \\
& 30.4 \\
& 24.8
\end{aligned}
$$

El valor medio de estos 7 datos de Hb glolyular es igual a la suma de estos datos dividida entre 7 :

$$
\frac{179.9}{7}=25.7
$$

Y así sucesivamente se van calculando los valores medios de Hb globular que comresponden a cala gropo de frecuencia de Volumen globular.

NOTA-Cuando hay que determinar el valor medio en un múmero considerable de datos se puede emplear. con el objeto de simplificar los cálculos, los procedimientos indicados en el Capítulo I, página 138.

Columna 3 (x) - A cada una de las cifras de la Columna 2 (Hb globular-Media) se le resta el valor medio que corresponde a todos los datos de Hb globular.

En nuestro ejemplo:
El valor medio de $\operatorname{los} 106$ datos de Hb globular es 32.9. Luego:

$$
\begin{aligned}
22.4-32.9 & =-10.5 \\
25.7-32.9 & =-7.2 \\
29.0-32.9 & =-3.9 \\
& y \text { así sucesivamente. }
\end{aligned}
$$

NOTA-El valor medio de todos los datos de Hb globslar se puede calcular con el Cuadro 1l, utilizando los procedimientos indicados en el Capítulo I, página 138.
También es posille calcular este valor medio con los datos contenidos en e] Cuadro 12 (cuadro de Corre lacion) y los correspondientes a la secciơn (b), página l66. En este caso se aplica la siguiente formula: Media de la Hb globular $=(\mathrm{Vlx} \times$ intervalo de grupo) + Punto medio del grupu a que corresponde 0 en x. Remplazando en nuestro ejemplo: Media de la Hb globular $=$ $(-0.5660 \times 2)+340=32.9$

Columna $4\left(x^{2}\right)$-Corresponde al cuadrado de cada una de las cifras de la Columna 3 (x).

En nuestro ejemplo:

$$
\begin{aligned}
& (-10.5)^{2}=109.20 \\
& (-7.2)^{2}=51.84 \\
& (-3.9)^{2}=y \text { y asi sucesivamente. }
\end{aligned}
$$

Columna 5 (Zy)-Indica el número de datos de Hb globular correspondiente a cada grupo de frecuencia de Volumen globular.
Esta columna es identica a la Colunna 1 (Zy). del Cuadro lí.

Se suman las cifras anotadas en esta coltumna; el producto de lá suma debe ser igual al número total de clatos analizados. En nuestro ejemplo: 106.

Columna $6\left(Z \mathrm{yx}^{2}\right)$-Corresponde a la multiplicación de cada ma de las cifras en la Columna 5 (Zy) por la correspondiente en Columna $4\left(x^{2}\right)$.
En nuestro ejemplo:

| 1×109.20 | $=109.20$ |
| ---: | :--- | ---: | :--- |
| 7×51.84 | $=362.88$ |
| 17×15.21 | $=258.57^{\circ}$ |
| y | asi sucesivamente |

(a) -Se aplica la siguiente fórmula:

$$
\text { Razón de correlación }(n)=\frac{A}{B}
$$

$$
\begin{gathered}
\text { En la que } A=\sqrt{\frac{\text { Suma } \overline{Z y x}}{\text { Suma }} \overline{Z y}} \\
B=\sigma^{\prime} x \times \text { inicrvalo de grupo }
\end{gathered}
$$

Remplazando en nuestro ejeniplo:

$$
\begin{aligned}
& \mathrm{A}=\sqrt{\frac{2137.28}{106}}=4.4903 \\
& \mathrm{~B}=2.5254 \times 2=5.0508
\end{aligned}
$$

NOTA-El valor de 6 x es obtenido de las operaciones referentes al cálculo de coeficiente de correlación (sección (B), página 159).
El valor del intervalo de grupo es el que corresponde a los grupos de frecuencia de Hb globular (Cuadro 12).

$$
\text { Luego } n=\frac{4.4903}{5.0508}=0.8890
$$

(b) - El valor obtenido para la razón de correlación tiene que ser corregido tomando en cuenta el número de grupos de frecuencia usado en su cálculo.
La fórmula que se usa es la siguiente:
n corregida $={\sqrt{n^{2}-\frac{(k-3)}{\text { Suma } Z y}}}_{\sqrt{1-\frac{(k-3)}{\text { Suma Zy }}}}$

$$
\begin{aligned}
& \left(\mathrm{n}^{2}=\underset{\text { razón de correlación al }}{\text { cuadrado }) .}\right. \\
& \left(\mathrm{k}=\frac{\mathrm{N}^{9} \text { de grupos de frecuen- }}{} \mathrm{cia}\right)
\end{aligned}
$$

Remplazando en nuestro ejemplo, en el que el número de grupos de frecuencia usado en el Cuadro 13 es 12 :
n corregida $=\sqrt{\frac{(0.8890)^{2}-\frac{(12 \overline{-3})}{106}}{11-\frac{(12-3)}{106}}}=0.8779$
(c)-Para que la razón de correlación (n) corregida tenga significado estadistico debe ser mayor a:

que representa el valor de la razón de correlación que se obtendría, de acuerdo con los datos analizados, en series prácticamente no relacionadas.

A su vez $\sqrt{\frac{\bar{k}-1}{\text { Suma } Z y}}$ tiene que ser dos o más veces mayor que su error
standard para poder ser tomado en cuenta. El error standard se calcula mediante la fórmula:

$$
1
$$

E. S. $=$

Aplicando estas fórmulas a nuestro ejemplo tenemos:
$\sqrt{\frac{k-1}{\text { Suma } Z y}} \pm \sqrt{\frac{1}{\text { Suma } Z y}}=\sqrt{\frac{12-1}{106}} \pm \frac{1}{\sqrt{106}}=0.3222 \pm 0.0971$
Interpretación.-El valor de 0.3222 , que representa la razón de correlación que corresponderia a series de datos de Volumen globular y Hb globular no relacionados, es significativo puesto que es mayor a dos veces su error standard $(2 \times 0.0971=0.1942)$.

Pero la razón de correlación corregida: 0.8779 es mayor que 0.3222 , y por consiguiente tiene sigmificado estadístico e indica que existe una relación evidente entre ambas variables: Volumen globular y Hemoglobina globular.

Significado de la diferencia entre la razón de correlación (n) y el coeficiente de correlación (r).—.Cuando se verifica la existencia de cierto grado de relación entre dos variables, mediante la determinación del coeficiente de correlación y de la razón de correlación, siempre se
obtiene para esta última un valor más elevado que para el primero. Esto no significa, necesariamente, que la relación hallada no es lineal. Es preciso determinar si la diferencia entre n y r tiene significado estadístico; en caso de que la tenga la relación no es lineal, y por lo tanto está mejor expresada por n; si la diferencia no tiene valor estadístico la relación es lineal, es decir, debe ser expresada por r, y puede ser representada gráficamente por una línea recta.

Utilizaremos el mismo ejemplo que ha servido para el cálculo del coeficiente de correlación y de la razón de correlación para demostrar los procedimientos relacionados con el significado de la diferencia entre ambos.

Ejemplo: En el estudio de la relación existente entre Volumen globular y Hemoglobina globular, características hemáticas determinadas en 106 casos de Enfermedad de Carrión, hemos encontrado un coeficiente de correlación (r) de +0.8758 y una razón de correlación (n) de 0.8890 (Págiginas 168 y 171.

Se trata de investigar si la diferencia entre estos valores tiene significado estadístico para concluír acerca de la clase de relación (lineal o no lineal) entre ambas caracteristicas: Volumen globular y Hemoglobina globular.
Los cálculos que se emplean son los siguientes:
(a) La diferencia entre 11 y r está expresada por la fórmula:

$$
\begin{aligned}
& \mathcal{J}_{\mathrm{n}^{2}}-\mathrm{r}^{2} \\
& \text { en la que } \mathrm{n}^{2} \\
& \mathrm{r}^{2}=(\text { (razón de correlación })^{2} \\
& =(\text { coef. de correlación })^{2}
\end{aligned}
$$

Remplazando en nuestro ejemplo:

$$
J_{n^{2}}-r^{2}=(0.8890)^{2}-(0.8758)^{2}=0.0233
$$

(b) -Esta diferencia, para tener significado estadístico, tiene que ser dos o más veces mayor que su error standard.
El error standard se calcula mediante la fórmula:
E. S. de $\mathcal{J}_{n^{2}}-r^{2}=2 \times \sqrt{\frac{J n^{2}-r^{2}}{n}} \times \sqrt{\left(1-n^{2}\right)^{2}-\left(1-r^{2}\right)^{2}+1}$

$$
\left(\mathrm{n}=\mathrm{n}^{\vartheta} \text { de datos }\right)
$$

Remplazando en nuestro ejemplo:
E. S. de J $\mathrm{n}^{2}-\mathrm{r}^{2}=2 \times \sqrt{\frac{0.0233}{106}} \times \sqrt{\left(1-0.8890^{2}\right)^{2}\left(1-0.8758^{2}\right)^{2}}+1$
$=0.0281$ (c) - El resultado final es:

$$
J_{\mathrm{n} 2}-\mathrm{r} 2 \pm E . S_{1}=0.0233 \pm 0.0281
$$

Interpretación.-La diferencia de 0.0233 no tiene significado estadístico pues es menor a dos veces su error standard ($2 \times 0.0281=0.0562$). Luego a pesar de que n es mayor que r la relación entre Volumen globular, en la serie de datos analizados, tiene carácter lineal y debe ser expresada por el coeficiente de correlación (r) que es +0.8758 .

Presentación de los resultados obtenidos en al estudio de la relación entre dos series de datos.-Los resultados obtenidos mediante la aplicación de los métodos descritos en este capítulo, los que se refieren a la relación entre el Volumen globular y la Hemoglobina globular, características hemáticas determinadas en 106 casos de Enfermedad de Carrión, pueden ser presentados de la manera siguiente (Cuadro 14):

$$
\text { C U A D R O } 14
$$

RELACION ENTRE EL VOLUMEN GLOBULAR Y LA HEMOGLOBINA globular en 106 determinaciones hechas en casos de ENFERMEDAD DE CARRION.

Caracteristicas relacionadas	Coeficiente de correlación $\pm E . S$.	Razón dé currelación	Razón de correlación corregida		$J_{n^{2}}-r^{2} \pm E . S$.
Volumen globular (micras ${ }^{3}$)					
$\begin{gathered} \mathrm{y} \\ \text { (mb globular } \\ \text { (micromicrogms.) } \end{gathered}$	$+0.8758 \pm 0.0226$	0.8890	0.8779	0.3222 ± 0.0971	0.0233 ± 0.0281

NOTA-En resumen, la interpretación estadística del Cuadro l4 cs como sigue:
(1)-El coeficiente de correlación y la razín de corrclación son significativos, y por consiguiente indican la existencia de una relación entre el Volumen globular y la Hb globular én la serie de casos estudiados;
(2) La relación tiene carácter líneal, pues la diferencia entre la razón de correlación y el coeficiente de correlación no tiene valor estadistico, y por lo tanto debe ser expresada pol el coeficiente de correlación;
(3) - El coeficiente de correlación es bastante elevado y llevando el signo + indica que la relación es directa: a un aumento o disminución en una de las caracteristicas corresponde, respectivamente, un aumento o disminución proporcional en la otra;
(4) -Siendo líneal la relación entre ambas características, aquella puede scr representada gráficamente por una línea ricta (Figura 31), y
(5) -Siendo el coeficiente de correlación significativo y elevado, puede derivarse una ecuación de regresión, por medio de la cual es posible predecir que Hb globular debe corresponder a un Volumen globular dado.

Cálculo de la ecuación de regresión.-Cuando la relación entre dos series de datos o variables es lineal, y está expresada por un coeficiente de correlación elevade, es posible derivar una ecuación, denominada ecuación de regresión, por medio de la cual, conocida una de las variables, es posible predecir el valor que le corresponde en la otra.

Ejemplo: En el estudio de la relación existente entre el Volumen globular y la Hemoglobina globular, características hemáticas determinadas en 106 casos de Enfermedad de Carrión, se ha encontrado que la relación entre ambas características es lineal, y está expresada por un coeficiente de correlación elevado: +0.8758 (página 168).

La ecuación de regresión que permite predecir la Hemoglobina globular que debe corresponder a un Volumen globular darlo se calcula de la manera siguiente:
(a) -La fórmula general es la siguiente:
$\mathrm{X}-$ Media de la Hb globular $=\overline{\mathrm{x}}$ ($\mathrm{Y}-$ Media del Volumen globular)
en la que $X=$ Hbglobular
$\mathrm{Y}=$ Volumen globular
$\bar{x}=$ Coef. de correl. $\times \frac{x_{x} \times \text { intervalo de grupo de Hb. glob. }}{\sigma \times \text { intervalo de grupo de Vol. glob. }}$

Remplazando en nuestro ejemplo en el que:
Media de la Hb globular $=32.9$
Media del Volumen globular $=109.5$

$$
\bar{x}=+0.8758 \times \frac{2.5254 \times 2}{2.0463 \times 10}=0.2161
$$

NOTA-Los valores medios de Hb globular y de Volumen globular se calculan con los datos contenidos en el Cuadro 11, utilizando los procedimientos indicados en el Capítulo I., página 131. Los valores correspondientes a σx y σ y están dados en la página 159, sección (B).
El intervalo de grupo de Hb globular y de Volumen globular corresponden a los usados en los grupos de frecuencia del Cuadro 12.

Tenemos:

$$
\mathrm{X}-32.9=0.2161(\mathrm{Y}-109.6)
$$

Resolviendo esta ecuación para hallar el valor de X:
(1) Pasando - 32.9 con signo contrario:

$$
X=0.2161(Y-109.6)+32.9
$$

(2) Multiplicando Y y -109.6 por 0.2161 :

$$
X=0.2161 Y-23.6846+32.9
$$

(3) Restando 23.6846 de 32.9 :

$$
X=0.216 .1 Y+9.2
$$

(b) -Como X representa la Hb globular e Y el Volumen globular, tenemos que la ecuación de regresión es:

Hb globular $=(0.2161 \times$ Volumen globular $)+9.2$
Por ejemplo, para un Volumen globular de 120 micras 3 debe corresponder una Hb globular de:

$$
(0.2161 \times 120)+9.2=35.1 \text { micromicrogramos }
$$

Correlacion parcial.-Los procedimientos que se emplean para determinar la correlación parcial serán desarrollados utilizando un ejem. plo.

Ejemplo: En 40 muestras de sangre se ha determinado el número de liemalies (en millones por mm^{3}), el Volumen globular (en micras ${ }^{3}$) y la Hemoglobina globular (en micromicrogramos).

En el análisis estadístico de los resultados obtenidos, y utilizando los procedimientos indicados en este capítulo, se ha hallado coeficientes de correlación significativos y elevados entre las tres características. hemáticas.
Representando, para abreviar, cada caracteristica hemática por una cifra:

Núnero de hematies $=1$; Volumen globular $=2$; Hb globular $=3$, tenemos que los coeficientes de correlación hallados son los siguientes:

$$
\begin{aligned}
& \mathrm{r}^{12} \pm \text { E. S. }=+0.8813 \pm 0.0362 \\
& \mathrm{r}^{13} \pm \text { E.S. }=+0.8685 \pm 0.0399 \\
& \mathrm{r}^{23} \pm \text { E.S. }=+0.8212 \pm 0.0528
\end{aligned}
$$

$r^{12}=$ coeficiente de correlación entre el número de hematies y el Volumen globular;
$r^{13}=$ coeficiente de correlación entre el número de hematíes y la Hemoglohina globular;
$\mathrm{r}^{23}=$ coeficiente de correlación entre el Volumen globular y la Hemoglobina globular.
se desea averiguar cuál sería la relación entre el Volumen globular y la Hemoglobina globular en el caso de que las 40 muestras de sangre tuvieran igual número de hematies, es decir, el prohlema por dilucidar es el cálculo de la correlación parcial entre el Volumen globular y la Hemoglobina globular manteniendo constante el número de hematíes

Para este cálculo se procede de la manera siguiente:
(a) -Se aplica la siguiente fórmula:

$$
\begin{aligned}
& \mathrm{r}^{23.1}= \frac{\mathrm{r}^{23}-\left(\mathrm{r}^{12} \times \mathrm{r}^{13}\right)}{\sqrt{1-\left(\overline{1}^{12}\right)^{2}} \times \sqrt{1-\left(\mathrm{r}^{13}\right)^{2}}} \\
& \mathrm{r}^{23.1}=\begin{array}{l}
\text { coeficiente de correlación parcial entre Volumen } \\
\text { globular (2) y Hemoglobina globular ((3) man- } \\
\text { teniendo constante el número de hematíes (1). }
\end{array}
\end{aligned}
$$

Remplazando en nuestro ejemplo:
(b) - El error standard del coeficiente de correlación parcial se calcula mediante la fórmula:
E. S. del coef. de correl. parcial $=\frac{1-(\text { coef. correl. parcial })^{2}}{\sqrt{\pi}}$

$$
(\mathrm{n}=\text { número de datos) }
$$

Remplazando en nuestro cjemplo:
E. $S . \operatorname{de} \mathrm{r}^{23.1}=\frac{1-(0.2382)^{2}}{\sqrt{40}}=0.1492$
(c) - El resultado final obtenido para el coeficiente de correlación parcial entre el Volumen globular y la Hemoglobina globular, manteniendo constante el número de hematies:

$$
\mathrm{r}^{23.1} \pm \text { E. } \mathrm{S} .=0.2382 \pm 0.1492
$$

Interpretación-El coeficiente de correlación parcial de 0.2382 entre el Volumen globular y la Hemoglobina globular, que se obtiene manteniendo constante el número de hematies en las 40 deterninaciones, es considerablemente menor a 0.8212 (coeficiente de correlación entre las mismas características sin mantener constante el número de hematies), y, además, no tienc valor estadistico pues es menor a dos veces su crror stantard ($2 \times 0.1492=0.2584$).

Lo que significa yute si en todas las muestras de sangre analizadas el número de hematíes fuera igual, no existiria relación alguna entre ei Volunten globular y la Hemoglobina globular.

Lus mismos procedimientus serian empleados si, utilizando el misno ejemplo, quisiéramos calcular el coeficiente de correlación parcial entre otras dos variables manteniendo constante la tercera. Así para calcular tal coeficiente entre el número de hematíes (I) y la Henoglobina globular (3), manteniendo constante el Volumen globular (2):
(a)-Se aplica la siguiente fórmula:

$$
\begin{aligned}
& \mathrm{r}^{13.2}= \mathrm{r}^{13}-\frac{\left(\mathrm{r}^{12} \times \mathrm{r}^{23}\right)}{\sqrt{1-\left(\mathbf{r}^{12}\right)^{3}} \times \sqrt{1-\left(\mathrm{r}^{23}\right)^{2}}} \\
& \mathbf{r}^{13.2}=\begin{array}{l}
\text { coeficiente de corrclación parcial entre númeru } \\
\text { de hematíes (1) y Hemoglobina globular (3) } \\
\text { mantenjendo constante el Volumen globular (2). }
\end{array}
\end{aligned}
$$

Remplazando en nuestro ejemplo:

$$
\mathrm{r}^{13.2}=\frac{0.8685-(0.8813 \times 0.8212)}{\sqrt{1-(0.8813)^{-2}} \times \sqrt{1-(0.8212)^{2}}}=0.3406
$$

(b) - El error standard del coeficiente de correlación parcial se calcula mediante ì fórmula:
E. S. de] coef de correl. parcial $=\frac{1-\left(\text { coef. correl. parcial) }{ }^{2}\right.}{\sqrt{n}}$

$$
(n=\text { número de datos })
$$

Remplazando en nuestro ejemplo:

$$
\text { E. } S . \text { de } \mathrm{r}^{13.2}=\frac{1-(0.3406)^{2}}{\sqrt{40}}=0.1398
$$

(c) -El resultado final obtenido para el coeficiente de correlación parcial entre el número de henaties y la Femoglobina globular, manteniendo constante el Volumen globular:

$$
\mathrm{r}^{13.2} \pm \text { E. } \mathrm{S} .=0.3406 \pm 0.1398
$$

Interprctación-EI coeficiente de correlación parcial de 0.3406 entre el número de hematíes y la Hemoglobina ghobular tiene valor estadístico pues es mayor a dos veces su error standard ($2 \times 0.1398=0.2796$), pero es considerablemente menor a 0.8685 (coeliciente de correlación entre las mismas características sin mantener constante el Volumen globular).

Lo que indica que si en tolas las muestras de sangre analizadas el Volumen globular fuera el mismo la relación entre el número de hematies y la Memoglobina globular seria mucho menos evidente.

CAPITULO IV

Significado estadistico de la diferencia entre medIas, DESVIACIONES STANDARD, PORCENTAJES Y COEFICIEN. TES DE CORRELACION

CALCJLO DE PROBABILIDADES

Constituye un problema frecuente concluir si la diferencia entre constantes obtenidas en el análisis estadistico de dos o más series de datos tiene significado estadístico, o si este no existe por razones de ser pocos los datos analizados, de haber gran variabilidad en la distribución de los datos, etc. Demostraremos con ejemplos concretos los procedimientos que se emplean con el objeto de determinar el significado estadistico de las diferencias.

Diferencia entre valores medios.-Para que una diferencia entre valores medios tenga significado estadístico debe ser dos o más veces mayor a su error standard. Dos ejemplos servirán para demostrar los calculos correspondientes.

Ejemplo: En dos grupos de sujelos se ha determinado el número de hematies en la sangre circulante (en millones por mm^{3}). Lus valores medios, con sus respectives errores standard, obtenidos en los dos grupos. son los siguientes:
Grupo $I=6.73 \pm 0.13$ millones de hematies por mm^{3}.
Grupo II $\Rightarrow 6.59 \pm 0.11 \quad \geqslant \quad \geqslant \quad, \quad$ "
Se traba de determinar si la diferencia entre los dos valores medios $\left(6.73-6.59=0.14\right.$ millones de hematíes por mm^{3}) tiene significado estadisticu. Para esto hay que calcular el error standard de la diferencia mediante la fórmula:
E. S. de la diferencia $=\sqrt{(\text { E. S. de La Media } 1)^{2}+(\text { E. S. de la Media Lit }}$ en la gue (E. S. de la Media l) ${ }^{2}=$ el cuadrado del error standard correspondiente a la media del Grupol.

$$
\begin{aligned}
(\text { E. S. de la Media II })^{2}= & \text { el cuadrado del error standard co- } \\
& \text { rrespondiente a la media del Gru- } \\
& \text { po II. }
\end{aligned}
$$

Remplazando en nuestro ejemplo:
E. S. de la diferencia $=\sqrt{(0.13)^{2}}+(0.11)^{2}=0.17$

Luego, el resultado final es:

$$
\text { Diferencia } \pm \text { E. } \mathrm{S} .=0.14 \pm 0.17
$$

Interpretación-La diferencia de 0.14 millones de hematies por mm^{3}, entre los valores medios correspondientes a los dos grupos de sujetos, no tiene significado estadístico, pues es menor a dos yeces su error standard ($2 \times 0.17=0.34$).

Lo que indica que desde un punto de vista estadístico no es justificado concluír que los dos valores medios comparados son diferentes.

Ejemplo: En dos grupos de sujetos se ha determinado la cantidad de CO 2 en la sangre arterial (en centímetros cúbicos por 100 cc . de sangre). Los ¥alores medios, con sus respectivos errores standard, obtenidos en los dos grupqs, son los siguientes

Grupo I $=45.68 \pm 0.33 \mathrm{cc}$, de CO 2 por 100 ec , de sangre
Grupo II $=33.50 \pm 0.18$

Se trata de determinar si la diferencia entre los dos valores medios ($45.68-33.50=12.18$) tiene significado estadístico. Como en el ejemplo anterior, se aplica la siguiente fórmula:
E. S. den la diferencia $=\sqrt{(\text { E. S. de la Media } I)^{2}}+\overline{(\text { E. S. de la Media II })^{2}}$
en la que (E. S. de la Media I$)^{2}=$ el cuadrado del error standard correspondiente a la media del Grupo I.
(E. S. de la Media H) ${ }^{2}=$ el cugdrado del error standard correspondiente a la media del Grupo 11 .

Remplazando en nuestro ejemplo:
E. S. de la diferencia $=\sqrt{(0.33)^{2}}+(0.18)^{2}=0.38$

Luego, el resultado final es:

$$
\text { Diferencia } \pm \text { E. } S .=12.18 \pm 0.38
$$

Interpretación-La diferencia de 12.18 centímetros cúbicos de CO2 por 100 cc . de sangre, entre los valores medios correspondientes a los dos grupos de sujetos, tiene significado estadístico, pues es mayor a dos veces su error standard $(2 \times 0.38=0.76)$.

Lo que indica que desde un punto de vista estadístico hay justificación para concluír que los dos valores medios comparados son diferentes.

Diferencia entre desviaciones standard.-Al igual que en el caso de los valores medios, para que una diferencia entre desviaciones standard tenga significado estadistico debe ser dos o más veces mayor a su error standard.

Ejemplo: En dos grupos de sujetos se ha determinado el número de pulsaciones por minuto. Las desviaciones standard, con sus respectivos errores standard, obtenidos en los dos grupos, son las siguientes:

Grupo IF $=9 \pm 0.19$ pulsaciones por minuto
Grupo $I=5 \pm 0.16$
Se trata de determinar si la diferencia entre las dos desviaciones standard $(9-5=4)$ tiene significado estadístico. Para esto hay que calcular el error standard de la diferencia mediante la fórmula:
E.S. de la diferencia $=\sqrt{(\text { E.S. de la Desv, st. } \overline{1})^{2}}+(\text { E.S. de la Desv. st. } \overline{\text { II }})^{2}$

En la que (E. S. de Ja Desv. st. $)^{2}=$ el cuadrado del error standard correspondiente a la desviación stan dard del Grupo 1;

- (E.S. de la Desv. st. II) ${ }^{2}=\varepsilon$ el cuadrado del error standard $\Leftrightarrow-$ rrespondiente a la desviación stau dard del Grupo II.
Remplazando en nuestro ejemplo:
E. S. de la diferencia $=\sqrt{(0.19)^{2}+(0.16)^{2}}=0.25$

Luego, el resultado final es:

$$
\text { Diferencia } \pm \text { E. S. }=4 \pm 0.25
$$

Interpretación-La diferencia de 4 pulsaciones por minuto entre las desviaciones standard correspondientes a lus dos grupos de sujetos tiene significado estadístico pues es mayor a dos veces su error standard ($2 \times 0.25=0.50$).

Lo que indica que desde un punto de vista estadístico hay evidencia para concluir que las dos desviaciones standard comparadas son diferentes.

Diferencia entre porcentajes.-Para que una diferencia entre porcentajes tenga significado estadístico debe también ser dos o más veces mayor a su error standard.

Ejemplo: Una serie de casos con Neumonía han sido tratados mediante la administración de una droga A, mientras que otra serie de casos con la misma enfermedad no ha recibido tal droga. Los resultados observados, en lo que concierne a la mortalidad, son los siguientes:

Serie I-En 76 casos tratados con la droga A han ocurrido 10 muertes:

Serie II-En 164 casos no tratados con la droga A han ocurrido 14 muertes: 14 $\frac{14}{164} \times 100=8.54 \%$ de mortalidad

Se trata de determinar si la diferencia entre los dos porcentajes de mortalidad ($13.16-8.54=4.52$) tiene significado estadístico.
Para concluír a este respecio hay que calcular: (a) - el error standard correspondiente al porcentaje de mortalidad de la Serie I; (b) - el error standard correspondiente al porcentaje de mortalidad de la Serie II; y - (c) - el error standard de la diferencia entre los dos porcentajes.
(a) - El error standard del porcentaje de mortalidad de la Serie I se calcula mediante Ja fórmula:
E. S. $=\sqrt{\frac{\text { Porcentaje } \times(100-\text { porcentaje })}{N^{0} \text { de casos }}}$

Remplazando en nuestro ejemplo:
E. $S=\sqrt{\frac{13.16 \times(100-13.16)}{76}}=3.8777$
(b)-El error standard del porcentaje de mortalidad de la Serie II se calcula mediante la fórmula:
E. $S .=\sqrt{\frac{\text { Porcentaje } \times(100-\text { porcentaje) }}{N^{o} \text { de casos }}}$

Remplazando en nuestro ejemplo:
E. $S .=\sqrt{\frac{8.54 \times(100-\overline{8.54)}}{164}}=2.1823$
(c) - El error standard de la diferencia entre los dos porcentajes de mortalidad se calcula aplicando la siguiente formula:
E. S. de la diferencia $=\sqrt{(\text { E. S. de la Serie I })^{2}+(\text { E. S. de la Serie } 1 \mathrm{I})^{2}}$ Remplazando en nuestro ejemplo:
E. S. de la diferencia $={\sqrt{(3.8777)^{2}}}^{-}+\overline{(2.1823)}^{\overline{2}}=4,4496$

Luego, el resultado final es i

$$
\text { Diferencia } \pm E_{1} S_{1}=4,62 \pm 4,45
$$

Interpretación-La diferencia de 4.62% no tiene significado estadíatico pues es menor a dos veces sul error standard ($2 \times 4.45=8.90$).
Lo que indica que désde un punto de vista estadístico no es justificado concluir que el porcentaje de mortalidad en los casos de Neumonía tratados con la droga A sea verdaderamente más elevado que en los casos no tratados con tal droga.

Diferencia entre coeficientes de correlación.- La diferencia entre dos coeficientes de correlación tiene que ser dos o más veces mayor a su error standard para tener significado estadístico.

Ejemplo: En dos grupos de sujetos diferentes se ha relacionado la capacidad vital con el volumen torácico, obteniéndose los siguientes coeficientes de correlación, con sus respectivos errores standard:

Crupo I $=+0.8754 \pm 0.0325$
Grupo J[$=+0.6353 \pm 0.0487$

Se trata de determinar si la diferencia entre los dos coeficientes de corelación ($0.8754-0.6353=0.2401$) liene significado estadístico. Para esto se aplica la simuiente fómula:
E. S. de la diferencia $=V^{\prime}\left(\text { E. S. de } r^{1}\right)^{2}+\left(E . S . \text { de } r^{2}\right)^{2}$
en la que (E. S. de $\left.\mathrm{r}^{1}\right)^{2}=$ el cuadrado del error slandard del coeficiente de correlación obtenido en el Grupo I;
$\left(E, S \text {. de } r^{2}\right)^{2}=$ el cuadrado del error standard del coeficiente de correlacion obtenido en el Gry. po II;

Remplazando en nuestro ejemplo:
E. S. de la diferencia $=\sqrt{(0.0025)^{2}+(0.0487)^{2}}=0.0591$

Luego, el resultado final es:

Diferencia \pm E. $S .=0.2401 \pm 0.0591$

Interpretación-La diferencia de 0.240I, entre los dos coeficientes de correla ción, tiene significado estadístico pues es mayor a dos veces su error standard $(2 \times 0.0591=0.1182)$.
Lo que indica que desde un punto de vista estadistico hay justificación para concluír que los dos coeficientes son diferentes,

CALCLLO DE PROBABILIDADES

En la sección anterior de este capítulo hemos indicado que para que una diferencia tenga significado estadístico debe ser dos o más veces mayor a su error standard. Tal procedimiento comparativo basta para concluir sobre tal significado. Sin embargo, si se desea comentar o profundizar aún más la conclusión alcanzada: es posible, conocido el error standard de una diferencia, calcular las probabilidades de que tal diferencia sea debida al azar o casualidad y no corresponda, por consiguiente, a una diferencia real. Tal cálcuio de probabilidades se hace consultando el Cuadro 15.

CUADRO 15
CALCULO DE PROBABILIDADES

$\frac{\text { Diferencia }}{\text { Error standard }}$	Probabilidades de encontrar tal diferencia por casualidad		
	En 100 observaciones	En relación a ${ }^{\text {* }}$	
0.6745	50.00%	1.00	a 1
0.7	48.39	1.07	a 1
0.8	42.37		a 1
0.9	36.81	1.72	a 1
1.0	31.73	2.15	a 1
1.1	27,13	2.69	a 1
1.2	23.01	3.35	a 1
1.3	19.36	4,17	a 1
1.4	16.15	5.19	a 1
1.5	13.36	6.48	a 1
1.6	10.96	8.12	a 1
1.7	8.91	10.22	\& 1
1.8	7.19	12.92	a 1
1.9	5.74	16.41	a 1
2.0	4.55	20.98	a 1
2.1	3.57	26.99	a 1
2.2	2.78	34.96	a 1
2.3	2.14	45.62	a I
2.4	1.64	60.00	a 1
2.5	1.24	79.52	a l
2.6	0.932	106.3	a 1
2.7	0.693	143.2	a 1
2.8	0.511	194.7	a 1
2.9	0.373	267.0	a 1
3.0	0.270	369.4	a 1
3.1	0.194	515.7	a 1
3.2	0.137	726.7	a I
3.3	0.0967	1,033	a I
3.4	0.0674	1,483	a 1
3.5	0.0465	2,149	a 1
3.6	0.0318	3,14,2	a 1
3.7	0.0216	4,637	a 1
3.8	0.0145	6,915	a 1
3.9	0.00962	10,930	a 1
4.0	0.00634	15,770	a 1
5.0	0.0000573	1,744,000	a 1
6.0	0.0000002	500,000,000	a 1
7.0	0.00000000026	400,000,000,000	a 1

* I representa la probabilidad de encontrar por casualidad la diferencia, y la cifra previa a l representa el número correspondiente de probabilidades de no encontrarla.

En el Cuadro 15 encontramos que cuando una diferencia equivale a dos veces su error standard hay 4.55 probabilidades en 100 de encontrar tal diferencia por casualidad, y por cada probabilidad de encontrarla por azar hay casi $2 I$ de no hallarla. Es por este motivo que generalmente se acepta que una diferencia debe ser por lo menos dos veces mayor a su error standard para tener significado estadistico. Hay autores que exigen para aceptar la significación estadística, que una diferencia debe ser por lo menos tres veces mayor a su error standard; en este caso sólo hay 0.27 probabilidades en 100 de encontrar ial di. ferencia por casualidad y 369 a 1 de no encontrarla.

Los siguientes ejemplos demostrarán la manera de consultar el Cuadro 15 en un caso dado.

Ejemplo: Se ha medido en radiografias el diámetro transverso del corazón en dos grupos de sujetos. Los valores medios, con sus respections aroes standard, obtenidos son los siguientes:

$$
\begin{aligned}
& \text { Grupo I }=18.6 \pm 1.04 \text { centímetros } \\
& \text { Grupo II }=15.3 \pm 0.82 \quad "
\end{aligned}
$$

Empleando los procedimientos indicados en la página 180 encontramos que la diferencia entre estos valores medios, y el error standard de esta diferencia, son:

$$
\text { Diferencia }:=\text { E. } \mathrm{S} .=3.3 \pm 1.32
$$

Esta diferencia es 2.5 mayor a su error standard: $\left(\frac{3.3}{1.32}=2.5\right)$
-
En el Cuadro 15 hallamos que cuando una diferencia es 2.5 mayor a su error standard hay 1.24 probahilidades en 100 de encontrar tal diferencia por casualidad y por cada probabilidad de encontrarla por azar hay 79.52 probabilidades de no encontrarla.

Luego, basándose sobre este cálculo de prolabilidades, hay justificación para considerar significativa la diferencia de 3.3 centímetros entre los dos valores medios.

Ejemplo: Se ha determinado la cantidad de glucosa sanguínea en dos griepos de sujetos. Los valores medios, con sus respectivos errores standard, obtenidos son los siguientes:

$$
\begin{gathered}
\text { Grupo I }=1.16 \pm 0.14 \\
\text { gramos por } \\
\text { Grupo II }=0.90 \\
\text { ce. de sangre, } \\
\hline
\end{gathered}
$$

Empleando los procedimientos indicados en la página 180 encontramos que la diferencia entre estos valores médios, y el error standard de esta diferencia son:

$$
\text { Diferencia } \pm-\mathrm{E} . \mathrm{S} .=0.22 \pm 0.18
$$

Esta diferencia es 1.2 mayor a su error standard: $\left(\frac{0.22}{0.18}=1.2\right)$

En el Cuadro 15 hallamos que cuando una diferencia es 1.2 mayor a su error standard hay aproximadamente 23 probabilidades en 100 de encontrar tal diferencia por casualidad, y por cada probabilidad de encontrarla por azar sólo 3.35 probabilidades de no encontrarla.
Luego, según este cálculo de probabilidades, hay justificación para concluír que la diferencia de 0.22 gramos entre los dos valores medios no tiene significado estadístico.

C APITULOV

REPRESENTACION GRAFICA

Uno de los aspectos más importantes en el análisis estadistico de datos cuantitativos es su representación gráfica adecuada. Esta permite, con frecuencia, una rápida interpretación de los resultados obtenidos. de su variabilidad y tendencia, de la relación entre ellos y facilita, además, el estudio comparativo con otros datos relacionados o similares.

Existen muchos tipos de gráficos o diagramas. Su elección depende fundamentalmente, de la clase de datos por representar y del objeto del diagrama. Esta segunda consideración tiene importancia especial; el diagrama debe tener un fin demostrativo y no corresponder a un simple adorno de carácter gráfico.

Caracteristicas generales de los diagramas.-Todos los diagramas estadísticos son representaciones de puntos, líneas, superficies o sólidos, cuya posición en el espacio es definida cuantitativamente por un sistema de coordenadas. Las coordenadas pueden ser de diferente carácter pero las más usadas son las rectangulares, en las cuales la línea horizontal se denomina abcisa y la linea vertical ordenada (Figura 2).

En esta clase de diagramas generalmente, pero no siempre, la escala en la ordenada se refiere a la frecuencia, relativa o absoluta, de los datos, y aquella en la abcisa a su clase, unidad de medida o secuencia cronológica.

En la construcción de gráficos hay que tener en cuenta que la graduación de las escalas en las coordenadas es factor importante en la apreciación visual de los fenómenos representados gráficamente. Así, si el aumento de hematies que sigue a una terapia antianémica cualquiera se representa en dos diagramas, en el primero de los cuales la escala en la ordenada corresponde a miles de hematíes por mm^{3}., y en el segundo a millones por mm^{3}, es evidente que en el primer diagrama el aumento de hematies aparece, visualmente, como un proceso mucho más rápido que en el segundo. De igual manera, si en uno de los diagramas el aumento globular se mide en la abcisa con una escala de tiempo referida a semanas, y en el otro con una escala referida a meses, la impresión visual sería de un proceso regenerativo lento en el primer caso y rápido en el segundo.

Existen ciertas pautas, adoptadas internacionalmente, * que se refieren a la representación gráfica. Las principales de estas pautas, que tienen importancia en gráficos de carácter médico y biológico, son las siguientes:

[^14](1) -Los datos en un diagrama deben ser representados en forma cuantitativa ascendente, de izquierda a derecha en la abcisa, y de abajo a arriba en la ordenada.
(2) -Es más conveniente representar cantidades por magnitudes lineales que por áreas o volúmenes.
(3) -Es conveniente indicar en la ordenada la línea que corresponde a 0 . Si esto no es posible, se recomienda romper la escala para señalar la línea 0 en la parte rfue queda por debajo de la rotura.
(4) -Las líneas correspondientes a 0 y a 100 (en este último caso cuando la escala en la ordenada se refiere a porcentaje) deben ser representadas por lineas gruesas que resalten en el diagrama.
(5) - Cuando se empiea coordenadas con escala logarítmica, las lineas que representan esta escala deben corrcsponder a potencias de 10.
(6) - Es conveniente no usar más divisiones en las coordenadas que las que son necesarias para la fácil interpretación del diagrama.
(7) -Las líneas que representan las curvas deßenen ser más gruesas q̣ue aquellas que corresponden a la graduación en las coordenadas.
(8) - Cuando una curva representa ura serie de observaciones es conveniente señalar en el diagrama la posición de los puntos que corresponden a las observaciones aisladas.
(9) - Las cifras que corresponden a las escalas en ambas coordenadas deben ser escritas claramente a do largo de las respectivas lineas vertitical y horizontal.
La naturaleza de los datos que se representan, así como la unidad de medida empleada, debe también ser indicada en forma concreta; y
(10)-La leyenda debe indicar, en forma clara, lo que xepresenta el diagrama.
Breves descripciones son a veces necesarias para una mejor interpretación del diagrama.

Diversos tipos de diagramas e indicaciones para su elección. Como ya se ha indicado, en los primeros párrafos de este capítulo, el tipo de diagrama que se elige para la representación gráfica de datos estadísticos depende, principalmente, de la clase de datos por representar y del objeto del diagrama.

Los principales tipos de diagramas que se usan con mayor frecuencia en la representación gráfica de datos de orden médico, y las indicaciones generales para su empleo, son:

A-Diagramas que representan la variabilidad en frecuencia y la forma general de distribución de los datos:

1--Diagrama de barras horizontales;
2-Histograma;
3-Poligono de frecuencia;
4-Diagrama de frecuencia acumuladas; y
. D-Diagrama en coordenadas angulares.
B-Diagramas que representan tendencia y relación:
l--Diagrama de líneas (rectas o curvas) representadas en coordenadas con escala aritmética;
2-Diagrama de lineas representadas en coordenadas con es. cala logarítmica o semi-Logarítmica;
3-Diagrama de dispersión de datos individuales; y 4-Diagrama polar.

Además de los tipos de diagramas mencionados, es frecuente en los laboratorios el uso de diagramas denominados "nomogramas" (desarrollados especialmente por D^{\prime} Ocagne en 1899-1908), que representan la relación entre dos o más variables en una superficie plana, y que sırven para facilitar la solución numérica de expresiones y relaciones matemáticas complicadas. Considerando las finalidades del nomograma no incluímos en estos apuntes las consideraciones matemáticas que son necesarias para su construccion. Un ejemplo de nomograma está dado en la Figura 3, que corresponde al usado para calcular el área de superficie corporal conociendo la estatura y peso.

Ilustraremos la construcción de los diversos tipos de diagrama mencionados con ejemplos concretos.

A-Diagramas que representan la frecuencia, variabilidad y la forma general de distribución de los datos.
1.-Diagrama de barras horizontales.

FIGURA 3- Nomograma para calcular el área de superficie corporal conociendo la estatutra y el peso. Colơquese una regla de tal manera que su borde una los valores correspondientes a la estatura y peso del sujeto; el punto inderceptado en la escala cenual da el áren de super/icie corporal.

Ejemplo*: Se ha estudiado 94 casos de Icteria Catarral, anotándose en cada caso los sintomas presentes. Se ha calculado, en seguida, la incidencia, en porcentaje, de estos síntomas (así, por ejemplo, dolor abdominal fué un síntoma presente en 60 de los 94 casos; luego $\frac{60}{94} \times 100=64 \%$) El Cuadro 16 contiene los resultados obtenidos en este estudio.

Se trata de representar gráficamente la incidencia porcentual de los diversos síntomas para indicar, gráficamente, su importancia relativa.

El diagrama de barras horizontales de la Fygura 4 corresponde a este propósito.

CUADRRO 16

SINTOMATOLOGIA EN ICTERIA CATARRAL. ESTUDIO DE 94 CASOS

	Sintomas	Absoluta
	Felativa $\%$	
Icteria	92	98
Orina obscura	92	98
Nauseas	87	93
Acolia	86	91
Anorexia	83	88
Fiebre	77	82
Estreñimiento	75	80
Cefalalgia	71	76
Vómitos	69	73
Postración	66	70
Dolor abdominal	60	64
Escalofrios	48	51
Dolores musculares	39	41
Congestión conjuntivas	35	37
Diarreas	16	17
Hipo	12	13
Epistaxis	6	6
Herpes	3	3

* Tomado, con algunas modificaciones, de Introduction to Medical Biometry and Statistics. R. Pearl - W. B. Saunders Co., Philadelphia, 1930.

FIGURA 4-Frentencia relatica de diversos sintomas en Icterin Ciatarral. Estu: dio hecho en 94 casos.
r Diagrama de barras horizonales construido con las datos del Cuadro 16$)$.

2-Hislograma.-El histograma puede representar la distribución de frecuencia absoluta o relativa (en porcentaje) de una serie de datos. Cuando se desea comparar gráficamente, por medio de este diagrama. la distribución de frecuencia de dos series que difieren en el número de datos incluídos en cada
una de ellas, es necesario representar la frecuencia relativa. Daremos dos ejemplos, correspondiendo el primero a la representación de la frecuencia absoluta y el segundo de la frecuencia relativa.

Ejemplo: Se ha determinado, en Oroya, la tensión arterial sistólica en 4.58 casos de Silicosis, cuya edad varía de 20 a 54 años.

Distribuídos los resultados obtenidos en grupos de frecuencia (Cuadro 17), se trata de representar gráficamente su frecuencia absoluta.

El histograma que representa gráficamente los datos del Cuadro 17 puede construírse de diferentes maneras, tal como está ilustrado en Figuras 5,6 y 7 .

CUADRO 17

TENSION ARTERIAL SISTOLICA EN SILICOSIS

OBSERVACIONES HECHAS EN OROYA EN 458 CASOS
(edad: 20-45 años)

Tensión sistólica (mmHg)	Número de observaciones
$80-89$	15
$90-99$	48
$100-109$	154
$110-119$	123
$120-129$	71
$130-139$	32
$140-149$	7
$150-159$	4
$160-169$	2
$170-179$	1
$180-189$	1

TENSION SISTOLICA (Mm.HG)
FIGURA 5- Tensión arterial sistólica en 458 casos de Silicosis (Edad: 20-45 años) estudiados en Oroya. (Histograma construido con los datos del Cuadro 17).

TENSION SISTOLICA (MM.HG)
FICURA G- Tensión aterial sistólica en 458 casos de Silicosis (Edud: 20-45 años) estudiados en Oroya. (Mistograma constrmido con los datos del Guadro 17).

TENSION SISTOLICA (MMHG)
FIGURA 7- Tensión arterial sistólica en 458 casos de Silicosis (Edad: 20-45 añas) estudiados en Oroya.
(Histograma construido con los datos del Cuadro 17).

Ejempla: Se ha determinado, en Lima, la cantidad de hemoglobina en la zar.gre en dos grupos de sujetos:

Grupo 1 - 42 sujetos nacidos en lugares elevados y con un tiem.
po de residencia en Lima de menos de un año;
Grupo II - 84 suijetos nacidos en lugares elevados y con un tiempo de residencia en Lima de más de un año.

Los resultados obtenidos, distribuídos en grupos de frecuencia, están dados en el Cuadro 18.
Los histogramas de la Figura 8, que representan gráficamente, y en forma comparativa, los resultados porcentuales obtenidos en ambos grupos, permiten apreciar la tendencia a un mayor nivel de hemoglobina sanguinea en el grupo de sujetos con un tiempo de residencia más prolongada en Lima.

CUADRO 18

DETERMINACIONES DE HEMOGLOBINA EN SUJETOS ADULTOS SANOS

 NACIDOS EN LUGARES ELEVADOS.
OBSERYACIONES HECHAS EN LIMA.

Hemoglobina (gms por 100 cc)	Sujetos con un tiempo de residencia en Lima de menos de 1 aio		Sujetos con un liempo de residencia en Lima de más de I año	
N° de sujetos:	42		84	
	N^{4}	\%	N°	\%
$12.0-12.9$	2	4.8	0	0
$13.0-13.9$	9	21.4	1	1.2
$14.0-14.9$	18	42.8	11	13.1
$15.0-15.9$	8	19.0	36	42.8
$16.0-16.9$	3	7.1	26	30.9
$17.0-17.9$	2	4.8	9	10.7
$18.0-18.9$	0.	0	1	1.2

FIGURA 8-Determinaciones de hemoglobina (gramos por 100 cc. de sangre) en hombres adultos sanos, nacidos en lugares elevados y residentes en Lima: Crupo I- Con un tiempo de residencia menor a un año; Grupo II-Con un tiempo de residencia mayor a un año. (Histogramas construidos con los datos del Cuadro 18).
3.--Poligono de frecuencia.-Se emplea el poligono de frecuencia para representar, al igual que en el histograma, la frecuencia absoluta o relativa (en porcentaje) de una serie de datos. El segundo procedimiento es necesario cuando se desea comparar gráficamente la distribución de frecuencia en dos series que difieren en el número de datos que incluye cada una.

Ejemplo: Se ha medido la estatura de 606 sujetos adultos indigenas, nacidos en diversos lugares de la Sierra y residentes en Oroya.

Los resultados obtenidos, distribuídos en grupos de frecuencia, están dados en el Cuadro 19.

La Figura 9 corresponde al polígono de frecuencia que representa gráficamente los datos contenidos en el Cuadro 19.

CUADRO 19

ESTATURA DE 606 SUJETOS ADULTOS (EDAD: 20-49 ANOS) NACIDOS EN diversos lugares de la sierra y residentes en oroya

Estatura (centímetros)	Número de observaciones
$138-142$	1
$143-147$	16
$148-152$	76
$153-157$	181
$158-162$	198
$163-167$	105
$168-172$	26
$173-177$	3

FIGURA 9-Estatutra de 606 hombres adultos (edad: 20-45 años) nacidos en diversos lugares de la Sierra y residentes en Oroya. La linea $x-x$ corresponde al valor medio.
(Poligono de frecuencia construido con los datos del Cuadro 19).

Ejemplo: En muestras de sangre obtenidas en 100 suietos adultos sanos, resipo de sujetos las mediciones se hicieron en un total de 30,400 hematíes dentes en Lima, y en 40 sujetos, de iguales características, residentes en Oroya, se ha medido el diámetro de los hematíes. En el primer gruy en el segundo grupo en un total de 12,000 hematíes.

Los resultados obtenidos, distribuídos en grupos de frecuencia, están contenidos en el Cuadro 20.

La Figura 10 corresponde a los poligonos de frecuencia que indican Ia frecuencia relativa (en porcentaje) de los diámetros globulares en log dos grupos de sujetos. Esta representación gráfica permite apreciar la tendencia a un mayor diametro globular en los sujetos residentes en la altura (Oroya).

CUADRO 20

diametro de los hematies en sujetos adultos sanos residentes en lima y oroya

FIGURA 10 - Diametro de los hematies en dos grupos de kombres adultos sanos: A-nacidos en la costa y residentes en Lima (30,400 hematies medidos en 100 sujotos) y B - nacidos en lugares elevados y residentes en Oroya (12,000 hematies medidos en 40 sujetos). (Poligonos de frecuencia construidos con los datos del Cuadro 20).
4.-Diagrama de frecuencia acumuladas.-En los gráficos anteriores (histograma y poligono de frecuencia) se ha representado el número o porcentaje de observaciones que corresponden a cada uno de los grupos de frecuencia en los qua previamente se han distribuido las series de datos analizados. En el diagrama de frecuencias acumuladas se va sumando las frecuencias que corrcsponden a cada grupo, y la curva representa gráficamente esta adición progresiva hasta llegar al número total de observaciones.
Este diagrama puede construirse de tal manera que represente acumulativamente, tanto la frecuencia absoluta como la relativa (en porcentaje), de los datos u observaciones analizadas.

Ejemplo: Se ba determinado la viscosidad de la sangre en 48 casos de Silicocosis residentes en Oroya.
Los resultados obtenidos están dados en el Cuadro 21 , que contiene, además del número de observaciones o frecuencias que corresponden a cada grupo, la suma progresiva de tales frecuencias.

La curva de la Figura 11, construida con los datos del Cuadro 21, representa la acumulación progresiva de las frecuencias, en forma absoluta y relativa (porcentaje).

CUADRO 21

VISCOSIDAD DE LA SANGRE EN 48 CASOS DE SILICOSIS. OBSERVACIONES HECHAS EN OROYA.

Viscosidad (Unidades)	Numero de observaciones	Frccuencia arumulada
$6-8$	2	2
$9-11$	7	9
$12-14$	8	17
$15-17$	7	24
$18-20$	8	32
$21-23$	7	39
$24-26$	3	42
$27-29$	3	45
$30-32$	3	48

FIGURA 11 -Viscosidad de la sangre en 48 casos de Silicosis estudiados en Oroya. (Diagrama de frecuencias acumuladas construido con los datos del Cuadro 21. La escala a la izquierda corresponde a la frecuencia absoluta y su cifra máxima equivale al número total de observaciones: 48 en este ejemplo. La escala a la derecha corsesponde a la frecuencia relativa y el 100% equivale al total de obserbaciones; esta escala que se gradua dividiendo la distancia entre 0 y 100 en 10 divisiones iguales, permite apreciar, en porcentaje, la distribución de las observaciones. Así, en este diagrama se nota que aproximadamente un 50% de las determinaciones de viscosidad corresponden a valores por encima de 16 unidades).
5.-Diagrama en coordenadas angulares-Esta clase de diagrama es poco usado en publicaciones de orden médico. Es difícil de construir y de ser apreciado gráficamente con precisión. Algunos autores recomiendan que su uso sea restringido a irabajos de exhibición y divulgación popular.

Ejemplo *: En determinada ciudad se ha investigado el grupo sanguineo en (1)-Sujetos de raza blanca y mestiza; y (2)-Sujetos de raza india.

Los resultados obtenidos están dados en el Cuadro 22.
Ia Figura 12 representa, en coordenadas angulares, la írecuencia relativa de los diversos grupos sanguineos en los dos grupos de sujetos ritudiados, de acuerdo con lo indicado en el Cuadro 22.

CUADRO 22

GRUPOS SANGUINEOS EN (1)-. SUJETOS DE RAZA BLANCA Y MESTIZA, Y (2) - SUJETOS DE RAZA INDIA.

OBSERVACIONES HECHAS EN 1,979 HOMBRES.

* Tomado del Boletín Ofic. Sanitaria PanAm., 1944, 23: 1001.

GRUPOS SANGUINEOS

FIGlRA 12-Grupus sanguneos on A-Sujetos de raza blanca y mestiza: YSujetos de: raza india.
(Diagrama en romrdentalas angulares construido ron los datos del Gurdro 22. Teniendo en cuenta gre el circulo tiene 360°, el calculo del mimero de gralos que corresponde a deteminada frecuencia en porcentaic se hace mathiplicando por 3.0° la cilra respectiva. A si. en nuestro ejemplo, el Grupo sanguineo 0 que tiene una frecuendia de $55.8 G_{0}$ en Grupo A de suietos debe cstar representado en el circulo por $201^{\prime \prime}\left(55.8 \times 3.6=201^{12}\right.$). Para la division del circuto en grados se hare aso de an goniómetro).

B--Diagramas que representan tendencia y relación.
1-Diagrama de lineas (rectas o curvas) representadas en coordenadas con escala arimélica.-..En este diagrama, las divisio-

nes que marcan la escala, tanto en la ordenada como en la abcisa, deben ser colocadas a distancias iguales. Esto no signi-
fica que la distancia usada en la ordenada debe ser igual a la usada en la abcisa, pero si es necesario la uniformidad en cada una de las coordenadas consideradas separadamente. La Figura 13 demuestra gráficamente este criterio.

En el diagrama pueden estar representadas una o varias líneas, rectas o curvas. Diversos ejemplos ilustrarán algunos de los usos más frecuentes de este diagrama.

Ejemplo: En 338 sujelos indigenas, cuya edad variaba entre 4 y 19 años, se ha medido la estatura. Las observaciones fueron hechas en Morococha y los resultados obtenidos están dados en el Cuadro 23.

La curva de la Figura 14, construida con los datos del Cuadro 23, representa gráficamente la relación entre estatura y edad en el grupo de sujetas estudiados.

$$
\text { CUADRO } 23
$$

ESTATURA EN 338 SUJETOS INDIGENAS (EDAD: 4-19 ANOS) estudiadoos en morococha.

Edad (años)	Nimero de sujetos	Valor medio de la esta- tura correspondiente a cala año de edad					
		(centimetros)	$	$			96.5
:---:	:---:	:---:					
4	2	106.7					
5	4	110.3					
6	3	112.6					
7	16	116.4					
8	33	118.9					
9	14	122.2					
10	21	132.9					
11	12	137.2					
12	22	142.7					
13	8	147.3					
14	8	154.8					
15	3	153.1					
16	13	156.6					
17	21	157.8					
18	64						

EDAD \{AROS)
FIGURA 14 - Valores medios de estatura correspondientes a diferentes edades (entre 419 años). Observaciones hechas en 338 sujetos de raza india, residentes en Morococha.
(Diagrama construido con los datos del Cuadro 23).

Ejempla: En investigaciones hicchas en este Departamento se ha determinado la cantidad de hemoglobina en la sangre de sujptos residentes al nivel del mar y a diversas alturas.

A los resultados obtenidos se ha agregado algunos otros, tomados de la literatura y relacionados con previos estudios. El Cuadro 24 contiene los valores promedios correspondicntes a los diversos grupos de sujetos estudiados.

La curva de la Figura 15 representa gráficamente la relación entre el nivel de altura y la concentración de hemoglohina circulante.

CUADRO 24

CANTIDAD DE HEMOGLOBINA EN LA SANGRE DE SUJETOS RESIDENTES al nivel del mar y a diversas alturas

Altura (metros sobre el nivel del mai)	Icolores promedios de Hemoglobina (gramos por 100 cc)
0	16.00
1,520	16.54
2,390	16.31
3,140	17.90
3,730	18.82
4,540	20.76
4,860	21.06
3,340	22.66

FIGURA 15- Valores medios de Hemoglobina (gramos por 100 cc. de sangre) en hombres adullos sanos, residentes a diversas alturas. (Diagrama construido con los datos del Cuadro 24).

Ejemplo*: En varios grupos de sujetos sanos, de diferente edad, se ha determinado la capacidad total, la capacidad vital y el aire residual pulmonar.

Lus valores promedios obtenidos para las diferentes cdades es. tán incluídos en el Cuadro 25.

La curva de la Fignra 16 representa gráficamente la celación entre las varias capacidades pulmonares y la edad de los sujetos estudiados.

CUADRO 25

determinaclones de capacidad total, capacidad vital y aire RESIDUAL PULMONAR EN SUJETOS SANOS DE DIFERENTE EDAD

Grupos	Edad de los grupos (años)	Capacidad total (litros)	Capacidad vi- (al (litros)	Aire residual (litros)
	Valores promedios			
	-2			
1	6.0	1.65	1.26	0.39
2	10.5	2.78	2.20	0.57
3	14.1	4.67	3.71	0.95
4	17.4	6.25	4.95	1.30
5	24.5	6.81	5.25	1.66
6	35.1	6.36	4.76	1.60
7	44.6	5.77	4.28	1.48
8	51.8	6.31	4.16	1.81
9	63.0	5.77	4.05	1.72
10	75.0	5.12	3.20	1.92

* Tomado de S. Robinson - Arbeitsphysiol., 1938, $10: 18$.

LITROS

FIGURA 16- Valores medios de capacidad total, capacidad vital y aire residual pulmonar en diferentes edades. Observaciones hechas en hombres. (Diagrama construido con los datos del Cuadro 25).

Ejemplo *: Se ha determinado el consumo de oxígeno, ell condiciones básisicas, en varios grupos de sujetos de diferente edad.

Lus valures medios y las variaciones extremas obtenidas para las diferentes edades están dados en el Cuadro 26.
I.a Figura 17, construída con los datos del Cuadro ?.6, 'epresenta gráficamente los valores promedios y los límites de variación del consumo de oxígeno correspondientes a cada uno de los grupos de sujetos estudiados, y expresa, por lo tanto, la selación en. tre edad y consumo de oxígeno.

CUADRO 26

CONSUMO BASICO DE OXIGENO EN SUJETOS SANOS DE DIFERENTE EDAD.

Grupos	$\begin{gathered} \hline \text { Edad de los gruprs } \\ \text { (años) } \\ \text { Media } \end{gathered}$	Consumo de Oxigeno (en ce porminuto y por m^{2}. de superficie corporal)	
		Metia	Valores extremos
1	6.0	184	16i-199
2	10.5	171	131-194
3	14.1	1.57	$140-175$
4	17.4	151	134-170
5	24.9	136	123-146
6	35.1	127	115-139
7	44.5	129	112-141
8	. 52.1	127	112-142
9	63.1	124	$103-144$
10	75.0	114	$93-136$

* Tomado de S. Robinson - Arbeitsphysiol. 1938, 10: 18.

EDAD (AÑOS)

$$
\begin{aligned}
\text { FIGURA 17- } & \text { Consumo de oxigeno, en condiciones básicas, en diferentes edades. } \\
& \text { Observaciones hechas en hombres. } \\
& \text { Las curvas superior e inferior indican los limites extremos de } \\
& \text { variacion: la curva del centro corresponde a los valores medios. }
\end{aligned}
$$

(Diagrama construido con los datos del Cuadro 26).

El diagrama con escala aritmética en ambas coordenadas es también usado para representar una linea que corresponda a la relación entre cantidades expresadas por sus logaritmos.

Incidentalmente, mencionaremos que curvas de desarrollo complicado pueden transformarse en una linea casi recta cuando son repre-
sentadas por sus logaritmos en un diagrama con escala aritmética. El siguiente ejemplo ilustra este aspecto.

Ejemplo*: Cuando la sangre humana es expuesta, en recipientes especiales y a una temperatura dada, a diferentes concentraciones de oxigeno, su hemoglobina se satura en relación con la tensión ejercida por dicho gas.
En el Cuadro 27 cstán dadas, en columnas 1 y 2 , las diferentes tensiones de oxigeno (p 02 mmHg) que corresponden a los diferentes grados de saturación de la hemoglobina con oxígene ($\mathrm{Hb} 02 \%$). En el mismo cuadro, en columnas 3 y 4 , están dados los logaritmos de cada una de las cifras de las columnas 1 y 2 (estos logaritmos son obtenidos consultando una tabla de logaritmos. Ver Apéndice A).
La curva de la Figura 18 representa la relación entre p02 y $\mathrm{H} b 02 \%$ y está construida con los datos de las columnas l y 2 del Cuadro 27.
La línea recta de la Figura 19 representa la misma relación que la expresada por la curva de la Figura 18, y está construída con los datos de las columnas 3 y 4 del Cuadro 27.
Se puede apreciar que la linea curva de la Figura 18 es trans. formada en una línea recta cuando es representada por medio de los legoritmos de los valores a que corresponde.

CUADRO 27
CURVA DE DISOCIACION DE LA OXIHEMOGLOBINA.
SANGRE HUMANA A pHs $=7.40$

1	2	3	4
Hb02 \%	$\underset{(\mathrm{mmHg})}{\mathrm{p} 02}$	log. H 02 \%	log. p02
10	8.0	2.954	0.905
15	10.8	2.754	- 1.032
20	13.2	2.602	- 1.120
30	17.6	2.367	- 1.245
40	21.6	2.176	- 1.335
50	25.9	2.000	- 1.412
60	30.5	1.824	- 1.485
70	33.5	1.632	- 1.550
80	44.9	1.398	- 1.652
85	50.8	1.247 -	- 1.706
90	60.3	1.046	- 1.780
94	73.6	0.805	- 1.867

* Tomado de D. B. Dill, H. T. Edwards, M. Florkin and R. W. Campbell - J. Biol. Chem., 1932, 45: 143.

FIGURA 18- Curva de disociación de oxígeno en sangre humana a $\mathrm{pHs}=7.40$. (Diagrama constritido con los datos de las Columnas 1 y 2 del Cuadro 27).

FIGURA 19- Curva de disociación de oxigeno en sangre humana a ${ }^{\text {Esta curva corresponde exactamente a la representada en la Figara }} 7.40$.
Hemos visto, en los diferentes ejemplos utilizados, que en esta clase de diagramas, la graduación aritmética en ambas coordenadas corresponde a cifras o periodos de tiempo cuyo valor aumenta en partes iguales o proporcionales, de abajo a arriba en la ordenada y de izquierda a derecha en la abcisa. Pero, en ciertos casos, puede ser conveniente, para evitar dimensiones exageradas del diagrama y abreviar la escala en lo que se refiere a la representación gráfica de aquellos datos que no varian
por un largo periodo de tiempo, o que no interesan desde el punto de vista del objetivo del diagrama. El siguiente ejemplo demuestra el procedimiento conveniente a seguir en estas circunstancias:

Ejemalo: Se desea representar gráficamente las variaciones en el mímero de hematies, reticulocitos y la cantidad de hemoglobina, en un caso de Anemia Perniciosa a quien se le ha administrado extracto hepático. El período de terapia, durante el cual han ocurrido las variaciones hemáticas que se desea representar gráficamente, ha sido de 15 dias, pero este periodo ha sido precedido y seguido de un tiempo de observación de 12 y 15 días, respectivamente.
Para evitar que el diagrama tenga dimensiones cxageradas, cincluya observaciones que nu tienen interés especial, ol gráfico se ha construido - ver la Figura 20 - de tal manera que los periodos previo y posterior a aquel correspondiente a !a ierapia hepática, estén representados por las observaciones correspondientes al primero y último día de ambos periodos. Para esto se rompe la escala en la ahcisa, interrumpiendo las graduaciones, tal como está indicado en la Figura 20.

FIGURA 20-Variaciones en el nimero de hematies, reticalocitos y la cantidad de hemoglobina en un. caso de Anemia Perniciosa tratado con extracto hepático.
I.os datos correspondientes a los periodos de observación, antes y después de la terapia hepática han. sido representados por lo hallado en el primero y iltimo dia de ambos periodos.

En otros casos, en los datos que se desea representar gráficamente, puede haber uno o dos valores que se apartan considerablemente de los correspondientes al resto de las observaciones, por ser muy altos, o, por el contrario, muy bajos. Para evitar que la escala respectiva, en la ordenada o abcisa, se prolongue considerablemente, puede procederse en forma análoga a lo indicado en el ejemplo que acabamos de utilizar (Figura 20), es decir, se rompe la escala, interrumpiendo la graduación, de tal manera que aquella correspondiente al valor exageradamente alto o bajo, se encuentre separada del resto de la escala.

2-Diagrama de lineas representadas en coordenadas con escala logaritmica o semi-logaritmica.- En una sección anterior (pág. 218) hemos indicado que las cifras que corresponden a una línea recta o curva pueden ser representadas por sus correspondientes logaritmos en coordenadas con escala aritmética (Figura 19). La operaçión de encontrar los logaritmos, en las tablas que existen con ese objeto, demanda un tiempo considerable, y por este motivo es, a veces, más conveniente utilizar directamente las cifras (no los logaritmos), en diagramas cuyas coordenadas tengan divisiones que corresponden a una escala logarítmica. Esta clase de diagrama es también más fácilmente interpretado.

Un diagrama que tiene ambas coordenadas (ordenada y abcisa) con escala logarítmica se denomina diagrama logaritmico; si solo una de las coordenadas (y esta es la ordenada generalmente) tiene escala logaritmica, y la otra escala aritmética, el diagrama se denomina diagrama semi-logaritmico. Este último tipo de gráfico es el que habitualmente se emplea en publicaciones médicas.

La escala logarítmica consta de una o de varias divisiones principales (ver Figura 21), subdivididas en 9 espacios, cuyas dimensiones desiguales coresponden a los logaritmos de las cifras usadas en la escala. Puede adquirirse en el mercado papel que tiene impresa la escala logarítmica; en caso de no ser posible su adquisición es fácil construir una escala logarítmica en papel milinetrado. La manera de proceder es la siguiente:

FIGURA 21- Comparación de una escala aritmética con una escala logaritmica. Cada división principal en la escala logaritmica, caya graduación debe corresponder a una potencia de 10 (véase el texto), está subdividida en 9 espacios desiguales.

El diagrama es construido en papel milimetrado. Se elige, arbitrariamente, el número de milímetros que corresponde a la división principal de la escala logarítmica; en secuida, para subdividividir esta división principal en 9 partes, se multiplica el número de milímetras elegido por cada no de los logaritmos de 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10 . Los resultados obtenidos en estas operaciones indican al númern de milimetros gue debe corresponder a cada ura de las subrlivisiones.

El siguiente ejemplo ilıstrará estos cálculos:

En un papel milinntrado, en cl que se va a construir un diagrama semi-logarítico, se ha elegido, arbitrariamente, 100 milimetros como la atura total de la ordenada que debe ile. var una cscala logarítmica. compuesta de una división principlal subdividida en 9 partes. El càtrulo es al signiente:

(1)
 Logaritmos

(2)
(3)

Milimetros
De $1=0.0000 \times 100=0$
$2=0.3010 \times 100=30.1$
$3=0.4771 \times 100=47.7$
$4=0.6021 \times 100=60.2$
$5=0.6990 \times 100=69.9$
$6=0.7782 \times 100=77.8$
$7=0.8451 \times 100=84.5$
$8=0.9031 \times 100 \cdots \quad 90.3$
$9=0.9542 \times 100=95.4$
$10=\mathrm{J} .0000 \times 100=100.0$

Las cifras de la columna (3) indican la alura en milime. metros icontando de abajo a arriba si se trata de la ordenada como en este caso, y de izguierda a derecha si as trata de la abcisa) a que se debe colocar las diferentes cubdi. visiones.
La Figura 22 representa gráficamente esta construcción de escala logaritnica en una ordenada cuya altuxa es de 100 milimetros.

FIGURA 22- Construcción de una estala logarimica en papel milimetrado. En este ejemplo, Ia división principal de la escala logatitmica tiene una longitud de 100 milimetros en el diagrama original: las stabdivisiones se han hecho de arnerdo con los calcalos descritos en el texto.
(Este diagrama corresponde a la construcción de ma escula logaritmica con una dicisión principal. Si la nalurateza de los datos, por representar en el dingruma, requiere una escala logarimica con varias divisiones principales, se poocederá de idênuica manera con respecto al rálculo de cada una de ellas).

La escala logarítmica no tiene un valor 0 y su graduación corresponde a potencias de 10 . Principiando de abajo a arriba, si se trata de la ordenada, y de izquierda a derecha en el caso de la abcisa, las divisiones principales (no las subdivisiones) deben corresponder a 0.001 , $0.01,0.1,1,10,100,1,000,10,000100,000,1,000,000,10,000,000$, etc., pudiéndose iniciar la graduación con cualquiera de estas valores, según convenga al objeto del gráfico.

El diagrama logaritmico, o semi-logarítnico, es útil para representar variaciones que difieren grandemente en su valor numérico. Por ejemplo, sería casi imposible representar en un diagrama de coordenadas con escala aritmética una línea curva que en sus valores bajos corresponda a 10 o 100 y en sus valores más altos a $1,000,000$ o más.

En esta clase de diagrama, una desviación o inclinación igual en dos curvas, medidas con la misma escala logarítmica, indica una variación proporcional en ambas. Esta caracteristica permite apreciar comparativamente, y en forma gráfica, las variaciones tanto absolutas como relativas, de dos o más curvas representadas en el diagrama. Tal apreciación comparativa es particularmente valiosa en la representación gráfica de coeficientes de mortalidad, morbosidad, etc.; calculados en diferentes grupos de población.

Los siguientes ejemplos ilustran el empleo de diagramas semilogaritmicos:

Ejemplo: En un caso (hipotético) de Leucemia Mieloide ha sido posible determinar al mímero de leucocitos (por mm^{3} de sangre) desde antes del inicio de la enfermedad hasta el fallecimiento, ocurrido meses después.

Los resultados obtenidos están dados en el Cuadro 28.

La curva de la Figura 23, construida con los datos del Cuadro 28, representa gráficamente las iluctuaciones on la numeracion de leucocitas durante el perindo de observación.

CUADRO 28

NUMERO DE LEUCOCITOS EN UN CASO DE LEUCEMIA MIELOIDE OBSERVADO DURANTE UN PERIODO DE 20 MESES

Meses	Leucocitos (por min ${ }^{3}$ de sangre)
0	5,200
1	8,900
3	14,600
5	28,200
6	29,600
7	37,300
9	56,700
10	73,200
11	81,400
12	94,000
14	161,500
15	230,600
17	480,900
18	610,400
19	760,000
20	932,900

FICURA 23- Leucocitas (por mm² de sangre) en un caso de Lellcernia Mieloide obsertado durante an periodo de varios meses. fDiagrama con escala semi-lozaritmica construido con los datos del Cualro 28).

Ejemplo *: El Cuadro 29 contiene e] número de fallecimientos en Estados Unidos, por Tuberculosis y Fiebrẹ Tifoidea, por cada 100,000 habitantes, durante el periotlo 1900 a 1920 .
La Figura 24. comstruida con los datos del Cuadro 29, representa gráficamente, en un diagama de coordenadas con escala aritméti-

[^15] Saunders Co., Philadelphia, 1940.
ca. Ias variaciones en las indies de moridirlad correspondientes a las enfermedades mencimadas.
E.sle diagrama da la impresion erronca de due la alisminución en la mostalidad pur Tuberculosis foce. durame aquel periodo de 20 años, proporcionalinente más mareada gue la observada en Fiebre Tiforidea.
En cambio, Ja Figura 25, también construida con los datos del Cuadro 29 y que representa las mismas curvas de mortalidad en un diagrama semilogaritmico, permite apreciar, correctamente, q̧ue la declinación en mortalidad por Fiebre Tifoidea fué, proporcio. s:alnome, más acentuada que la obecrvada en :elación a Tuberculosis,
El diagrama semi-logarílmico de la Figura ? 3 permite comparar variaciones absolutas y relativas en ambos coeficientes de mortalidad.

CLADRO 29

MORTALIDAD POR TUBERCLLOSIS Y FIEBRE TIFOIDEA EN LOS ESTADOS UNIDOS.

Año	Numero de fallecimientos por cada100,000 habitantes	
	Tuberculosis	Fuebre Tiloidea
1900	195.2	31.3
1901	189.8	27.5
1902	174.1	26.2
1903	177.1	24.6
1904	188.5	23.9
1905	180.9	22.4
1906	177.8	22.0
1907	175.6	20.5
1908	169.4.	19.6
1909	163.3	17.2
1910	164.7	18.0
1912	159.0	15.3
1912	149.8	13.2
1913	148.7	12.6
1914	148.6	10.8
1915	146.7	9.2
1916	143.8	8.8
1917	147.1	8.1
3918	151.0	7.0
1919	124.9	4.8
1920	112.0	5.0

FIGURA 24 -Coejiciente de mortalidad, por cada 100,000 habitantes, correspondiente a Tuberculosis y Fiebre Tiloidea. Estados Unidos: años 1900 . 1920.
(Diagrama con escala aritmética construido con los datos del Cuadro 29).
no de muertes por cada 100,000 habitantes

FIGURA 2.j-Coeliciente de morialidad, por cada 100.000 habitantes, correspondiente " Tuberculosis y Fiebre Tiloidea. Estalos limidos; años 19001920.
(Diagrama con escala semi-logarimica construido con los datos del (iuadro 29).

Diagramas con escala semi-logarítmica se emplean en la calibración de colorimetros foto-eléctricos, instrumentos cuyo uso en los laboratorios se está generalizando rápidamente.

Para emplear un colorínetro foio-elécitrico en una determinación dada es preciso establecer, previamente, el factor o curva de calibración que corresponde a dicha determinación.

Ejemplo: Para emplear un colorimetro foto-eléctrico Evelyn en la determi. nación del hematocrito (hematics por ciento) en muestras de sangre capilar, procedimiento que es posible efectuar midiendo su opacidad", se ha obtenido una serie de lecturas en el galvanómetro del colorímetro lecturas correspondientes a muestras de sangre venosa en las que previamente se habia determinado el hematocrito utilizando otro procedimiento.

Los resultados obtenidos en 25 de estas determinaciones, y que están dados en el Ciadro 30, han sido representados gráficamente en el diagrama semi-logarítmico de la Figura 26, y se ha construido, en seguida, una linea recta que corresponde a la variabilidad expresada por dichos puntos. Esta es la línea de calibración que debe usarse en la determinación del hematocrito poi: medio del colorímetro foto-eléctrico.

En posteriores observaciones, cuando se frata de determinar el hematocrito en una muestra de sangre, basta convertir la lectura del galvanómetro en porcentaje de hematíes (hematocrito) utilizando la curva de calibración de la Figura 26.

[^16]
CUADRO 30

LECTURAS EN EL GAIVANOMFTRO (COLORIMETRO FOTO-ELECTRICO DE EYELYN) CORRESPONDIENTES A VALORES CONOCIDOS DE HEMATOCRITO.

OBSERYACIONES EN 25 MIJESTRAS DE SANGRE.

Lectura en el galvanómetro	Hematocrito (hematíes O)
$603 / 4$	
83	42.0
$833 / 4$	13.9
80	12.8
80	17.5
76	17.9
76	21.8
$752 / 4$	21.0
$711 / 4$	23.0
$702 / 4$	26.5
68	27.5
$642 / 4$	31.0
65	35.0
61	37.0
$631 / 4$	37.7
$603 / 4$	40.0
57	40.2
$592 / 4$	45.0
$553 / 4$	49.4
54	50.1
$512 / 4$	51.2
$482 / 4$	59.1
47	60.7
$451 / 4$	69.0
$411 / 4$	69.3
	78.3

flGURA 26-Curva de calibracion para la determinación del hematocrito (hemamaties \%) en el colorimetro foto-eléctrico de Evelyn.
(Diagrama con escatro semi-logaritmica construido con los datos dél Cuadro 30).

3--Diagrama de dispersion de datos individuales.--La relación existente entre dos variables se indica: en estạ clase de diagrama: por medio de la representación gráfica de todas las observaciones individuales hechas. Si se desea, puede agregarse la linea recta o curva que representa la tendencia central o media de las observaciones.
Ejemplo: En 30 sujetos aduilus sanes, estudiadue :n Oroya. se la determinado el volumen tolal de sangre circulante. En tudos los sujelos se ha determinado tamlién el peso corporal.
I.be resultados oblemidus están dador en el Cuadro 31.

En la Figura 27, consıruida con los datos del Cuadro 31: los puntos representan la relación entre el volumen de sangre y el peso en los 30 sujetos tstudiados.
En la Figura 28, también construida con Jos datos del Cuadro 31 , sc ha agregado una linea recta que representa, en iomma general, la relación entre volumen do sangre y peso corporal, y que ha sido construida ionando en cuenta la posición de iodns los pumtos individuales en el diagrama.

CUADRO 31

RELACION ENTRE EL VOLUMEN TOTAL DE SANGRE CIRCULANTE Y EL PESO CORPORAL
OBSERVACIONES HECHAS EN 30 SUJETOS ADUTTOS SANOS RESIDENTES EN oroya.

Sujetos	Peso	Folumen de sangre	Sujeto	Peso	Volumen de sangre
$1 N^{\prime \prime}$	(hilos)	(/itros)	N^{0}	($1: 1 / 2 \mathrm{~s}$)	(litros)
1	44.5	4.96	16	55.0	6.05
2	52.0	5.16	17	54.0	7.99
3	57.5	6.10	18	52.0	5.71
4	59.0	5.94	19	58.0	5.86
5	4.0	5.21	20	5.5 .5	6.24
6	59.0	6.25	21	57.5	6.00
7	$64 . \overline{2}$	6.58	22	55.0	6.02
8	58.5	6.33	23	61.5	6.36
9	66.0	6.75	24.	56.5	5.18
10	59.5	6.47	25	54.0	5.26
11	49.5	4.68	26	60.5	6.45
12	61.0	6.72	27	60.5	7.27
13	59.0	5.77	28	60.5	7.80
11	48.5	5.31	29	60.2	7.59
15	53.5	4.26	30	55.6	7.06

FIGURA 27-- Volumen total de sangre circulante en relación al peso corporal. Ob. servaciones hechas en 30 hombres adultos, sanos, residentes en Oroya. (Diagrama construido con los datos del Cuadro 31).

4-Diagrama polar.-Diagramas con coordenadas polares son a veces usado para representar gráficamente datos de orden ciclico o la relación entre varios factores, cuya magnitud no está totalmente expresada en forma cuantitativa.

Ejemplo*: En la Figura 29 cstán representados gráficamente los diversos factores que defominan la tolerancia y sintomatologia durante el vuclo. Estos factores son: alura, velocidad de ascenso, ángulo de vuelu. aceleración, vibración, ruido, ventilación, olor, calor y frío. El limite entre las zunas "cómoda" e "incómoda" se le la denuminadn: psicológico, y entre las zonas "incómoda" e "inolera-

[^17]

FIGURA 28-Volumen total de sangre circulante en relación al peso corporal. Observaciones hechas en 30 hombres adultos, samos residentes en Oroya.
Ia linea recta, que represema la relación general entre volumen de sangre y peso corporal, ha sido construida tomando en cuenta la localización de los 30 puntos, cada uno de los cuales corresponde a una observación. (Diagrama construido con los datos del Cuadro 31).
ble": iisiologico, para diferenciar el grado de severidad de los símomas que corresponden a calla una de estas zonas.
Se supone que la tulerancia humana a los diversos factores gue aclúan sobre el organismo durante el vuelo puede ser casi perfecta hasta el límite psicologico, dificil hasta el fisiológico, e jmposible más allá de este úlimo limite.

FIGURA 29-Factores que in/luencian la tolerancia y sintomatologia durante el vielo.

REPRESENTACION GRAFICA DEL COEFICIENTE DE VARIACION.
Como se ha indicado en el Capítulo I, el coeficiente de variación expresa, en porcentaje, el grado de variabilidad de una serie de datos analizados. Es una constante útil para comparar la variación hallada en dos o más series de datos que se refieren a unidades de medida diferentes. Su representación gráfica permite apreciar, visualmente, tal estudio comparativo.
CUADRO 32
ObSERVACIONES SOBRE LA EDAD, PESO Y ESTATURA DE 272 INDIVIDUOS.

Edad			Peso			Estatura		
Anos	Punto medio	Frecuencia	Libras	Punto medio	Frecuencia	Yulgadas	Punto mediox	Frecuencia
20-21	21	9	$99.5-109.4$	104.5	2	59.5-60.4	60	1
22-23	23	12	109.5-119.4	114.5	12	60.5-61.4	61	3
24-25	25	34.	$119.5-129.4$	124.5	20	$61.5-62.4$	62	0
26-27	27	41	129.5-139.4	134.5	43	62.5-63.4	63	2
$28-29$	29	35	$139.5-149.4$	144.5	54	63.5-64.4	64	I2
$30-31$	31	44.	149.5-159.4.	154.5	51	64.5-65.4	65	19
$32-33$	33	31	159.5-169.4	164.5	39	65.5-66.4	66	29
34-35	35	24	169.5-179.4	174.5	26	$66.5-67.4$	67	40
$36-37$	37	15	179.5-189.4	181.5	16	67.5-68.4	68	50
$38-39$	39	12	189.5-199.4	194.5	6	68.5-69.4	69	35
$40-41$	41	10	199.5-209.4.	204.5	3	69.5-70.4	70	35
$42-43$	43	,				$70.5-71.4$	71	25
$44-45$	45	1				$71.5-72.4$	72	12
$46-47$	47	0				$72.5-73.4$	73	5
$48-49$	49	1				$73.5-74.4$	74.	4
Intervalo de grupo: 2			Intervalo de grupo: 10			Intervalu de grupa: 1		

Los procedimientos que se emplean para construir el diagrama que corresponda a los coeficientes de variación hallados en dos o más series de datos serán ilustrados con el siguiente ejemplo:

Ejemplo ": En 272 individuos se ha obtenido datos referentes a su edad, estatura y peso corporal.
Los resultados hallados divididos en grupos de frecuencia, a cada uno de los cuales se le ha calculado su punto medio, están incluidos on el Cuadro 32.
So irala de representar graficamente los coeficientes de variacién une van a ser calculados para cada una de cstas caracteristicas, lo que permitira apreciar, visualmente y en forma comparativa, la tariabilidad correspondiente a la edad, peso y estatura de los sujetos istudiados.
(a)-Utilizando los procedimientos indicados en el Capítulo I se calculan las diversas constantes correspondicntes a los datus de edad, peso y estatura incluidos on el Cuadro 32.
Los resultados obtenidos están dados en el Cuadro 33.

CUADRO 33

OBSERVACIONES SOBRE IA EDAD, PESO Y ESTATURA DE 272 INDIVIDUOS.

	Media \pm E.S.	Desviación standard \pm E.S.	Coeficiente de variación (\%)
Edad (años)	30.59 ± 0.31	5.22 ± 0.22	17.1
Peso (libras)	151.56	1.22	19.95
Estatura (pulgadas)	68.13	0.15	2.45

(b) - Para representar gráficamente la variabilidad expresada por los coeficientes de variación: 17.1, 13.2 y 3.6%, correspondientes a la edad, peso y estatura, respectivamente, de los sujetos estudiados, hay que efectuar algunas operaciones con cada una de las series de datos. En prineer lugar, con los datos referentes a la edad se construye el Cuadro 34.

[^18]
CEADRO 34

EDAD (AÑOS)

1	2	3	4	5
Crupos	Punto medio	Frecuencia	A	B
$20-21$	21	9	68.6	1.4
$22-23$	23	12	75.2	1.8
$24-25$	25	34	81.7	5.2
$26-27$	27	41	88.3	6.3
$28-29$	29	35	94.8	5.4
$30-31$	31	44	101.3	6.7
$32-33$	33	31	107.9	4.7
$34-35$	35	24	114.4	3.7
$36-37$	37	15	121.0	2.3
$38-39$	39	12	127.5	1.8
$40-41$	41	10	134.0	1.5
$42-43$	43	3	140.6	0.5
$44-45$	45	1	147.1	0.2
$46-47$	47	0	153.6	0
$48-49$	49	1	160.2	0.2

Columnas J, 2, 3-Son exactamente iguales a las del Cuadro 32, referenies a la cdad.

Columna $\&$ (A)-Cada cilra en osta columna se obtienc dividiendo el punin medio de la Columna ? entre el valor nedio de la edad. El resultado es multiplicado por 100.
El valor medio de la edad de todos los sujetos es: 30.59 años (Cuadro 33).

Así, para la primera cifra iencmos:

$$
\frac{\text { Punto medio }}{\text { Media }} \times 100=\frac{21}{30.59} \times 100=68.6
$$

Para la segunda cifa:

$$
\frac{\text { Punso medio }}{\text { Media }} \times 100=\frac{23}{30.59} \times 100=75.2
$$

y asi sucesivamente.

Columna 5 (B) -Cada cifra en esta columna se calcula apheando la fómula:
$\frac{\text { Frecuencia } \times 1 \% \text { de la Media }}{\text { Intervalo de grapo }}$

La frecurncia es la cifra correspondiente en Columna 3. Fl intervalo de grupo correspondiente a la edad es: 2 (Cusdro 32).
El valor medio de la edad es 30.59 años (Cuadro 33).
Así, para la primera cifra tenemos:

$$
\frac{\text { Frecuencia } \times 1 \% \text { media }}{\text { Intervalo de grupo }}=\frac{9 \times 0.3059}{2}=1.4
$$

Para la segunda cifra:

$$
\frac{\text { Frecuencia } \times 1 \% \text { media }}{\text { Intervalu de grupu }}=\frac{12 \times 0.3059}{2}=1.8
$$

y así sucesivamente.
(c)-En seguida, con los datos referentes al peso, se construye el Cuadro 35.

CUADRO 35

PESO (LIBRAS)

1	2	3	4	5
Grupos	Punto medio	Frecuencia	A	B
$99.5-109.4$	104.5			68.9
$109.5-119.4$	114.5	12	75.5	1.8
$119.5-129.4$	124.5	20	82.1	3.0
$129.5-139.4$	134.5	43	88.7	6.5
$139.5-149.4$	144.5	54	95.3	8.2
$149.5-159.4$	154.5	51	101.9	7.7
$159.5-169.4$	164.5	39	108.5	5.9
$169.5-179.4$	174.5	26	115.1	3.9
$179.5-189.4$	184.5	16	121.7	2.4
$189.5-199.4$	194.5	6	128.3	0.9
$199.5-209.4$	204.5	3	134.9	0.5

Columna 1, 2 y 3-Son exactamente iguales a las del Cuadro 32, referentes al peso.
Columna 4 (A)-Cada cifra en esta columna se obtiene dividiendo el punto medio de la Columna 2 entre el valor medio del peso. El resultado es multiplicado por 100.
El valor medio del peso de todos los sujetos es: 151.56 libras (Cuadro 33).

Así, para la primera cifra tenemos:
$\frac{\text { Punto medio }}{\text { Media }} \times 100=\frac{104.5}{151.56} \times 100=68.9$
Para la segunda cifra:
$\frac{\text { Punto medio }}{\text { Media }} \times 100=\frac{114.5}{151.56} \times 100=75.5$
y así sucesivamente.
Columna 5 (B) Cada cifra en esta columna se calcula aplicando la fórmula:

$$
\text { Frecuencia } \times 1 \% \text { de la Media }
$$

Intervalo de grupo
La frecuencia es la cifra correspondiente en Columna 3.
El intervalo de grupo correspondiente al peso es: 10 (Cuadro 32).
El valor medio del peso es: 151.56 libras (Cuadro 33).
Así, para la primera cifra tenemos:
$\frac{\text { Frecuencia } \times 1 \% \text { Media }}{\text { Intervalo de grupo }}=\frac{2 \times 1.5156}{10}=0.3$
Para la segunda cifra:
$\frac{\text { Frecuencia } \times 1 \% \text { Media }}{\text { Intervalo de grupo }}=\frac{12 \times 1.5156}{10}=1.8$
y así sucesivamente.
(d) - En seguida, con los datos referentes a la estatura, se construye el Cuadro 36.

CUADRO 36

ESTATURA (PULGADAS)

1	2			
	2	4	5	
Grupos	Punto medio	Frecuencia	A	B
$59.5-60.4$	60	1	88.1	0.7
$60.5-61.4$	61	3	89.5	2.0
$61.5-62.4$	62	0	91.0	0
$62.5-63.4$	63	2	92.5	1.4
$63.5-64.4$	64	12	93.9	8.2
$64.5-65.4$	65	19	95.4	12.9
$65.5-66.4$	66	29	96.9	19.8
$66.5-67.4$	67	40	98.3	27.3
$67.5-68.4$	68	50	99.8	34.1
$68.5-69.4$	69	35	101.3	23.8
$69.5-70.4$	70	35	102.7	23.8
$70.5-71.4$	71	25	104.2	17.0
$71.5-72.4$	72	12	105.7	8.2
$72.5-73.4$	73	5	107.1	3.4
$73.5-74.4$	74	4	108.6	2.7

Columnus 1, 2 y 3-Son exactamente iguales a las del Cuadro 32, referentes a la estatura.

Columna 4 (A)-Cada cifra cn esta columna se obliene dividiendo el punto medio de la Columna 2 entre el valor medio de la estatura. El resul. tado es multiplicado por 100 .
El valor medio de lad estatura de todos los sujetos es: 68.13 pulgadas (Cuadro 33).

Así, para la primera cifra ienemos:
$\frac{\text { Punto medio }}{\text { Media }} \times 100=\frac{60}{68.13} \times 100=88.1$
Para la segunda cifra:
$\frac{\text { Punto medio }}{\text { Media }} \times 100=\frac{6 \mathrm{I}}{68.13} \times 100=89.5$

$$
y \text { asi sucesimamente. }
$$

Columna $5(B)$-Cada cifra en esta columas se calcula aplicando la fürmula:
Frecuencia X 1% de la Media
Intervalo de grupo
La frecuencia es la cifra correspondiente en Columna 3. El intervalo de grupo correspondiente a la estatura cs: 1 (Cua. dro 32).
El valor medio de la estatura es: 68.13 pulgadas (Cuadro 33).
Aś́, para la prinmera cifra fenemos:

Para la seřunda cifra:
$\frac{\text { Frecuencia } \times 3 \% \text { Vedia }}{\text { Intervalo de grupo }}=\frac{3 \times 0.6813}{1}=2.0$
y así sucesivamente.
(e)-Finalmente, con los datus comespondientes a las Columnas 4 (A) y 5 (B), de los Cuadros 34, 35 y 36 , se construye la Figura 30 que contiene las curvas correspondientes a la variabilidad hallada en la edarl, peso y estatum de los sujetos estudiados, Cadd curva es construids separadamente.

Los diferentes puntos, que inás tarde se muen para construir las curvas, se anotan en el diagrama teniendo en cuenta que la escala en ia abcisa corresponde a los valores de la Columna $1(A)$, y la escala en la ordenada a los valores de la Columna 5 (B).

Las escalas en ambas coordenadas (ordenada y abcisa) deben ser io suficientemente amplias para incluir los valores máximo y ininimo de todas las series de datos. En nuestro ejemplo, los valores de todas las Columnas 4 (A) varizn entre 68.5 y 160.2 , y por consiguiente, la escala en la abcisa se extiende de 60 a .70; los valores en todas las Calumnas $5(B)$ varían entre 0 y 34.1 y, por consiguiente, la escala en la ordenada se extierde de a a 35.

Fon la Figura 30 pucte apreciarse que el mayor grado de variabilidad corresponde a la mad de los sujelo: y el menor grado a su estatura. La variabilidad en el peso ocupa una silmacion intermedia. amope se aproxima más a la observada en da colad.

FIGURA 30-Representación gráfica de los coeficientes de variación correspondientes a la edad, estatura y peso, observados en un grupo de 272 hombres adultos.
representacion grafica de la ecuacion de regresion.

IINEA DE REGRESION

En el Capitulo III hemos indicado que cuando la relación entre dos variables es lineal, y el coeficiente de correlación tiene un valor elevado, es posible derivar una ecuación (ecuación de regresión), por medio de la cual, conocida una de las variables es posible predecir que valor le corresponde en la otra.

Con la ecuación de regresión se puede construir gráficamente una línea recta, denominada linea de regresión, que represente la relación entre las dos variables. Ilustraremos con un ejemplo los procedimientos que se emplean con este objeto.

Ejemplo: - Utilizaremos el mismo ejemplo que ha servido para el cálculo del coeficiente de correlación (Capítulo III).
En dicho ejemplo encontramos que el coeficiente de correlación entre el Volumen globular y la Hemoglobina globular (determinaciones hechas en 106 muestras de sangre) fué; $+0.8758 \pm$ 0.0226 .

De este elevado coeficiente de correlación derivamos (página 175) una ecuación de regresión, por medio de la cual es posible calcular el valor de Hemoglobina globular que debe corresponder a un Volumen globular dado. Esta ecuación de regresión es:

Hemoglobina globular $=(0.2161 \times$ Volumen globular $)+9.2$
En el diagrama de la Figura 31 la escala en la ordenada corres. ponde a los valores de Volumen globular y la escala en la abcisa a los valores de Hemoglobina globular. La graduación en estas escalas se hace tomando en cuenta los valores minimo y máximo obtenidos en ambas determinaciones (cuyos valores originales están dados en el Cuadro 11, página ...).

Como la linea de regresión es una línea recta, para su construcción basta determinar dos puntos, uno correspondiente a un yalor bajo y el otro a un valor alto, y en seguida, unir ambos puntos por medio de una línea.

Asi en nuestro ejemplo, y en referencia a la Figura 31, calcularemos, utilizando la ecuación de regresión, la Hemoglobina globular que corresponde a un Volumen globular de 60 micras 3 y la que corresponde a un Volumen globular de 170 micras ${ }^{3}$.
(a) -Para un Volumen globular de 60 mjcras 3 :

$$
\mathrm{Hb} \text { globular }=(0.2161 \times 60)+9.2=22.2
$$

(b) -Para un Volumen globular de 170 micras 3 :

$$
\mathrm{Hb} \text { globular }=(0.2161 \times 170)+9.2=45.9
$$

En el dingrama de la Figura 31 se fijan estos dos puntos (marcados: ' X ') y se les une por medio de una línea. Esta es Ja línea de regresión que indica la relación lineal existente entre Volumen globular y Hemoglohina globular.

Desde un punto de vista estadístico no es justificado ni preciso extender ezta línea más allá de los límites inferior y superior dado por las observaciones sobre las que se ha basado el cálculo de dicha línea (en nuestro ejemplo: 60 y 170 micras 3 de Volumen globular).

Es conveniente en cata clam de diagrama, indicar fodos los pumos uto corromonden a la* observaciones aisladas. Así, en la Figura 31 hemos represenato por medio de puntus las 106 obo servaciones (incluidas en el Cuadro lli. que han servido para el cálculo alel coeficiente de comelacion, la ecuacion de :egresión Y, finalmentc. la linea de regresión.

Es también conveniente inclicar en el diagrana el vator deì coeficiente de corrclación entre las variables que se representan. En nuestro ejemplo. al cocfiriente de correlación contre Volamen globular y Fentoglnbina glubular es: $+0.8753 \pm 0.0226$. Este us anotado en la esguina superior jzquierda dei diagrama.

[^19]
CAPITELO VI

CONSTRUCCION DE LNA LINEA RECTA O CERVA

Cuando se tiene una serie de observacioncs aisladas, que ac delacionan con dos variahles, es comericnie, y a veces importante, construir gráficamente una línea recia o curva que represente la relación general entre dichas variables. Para construir esta línea pueden unirse pox medio de líncas. on un diagrama de coordenadas rectangulares, los puntos que corresponden a las observaciones aisladas, pero de esta manera la curva resultante es goneralmente irregular: aumentando las fluctuaciones y disminuyendo lo que es realmente importante: la tendencia general.

En la mayoria de los diagramas que se incluyen en publicaciones médicas la curva se construye adaptando, la que, al tanteo, aparezca representar mejor la serie de observariones aisladas; osta adaptación es visual y sujeta, en gran parte, al critcrio subjetivo de quien la hace. Lste procedimiento es rutinariamente aceptable, pues el objeto principal de los diagramas es mostrar la tendencia general, y, por consiguiente no son utilizados en derivar datos exactos.

En casos especiales puede, sin embargo, ser necesario calcular la linea recta o curva en la forma más precisa posible, eliminando ol factor subjetivo y asegurando que tal línea sea la que fielmente represente la relación indicada por las observaciones aisladas. Tal cálculo f'curve fitting') puede hacerse empleando procedimientos matemátions.

No es posible, a priori, ostablecer que tipo de línea va a ser la más apropiada en cada caso; calculada una linea, recta o curva, hay que representarla gráficamente y apreciar si corresponde con exactitud a los datos aislados que han servido para su construcción.

Uitilizando un ejemplo, vamos a ilustrar los procedimientos que son necesarios emplear para el cálculo de las siguientes:

> A- Línea recta;

B-_ Cürva parahólica; y
C-- Curva logarítmica.
Ejemplo: - En varios grupus de sujelos sanos meidemios a diferemes aitu-
 Ja saticere arterial.
 ies almas, cuain dados en el Cuadio 37.

Con los datos del Cuadro 37 se ha construido la Figura 32, en la que los valores medios de $\% \mathrm{Hb} 02$, obtenidos en 9 niveles de altura, están representados por igual número de puntos.

Cuadro 37
Saturación con oxigeno ($\% \mathrm{Hb} 02$) de la sangre arterial a diversas alturas*.
Observaciones en sujetos residentes

Altura (metros sobre el nivel del nar)	Número de sujetos estudiados	\% Hb02 (Media)
150	36	95.9
1,750	10	93.3
2,390	12	91.7
3,140	11	91.0
3,730	15	87.6
4,330	3	83.6
4,540	18	81.4
4,860	12	30.7
5,340	4	76.2

ALTURA (KMS)

FIGURA 32- Valores medios de la saturación de la sangre arterial con oxigeno (\% HbO^{2}) correspondientes a observaciones hechas en sujejetos residentes a diversas alturas.
(Dingrama construido con los datos del Cuadro 37).

[^20]Se trata de construir una curva que represente, lo más adecuadamente posible, la relación entre altura y $\% \mathrm{Hb} 02$, de acuerdo con la posición de los 9 puntos que aparecen en el diagrama de la Figura 32.
El procedimiento más sencillo, con este fin, es unir, por medio de líneas rectas los diversos puntos. Es cuidente que tal operación, efectuada en el diagrama de la Figura 33, resulta en una línea no uniforme, que magnifica las fluctuaciones, posiblemente de carácter experimental, y no representa, apropiadamente, la tendencia general de la relación que existe entre altura y \% Hb02. Por consiguiente, es necesario calcular matemáticamente una curva que represente, con mayor exactitud, dicha relación.
Aúnque es obvio, por la simple observación visual de la Figura 32 , que una línea recta no es la representación adecuada de los 9 puntos, vamos, sin embargo, a efectuar su cálculo para ilus. trar los procedimientos que se emplean con este fin.

ALTURA (KMS)

FIGURA 33- Saturación de la sangre arterial con oxigeno (\% Hb02) en relalación a la altura. Observaciones hechas en sujetos residentes. (En este diagrama se ha unido, por medio de lineas rectas, los pun. tos representados en la Figura 32, que corresponden a los valores medios hallados en 9 localidades/.
a-Calculo de una linea recta.
Se construye el Citadro 38:

Cuadro 38				
$\because 1$	2	3	,	4
Altura	y	x	1	xy
100	90.9	1	1	90.9
1,750	93.3	2	I	186.5
2,390	91.7	3		275,1
3,140	91.9	4		364.0
3,730	87.5	5		438.0
4,330	83.5	6		501.5
4,540	81.4	7		569.8
4,860	80.7	8		645.6
5,340	76.2	9	!	685.8
	781.4	45	\|	3162.4

Columna 1 (Alura)-Corrcsponde a los niveles de altura indicados en el Cuadro 37.

Columna $2(y)$-Corresponde a los valores de \% Hb02 indicados en el Cuadro 37.

Columna 3 (x-Corresponde a la numeración ascendente de cada linea, comenzando por 1.

Columna $4(x y)$-Corresponde a la multiplicación de cada cifra en Columna ? (y) por su correspondiente en Columna 3 (x).

Así, en nuestro cjemplo:

$$
\begin{aligned}
& 95.9 \times 1=95.9 \\
& 93.3 \times 2=186.5 \\
& 91.7 \times 3=275.1 \\
& \text { y así sucesivamente. }
\end{aligned}
$$

En seguida se aplica la fórmula general que corresponde a una linea recta:
(1) ${ }^{x-y}=a+b x$

Poniendo esta lórmula en ecuación:
(2) $\begin{aligned} n a+S x & =S y \\ a S x+b S x^{2} & =S x y\end{aligned}$

* En esta fórmula, aplicada a nuestro ejemplo, y representa \%Hb02.

Los valores correspondiemtes en nuestro ejemplo son:

$$
\begin{aligned}
& \mathrm{n}=9 \quad \mathrm{~N}^{2} \text { total de datos en la Columna } 2 \text { (y) del } \\
& \text { Cuadro } 38 . \\
& \mathrm{Sx}=45 \quad \text { Suma de la Columna } 3 \text { (} \mathrm{x} \text {) del Cuadro } 38 . \\
& \mathrm{Sx}^{2}=285 \text { Esta cifra se oltiene directamente en la Co- } \\
& \text { Iumna } 3 \text { (} \mathrm{Sx}^{2} \text {) del Cuadro } 45 \text { (pág. 272) to- } \\
& \text { mando en cuenta el valor más alto de x. En } \\
& \text { este ejemplo, el valor más alto de } x \text { es } 9 \\
& \text { (Columna } 3 \text { (x) del Cuadro 38); a } 9 \text { le } \\
& \text { corresponde } 285 \text { en la Columna } 3 \text { (} 5 x^{2} \text {) del } \\
& \text { Cuadro } 45 . \\
& \begin{array}{ll}
\text { Sy }= & 781.4 \\
\text { Suma de la Columna } 2(y) \text { del Cuadro } 38 . \\
\text { Sxy }=3762.4 & \text { Suma de la Columna } 4(x y) \text { del Cuadro } 38 .
\end{array}
\end{aligned}
$$

Remplazando estos valores en la ecuación (2) tenemos:

$$
\text { (3) } \begin{aligned}
& 9 \mathrm{a}+45 b=781.4 \\
& 45 a+285 b=3762.4
\end{aligned}
$$

Se despeja 'a' muliplicando las cifras de la línea superior por 45 y las de la inferior por 9:

$$
\text { (4.) } \begin{aligned}
405 a+2025 b & =35163.0 \\
405 a+256.5 b & =33861.5
\end{aligned}
$$

Restando el menor del mayor (para considerar cuál es menor se toma en cnenta las cifras después del signo $=$. En nuestro ejemplo la línea inferior es menor puesto que 33861.6 es menor a 35163.0):

$$
\text { (5) } \begin{aligned}
405 \mathrm{a}+2025 \mathrm{~b} & =35163.0 \\
405 \mathrm{a}+2565 \mathrm{~b} & =33861.6 \\
\hline 0-540 \mathrm{~b} & =1301.4
\end{aligned}
$$

Luego, el valor de 'b' es:

$$
\text { (6) } \mathrm{b}=\frac{1301.4}{-540}=-2.410
$$

Remplazando el valor de 'b' en' la primera línea de la ecuación (3) y procediendo con las operaciones para hallar el valor de ' a ':

$$
\begin{aligned}
9 a & +(45 x-2.410)=781.4 \\
9 a & -108.450=781.4 \\
9 a & =781.4+108.450 \\
9 a & =889.850 \\
a & =\frac{889.850}{9}=98.872
\end{aligned}
$$

Remplazando los valores hallados para 'a' y 'b' en la fórmula general (1) tenemos:

$$
\text { (8) } \begin{aligned}
\dot{y} & =98.872+(-2.410 x) \\
y & =98.872-410 x
\end{aligned}
$$

Para construir la línea recta basta calcular los valores que corresponde a $x=1$ y a $x=9$.
Para esto utilizamos la fórmula final de (8):

$$
\begin{aligned}
\text { Cuando } \mathrm{x} & =1 \\
\mathrm{y} & =98.872-(2.410 \times 1)=96.5 \\
\text { Cuando } \mathrm{x} & =9 \\
\mathrm{y} & =98.872-(2.410 \times 89)=77.2
\end{aligned}
$$

Finalmente, en el diagrama de la Figura 34 , se marcan los puntos (marcados: x) que corresponden a la intersección de los valores 96.5 y $77.2 \% \mathrm{Hb02} \operatorname{con}^{`} \mathrm{x}=1 \mathrm{y} \mathrm{x}=9$, respectivamente, y se unen ambos puntos por medio de una línea recta.

Al marcar estos puntos, en relación con las escalas en la ordenada y en la abcisa, hay que tener presente que $\mathbf{x}=1$ corresponde a una altura de 150 metros, $y \mathbf{x}=9$ corresponde a una altura de 5,340 metros (véuse Cuadro 38).

Se puede apreciar en la Figura 34 que la línea recta, calculada por medio de la fórmula $y=a+b x$, no representa adecuadamente la relación que existe entre altura y $\% \mathrm{Hb} 02$, puesto que no coincide con la tendencia expresada por la posición de los 9 puntos que corresponden a las 9 observaciones hechas a diferentes alturas.

ALTURA (KMS)

FIGURA 34- Saturación de la sangre arterial con oxigeno (\% Hb02) en relación a la altura. Observaciones hechas en sujetos residentes. Los puntos corresponden a los valores medios hallados a diversas alturas. La linea recta ha sido calculada por medio de la fórmula: $y=a+b x$. Puede apreciarse que esta linea recta no se adapta bien a la tendencia expresada por la posición de los 9 puntos, y, por consiguiente, no representa adecuadamente la relación entre al. tura y \% HbO^{2}.

B-CALCULO de una curya parabolica.

Para el cálculo de una curva parabólica que represente la relación entre altura y $\% \mathrm{Hb02}$, conforme a la posición de las 9 observaciones incluídas en el diagrama de la Figura 32, es preciso construir, en primer lugar, el Cuadro 39 :

CUADRO
 39

Altura	y	x	xy	$x^{2} y$
1	2	3	4 4	5
150	95.9	1.	95.9	95.9
1,750	93.3	2	186.6	373.2
2,390	91.7	3	275.1	825.3
3,140	91.0	4	364.0	1456.0
3,730	87.6	5	438.0	2190.0
4,330	83.6	6	501.6	3009.6 -
4,540	81.4	7	569.8	3988.6
4,860	80.7	8	645.6	5164.8
5,340	76.2	9	685.8	6172.2
	781.4	45	- 3762.4	23275.6

Columnas 1, 2. 3 y 4-Iguales a las deil Cuadro 38.
Columnas 5 ($x^{2} y$)-Corresponde ä la multiplicación de cada cifrä en Co tumna 2 (y) por el cuadrado de su correspondiente cifra en CoJumna 3 (x).
Así, en nuestro ejemplo:

$$
\begin{aligned}
& 95.9 \times(1)^{2}=95.5 \\
& 93.3 \times(2)^{2}=373.2 \\
& 91.7 \times(3)^{2}=825.3 \\
& \\
& \mathrm{y} \text { así sucesivamente. }
\end{aligned}
$$

En seguida, se aplica la formula general que corresponde a unä curva parabólica:

$$
(1)^{*} \quad y=a+b x+c x^{2}
$$

Poniendo esta fórmula en ecuación:

$$
\begin{align*}
& n a+b S x+c S x^{2}=S y \tag{2}\\
& a S x+b S x^{2}+c S x^{3}=S x y \\
& a S x^{2}+b S x^{3}+c S x^{4}=S x^{2} y
\end{align*}
$$

Los valores correspondientes en nuestro ejemplo son:

$$
\begin{aligned}
& \mathrm{n}=9 \\
& \mathrm{~N}^{0} \text { total de datos en la Columna } 2(\mathrm{y}) \\
& \text { Cuadro } 39 . \\
& \mathrm{Sx}=45 \\
& \mathrm{Sx}^{2}=285 \\
& \text { Suma de la Columba } 3 \text { (x) del Cuadro } 39 .
\end{aligned}
$$

[^21]```
lumna 3 (\(\mathrm{Sx}^{2}\)) del Cuadro 45 (pág. 272) tomando en cuenta el valor más alto de x. En este ejemplo el valor más alto de x es 9 (Columna 3 (x) del Cuadro 39) ; a 9 le corresponde 285 en la Columna 3 (\(\mathrm{Sx}^{2}\)) del Cuadro 45.
\(\mathrm{Sx}^{3}=2025\) Esta cifra se obtiene directamente en la Columna 4 (\(\mathrm{Sx}^{3}\)) del Cuadro 45. El procedimiento es el mismo que el que se usa para hallar el valor de \(\mathrm{Sx}^{2}\).
\(S x^{4}=15333\) Esta cifra se obtiene directamente en la Columna 5 (Sx4) del Cuadro 45 . El procedimiento es el mismo que el se usa para hallar el valor de \(\mathrm{Sx}^{2}\).
Sy \(=781.4\) Suma de la Columna 2 (y) del Cuadro 39.
Sxy \(=3762.4\) Suma de la Columna 4 (xy) del Cuadro 39.
\(S x^{2} y=23275.6\) Suma de la Columna 5 (\(x^{2} y\)) del Cuadro 39.
```

Remplazando estos valores en la ecuación (2) tenemos:

$$
\begin{align*}
9 \mathrm{a}+45 \mathrm{~b}+285 \mathrm{c} & =781.4  \tag{3}\\
45 \mathrm{a}+285 \mathrm{~b}+2025 \mathrm{c} & =3762.4 \\
285 \mathrm{a}+2025 \mathrm{~b}+15333 \mathrm{c} & =23275.6
\end{align*}
$$

Tomamos las dos primeras líneas de la ecuación (3);

$$
\text { (4) } \begin{aligned}
9 \mathrm{a}+45 \mathrm{~b}+285 \mathrm{c} & =781.4 \\
45 \mathrm{a}+285 \mathrm{~b}+2025 \mathrm{c} & =3762.4
\end{aligned}
$$

Se despeja "a" multiplicando las cifras de la linea superior por 45 y las de la línea inferior por 9:

$$
\text { (5) } \begin{aligned}
405 a+2025 b+12825 c & =35163.0 \\
405 a+2565 b+18225 c & =33861.6
\end{aligned}
$$

Restando el menor del mayor (para considerar cuál es el menor se toma en cuenta las cifras despućs del signo $=$. En nuestro ejemplo la linea infe. rior es menor puesto que 33861.6 es menor que 35163.0):

$$
\text { (6) } \begin{aligned}
405 \mathrm{a}+202.5 \mathrm{~b}+12825 \mathrm{c}=35163.0 \\
405 \mathrm{a}+2565 \mathrm{~b}+18225 \mathrm{c}=33861.6 \\
\hline 0-540 \mathrm{~b}+-5400 \mathrm{c}=\mathrm{J} 301.4
\end{aligned}
$$

En seguida, se toman la $1^{a}$ y $3^{a}$ línea sle la ecuación (3):
(7) $9 \mathrm{a}+45 \mathrm{~b}+28.5 \mathrm{c}=781.4$

$$
285 a+2025 b+15333 c=23275.6
$$

Se despeja "a" nultiplicando las cifras de la linea superiot por 285 y las de la línea iaferior por 9 :

$$
\text { (8) } \begin{aligned}
2565 a+12825 b+81225 c & =222699.0 \\
2565 a+18225 b+137997 c & =209480.4
\end{aligned}
$$

Restando el menor del mayor:

$$
\text { (9) } \left.\begin{array}{rl}
2565 a+12825 b+81225 c & =222699.0 \\
2565 a+18225 b+137997 \mathrm{c} & =209460.4
\end{array}\right]\left[\begin{array}{l}
13218.6
\end{array}\right.
$$

Se toma el restitado obtenido en (6) y el obtenido en (9):

$$
\begin{aligned}
(10)-540 b+-5400 \mathrm{c} & =1301.4 \\
-3400 b+-56772 \mathrm{c} & =13218.6
\end{aligned}
$$

Se despeja "ly" multiplicando las cifras de la línea superior por 5400 y las de la línea inferior por 540 :

$$
\text { (11) } \begin{aligned}
& -2916000 \mathrm{~b}+-29160000 \mathrm{c}=7027560 \\
& -2916000 \mathrm{~b}+-30656880 \mathrm{c}=7138044
\end{aligned}
$$

Restando el menor del mayor:

$$
\text { (12) } \begin{aligned}
&-29160001, \\
&-2916000 b+-30656880 c=7138044 \\
& 0-1496880 c
\end{aligned}
$$

Luego, el valor de "c" es:

$$
\text { (13) } \quad c=\frac{110184}{-1496880}=-0.074
$$

Remplazando el valor de "c" en la primera línea de la ecuación (10) y procediendo con las operaciones para lallar el valor de "b":

$$
\begin{gathered}
\text { (14) } \begin{array}{c}
-540 b+(-5400 \times-0.074)=1301.4 \\
-540 b+339.6=1301.4 \\
-540 b=1301.4-399.6 \\
-540 b=901.8 \\
b=\frac{901.8}{-540}=-1.670
\end{array} .
\end{gathered}
$$

Remplazando los valores de "b" y "c" en la primera línea de la ecuación (3), y procediendo con las operaciones para hallar el yalor de "a":

$$
\begin{aligned}
& (15) 9 \mathrm{a}+(45 \times-1.670)+(285 \times-0.074)=781.4 \\
& 9 \mathrm{a}-75.150-21.090=781.4 \\
& 9 \mathrm{a}-96.240=781.4 \\
& 9 \mathrm{a}=781.4+96.240 \\
& 9 a=877.640 \\
& a=\frac{877.640}{9}=97.516
\end{aligned}
$$

Remplazando los valores hallados para "a", "b"y "c" en la fórmula general (1) tenemos:

$$
(16) y=97.516-1.670 x-0.074 x^{2}
$$

Para construír la curva parabólica hay que calcular los valores que corresponden a $x$, desde $x=1$ hasta $x=y$. Para esto utilizamos la tómula final de (16):

Cuando $\mathrm{x}=1$ :

$$
y=97.516-\left(\begin{array}{lll}
1.670 \times 1
\end{array}\right)-(0.074 \times \quad 1)=95.8
$$

Cuando $x=2$ :

$$
y=97.516-(1.670 \times 2)-(0.074 \times 4)=93.9
$$

Cuando $x=3:$

$$
y=97.516-(1.670 \times 3)-(0.074 \times 9)=91.8
$$

Cuando $x=4:$

$$
y=97.516-(1.670 \times 4)-(0.074 \times 16)=89.7
$$

Cuando $\mathrm{x}=5$ :

$$
y=97.516-(1.670 \times 5)-(0.074 \times 25)=87.3
$$

Cuando $x=6:$

$$
y=97.516-(1.570 \times 6)-(0.074 \times 36)=84.8
$$

Cuando $\mathrm{x}=7$ :

$$
y=97.516-(1.6 .0 \times 7)-(0.074 \times 49)=82.2
$$

Cuando $\mathrm{x}=8$ :

$$
y=97.516-(1.670 \times 8)-(0.07 \times \times 64)=79.4
$$

Cuando $x=9$ :

$$
y=97.516-(1.570 \times 9)-(0.074 \times 81)=76.5
$$

Según estos valores hallados para $x=1$ hasta $x=9$, tenemos que la curva parabólica debe construise tomando en cuenta las siguientes correspondencias (Cuadro 40): *

$$
\text { CUADRO } 40
$$

VALORES PARA LA CONSTRUCCION DE LA CURVA PARABOLICA

| $x$ | $y$ |
| :---: | :---: |
| Altura | Foflb02 |
| 150 | 95.8 |
| 1,750 | 93.9 |
| 2,390 | 91.8 |
| 3,140 | 89.7 |
| 3,730 | 87.3 |
| 4,330 | 84.3 |
| 4,540 | 82.2 |
| 4,860 | 79.4 |
| 5,340 | 76.5 |

Utilizando los valores dados en el Cuadro 40 se construye la curva parabólica de la Figura 35. Para esta construcción se marcan stavemente (para que no aparezcan en el diasrama final) los puntos correspondientes a la intersección de los 9 valores de altura y $\% \mathrm{H} b 02$, y en seguida utilizando una regla flexible, u otra apropiada, se traza una línea que pase por todos los puntos.

Se puede apreciar en la Figura 35 que la curva parabólica, calculada por medio de la fórmula: $y=a+b x+\mathrm{cx}^{2}$ representa, bastante bien, la relacion que existe entre altura y \%Hb02, puesto que corresponde, aproximadamente, a la tendencia expresada por la posición de las 9 observaciones hechas a diferentes alturas.

* En el Cuadro 40 se ha tomado en cuenta que, sesín lo expresado en el Cuadro 39, $\mathrm{X}=1$ corresponde a una altura de 150 metros; $\mathrm{X}=2$ corresponde a una altura de 1,750 metros; $X=3$ corresponde a una altura de 2,390 metros, y así, sucesivamente.



## ALTURA (KMS)

FIGURA 35- Satitración de la sangre arterial con oxigeno (\% Hb02) en relación a la altura. Observaciones hechas en sujetos residentes.
Los puntos corresponden a los valores medios hallados a diversas chturas. La linea curva, que ha sido calculada por medio de la formula: $y=a+b x+c x^{2}$, expresa, en torma adecuada, la relación entre alhura y \% Hb02, de ucuerdo con la posición de los 9 puntos. Para la construcción de esta curva se han utilizado los datos contenidos en el Cuadro 40.

C-CALCULO DE UNA CURVA logaritmica.

Para el cálculo de una curva logarítnica, que represente la relación entre altura y $\% \mathrm{Hb} 02$, conforme a la posición de las 9 observaciones incluidas en el diagrama de la Figura 32, es preciso construir, en primer lugar, el Cuadro 41 :

## CUADRO 41

| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| Allura | $y$ | $x$ | $x y$ | $y \log x$ |
|  | $y 50$ | 95.9 | 1 | 95.9 |
| 1,750 | 93.3 | 2 | 186.6 | 0 |
| 2,390 | 91.7 | 3 | 275.1 | 28.0833 |
| 3,140 | 91.0 | 4 | 364.0 | 53.7501 |
| 3,730 | 87.6 | 5 | 438.0 | 61.2324 |
| 4,330 | 83.6 | 6 | 501.6 | 65.0575 |
| 4,540 | 81.4 | 7 | 569.8 | 63.7911 |
| 4,860 | 80.7 | 8 | 645.6 | 72.8802 |
| 5,340 | 76.2 | 9 | 685.8 | 72.7100 |
|  |  |  |  |  |
|  | 781.4 | 45 | 3762.4 | 467.2957 |
|  |  |  |  |  |

Columnas 1, 2, 3 y 4-Iguales a las del Cuadro 39.
Columna 5 (ylogx)-Corresponde a la multiplicación de cada cifra en Columna' 2 (y) por el logaritmo de la correspondiente cifra en Columna 3 ( $x$ ).
Los logaritmos de estas últimas cifras pueden obtenerse en el Apéndice A. Así, en nuestro cjemplo:

$$
\begin{aligned}
& \log . \text { de } 1=0 \quad \text { Lucgo } 95.9 \times 0=0 \\
& \log . \text { de } 2=0.3010 \text { Luego } 93.3 \times 0.3010=28.0833
\end{aligned}
$$

$$
y \text { asi sucesivamente. }
$$

En seguida, se aplica la fórmula general que corresponde a una curva loga. rítmica:

$$
(1)^{*} y=a+b x+c \log x
$$

Poniendo esta fórmula en ecuación:
(2) na $+b S x+c \log x=5 y$
$\mathrm{aS} x+\mathrm{bS} \mathrm{x}^{2}+\mathrm{cSxlog} \mathrm{x}=\mathrm{S}=\mathrm{y}$
$\mathrm{aS} \log \mathrm{x}+\mathrm{bSx} \log \mathrm{x}+\mathrm{cS}^{2} \log \mathrm{x}^{2}$ $\mathrm{aSlog} \mathrm{x}+\mathrm{bSx} \log \mathrm{x}+\mathrm{cSlog} \mathrm{x}^{2}=\mathrm{Sy} \log \mathrm{x}$

[^22]Los valores correspondientes en nuesto cjemplo son:

$$
\begin{aligned}
& \mathrm{n} \quad=\quad 9 \mathrm{~N}^{0} \text { total cle datus en la Columáa } 2(\mathrm{y}) \text { del } \\
& \text { Cuadro 4l. } \\
& S_{x}=45 \text { Suma de la Culumna } 3(x) \text { del Cuadro 4.l. } \\
& \mathrm{Sx}^{2}=285 \text { Esta cifra se obliene diectamente en la Co- } \\
& \text { Jumna } 3\left(5 x^{2}\right) \text { del Cuadro } 45 \text { (pag. 272) to. } \\
& \text { mandu en cueata cl valor mas alto de } x \text {. En } \\
& \text { este cjemplo at alor més alio de } x \text { os } 9 \\
& \text { (Columna } 3(x) \text { det Cuadtr, 4l): a } 9 \text { ie } \\
& \text { corresponde } 20 \text { an la Conlumaa } 3 \text { (Sx:1) del } \\
& \text { Cuadro } 45 . \\
& \text { Sy } \quad=781.4 \text { Suma de la Columa } 2(y) \text { del Cuadro } \therefore 1 \text {. } \\
& \text { Sxy }=3762.4 \text { Suma de las cifras de la Columna } 4 \text { ( } \mathrm{xy} \text { ) } \\
& \text { del Cuadro 4l. } \\
& \text { Sylogx }=467.2957 \text { Suma de ja Cohmona } 5 \text { (y) gegx dei Cua } \\
& \text { dro } 41 . \\
& \text { Slogx }=5.5598 \text { Esta cifra se oltienc directamente on la Co- } \\
& \text { lumna } 2 \text { del Cuadro } 4.6 \text { (pág. 273) comando } \\
& \text { en cienta el valo: más alto de s. En este } \\
& \text { ejemplo el valor mais alto de } x \text { es } 9 \text { (Colum- } \\
& \text { na } 3 \text { ( } x \text { ) del Cuadro 41); a } 9 \text { Je corres. } \\
& \text { ponde } 5.5598 \text { en la Columna } 2 \text { (Slogx) del } \\
& \text { Cuadro } 46 . \\
& \text { Sxlogx }=34.3340 \text { Esta cifra se obticne directanente en la Co- } \\
& \text { Iumna } 3 \text { (Sxlogx) del Cualro 46. El proce- } \\
& \text { dimiento es el mismo que el çue se usa para } \\
& \text { obtener el valor de Slogx. } \\
& \text { Slogx }{ }^{2}=4.2252 \text { Esta cilra se obtiome directameme on la Co- } \\
& \text { lumna } 4 \text { (Slogx }{ }^{2} \text { ) del Cuadro } 46 \text {. El proce- } \\
& \text { dimietio es el mismo que ei que se usa para } \\
& \text { oblener el ralor de } \oint \log x \text {. }
\end{aligned}
$$

Reemplazando stos valores en la ecuación (2) tenemos:

$$
\text { (3) } \begin{aligned}
9 a+45 b+5.5598 c & =781.4 \\
45 a+285 b+34.3340 c & =3762.4 \\
5.5598 a+34.3340 b+4.2152 c & =467.2957
\end{aligned}
$$

Tomamos las dos primeras líneas de la ecuación (3):
(4)

$$
\begin{aligned}
9 \mathrm{a}+\quad 4.5 \mathrm{~b}+5.5598 \mathrm{c} & =781.4 \\
45 \mathrm{a} & +285 \mathrm{~b}+34.3340 \mathrm{c}
\end{aligned}=3762.4
$$

Se despeja "a" multiplicando las cifras de la línea superior por 45 y las de la línea inferior por 9:

$$
\text { (5) } \begin{aligned}
405 a+2025 u+250.191 c & =35163.0 \\
405 a+2565 b+309.006 c & =33861.6
\end{aligned}
$$

Restando el menor del mayor (para considerar cual es el menor se toma en cuenta las cifras después del signo $=$. En nurestro ejemplo la línea inferior es menor puesto que 33861.6 es menor que 35163.0):

$$
\text { (6) } \begin{aligned}
& 405 a+2025 b+250.191 c=35163.0 \\
& 405 a+2565 b+309.006 c=33601.5 \\
& \hline 0-540 b+-58.815 c=1301.4
\end{aligned}
$$

En seguida se toman la $1^{a}$ y $3^{3}$ línea de la ecuación (3):

$$
\text { (7) } \begin{aligned}
9 \mathrm{a}+45 \mathrm{~b}+5.5598 \mathrm{c} & =781.4 \\
5.5598 \mathrm{a} & +34.3340 b+4.2152 \mathrm{c}
\end{aligned}=467.2957
$$

Se despeja "a" multiplicando las cilras de la línea superior por 5.5598 y las de la línea inferior por 9:

$$
\text { (8) } \begin{aligned}
50.0382 \mathrm{a}+250.191 \mathrm{~b}+30.9114 \mathrm{c} & =4344.4277 \\
50.0382 \mathrm{a}+309.006 \mathrm{~b}+37.9368 \mathrm{c} & =4205.6613
\end{aligned}
$$

Restando el menor del mayor:

$$
\text { (9) } \begin{aligned}
50.0382 \mathrm{a}+250.191 \mathrm{~b}+30.9114 \mathrm{c} & =4344.4277 \\
50.0382 \mathrm{a}+309.006 \mathrm{~b}+37.9368 \mathrm{c} & =4205.6616 \\
\hline 0 & -58.815 \mathrm{~b}+-7.0254 \mathrm{c}
\end{aligned}=138.7664 .
$$

Se toma el resultado obtenido an (6) y el obtenido en (9):

$$
\text { (10) } \begin{aligned}
&-540 h+-58.815 \mathrm{c} \\
&-58.815 b+-7.0254 \mathrm{c}=1301.4 \\
&=138.7664
\end{aligned}
$$

Se despeja "b" multiplicando las cifras de la línea superior por 58.815 y las de la línea inferior por 540 :

$$
\text { (11) } \begin{aligned}
-31760.100 b+-3459.2042 c & =76541.841 \\
-31760.100 b- & -3793.7160 \mathrm{c}
\end{aligned}=74933.856
$$

Restando el menor del mayor:

$$
\text { (12) } \begin{aligned}
-31760.100 \mathrm{~b}+-3459.2042 \mathrm{c} & =76541.841 \\
-31760.100 \mathrm{~b}+-3793.7160 \mathrm{c} & =74933.856 \\
-1 & -334.5118 \mathrm{c}
\end{aligned}=1 \overline{607.985}
$$

Luego el valor de "c" es:
(13) $\quad c=\frac{1607.985}{-334.5118}=-4.807$

Reemplazando el valor de "c" en la primera línea de la ecuación (l0) y procediendo ron las operaciones para hallar el valor de "b":

$$
\text { (14) } \begin{aligned}
-540 b & +(58.815 \quad \times \quad-4.807)=1301.4 \\
-540 b & +282.7237=1301.4 \\
-540 b & =1301.4-282.7237 \\
-540 b & =1018.5763 \\
b & =\frac{1018.6763}{-540}=-1.886
\end{aligned}
$$

Reemplazando los valores de " $b$ " y " c " en la primera línea de la ccitación (3) y procediendo con las operaciones para hallar el valor de "a":

$$
\begin{aligned}
& \text { (15) } 9 \mathrm{a}+(45 \times-1.886)+(5.5598 \times-4.807)=781.4 \\
& 9 \mathrm{a}-84.870-26.726=781.4 \\
& 9 \mathrm{a}-111.596=781.4 \\
& 9 a=781.4+111.596 \\
& 9 a=892.996 \\
& a=892.996 \\
& 9
\end{aligned}
$$

Reemplazando los valores hallados para "a", "ر" y" "e" en la fórmula general (1) tenemos:

$$
(16) y=99.221-1.886 x-4.807 \log x
$$

Para construir la curva logarítmica hay que calcular los valores que corresponden a $x$, desde $x=1$ hasta $x=9$.

Para esto utilizamos la fórmula final de (16)*:
Cuando $x=1$ :

$$
y=99.221-(1.886 \times 1)-(4.807 \times 0)=97.3
$$

Cuando $\mathrm{x}=2$ :

* En esta fórmula los logarímicos de 1 hasta 9 (que deben multiplicarse por 4.807) son hallados en el Apéndice A.

$$
y=99.221-(1.885 \times 2)-(4.807 \times 0.3010)=94.0
$$

Cuando $\mathrm{x}=3$ :

$$
y=99.221-(1.886 \times 3)-(4.807 \quad x \quad 0.4771)=91.3
$$

Cuando $x=4:$

$$
y=99.221-(1.886 \times 4)-(4.807 \times 0.6021)=38.8
$$

Cuando $x=5:$

$$
y=99.221-(1.886 \times 5)-(4.807 \times 0.6990)=86.4
$$

Cuando $x=6:$

$$
y=99.221-(1.886 \times 6)-(4.807 \times 0.7782)=84.2
$$

Cuando $\mathrm{x}=7$ :

$$
\mathrm{y}=99.221 \cdots(1.886 \times 7)-(4.807 \times 0.8451)=82.0
$$

Cuando $\mathrm{x}=8$ :

$$
y=99.221-(1.886 \times 8)-(4.807 \times 0.9031)=79.8
$$

Cuando $x=9$ :

$$
y=99.221-(1.886 \times 9)-(4.807 \times 0.9542)=77.7
$$

Según estos valores hallados para $x=1$ hasta $x=9$, tenemos que la curva logaritmica delse construirse tomando en cuenta las siguientes correspondencias (Cuadro 42*) :

$$
\text { CUADRO } 42
$$

VALORES PARA LA CONSTRUCCION DE LA CURVA LOGARITMICA

| $x$ | $y$ |
| :---: | :---: |
| Altura | $\%$ Hb02 |
| 150 | 97.3 |
| 1,750 | 94.0 |
| 2,390 | 91.3 |
| 3,140 | 88.8 |
| 3,730 | 86.4 |
| 4,330 | 84.2 |
| 4,540 | 82.0 |
| 4,860 | 79.8 |
| 5,340 | 77.7 |

[^23]Utilizando los valores dados en el Cuadro 12 se construye la curva logarítmica de la Figura 36. Para esta construcción se marcan suavemente (para que no aparezcan en el diagrama final) los puntos correspondicntes a la intersección de los 9 valores de altura y $\%$ Hb02, y, en seguida, con una regla flexible, u otra apropiada, se traza una linea que pase por todos los puntos.

Se puede apreciar on la Figura 36 que la curva logarítmica, calculada por medio de la fórmula: $y=a+b x+c l o g x$, representa con menos precisión que la curva parabólica (Figura 35) la relación existente entre altura y $\% \mathrm{Hb02}$.

Por consiguiente, la conclusión a que se llega en el ejemplo que hemos discutido es que la curva parabólica es la más adecmada para representar la relación que existe entre altura y $\% \mathrm{HH} 02$, de acuerdo con la porsición de lus 9 puntos que corresponden a las observaciones hechas a diferentes alhuras.


## ALTURA (KMS)

FIGURA 36-Saturación de la sangre arterial con oxigeno (\% Hb02) en relación a la allura. Observaciones hechas en sujetos residentes. Los puntos corresponden a los valores medios hallados a diversas alturas. La linea carva, que ha sido calculada por medio de la fórmula: $y=a+b x+c \log x$, expresa, en forma adecuada, aunque con menos precisión que la curva de la Figura 35, la relación entre altura y \% Hb02, de acuerdo con la posición de los 9 puntos. Para la construcción de esta curva se han utilizado los datos del Cuadro 42.

Si el cálculo de la línea recta, o de las curvas parabólica o logaritmica, que representan la relación existente entre dos variables, corresponde a un número elevado de observaciones, es conveniente, como procedimiento previo, arreglar los datos de la manera siguiente:
(a) - Dividir a una de las variables en grupos de Frecuencia, indicando el punto medio de cada grupo; y
(b)-Calcular para cada uno de los grupos de frecuencia de (a) el valor promedio que le corresponde en la otra variable.
En seguida, la línea recta, o curva parabólica o logarítmica, se calculan relacionando el punto medio de los grupos de frecuencia de una de las variables con los respectivos valores medios de la otra.

Utilizaremos un ejemplo para ilustrar los procedimientos a seguir.
Ejemplo*: Se ha determinado el peso y la estatura (sentada) de 454 embrios humanos. Con los resultados obtenidos se construye el Cuadro 43.

CUADRO 4.3

|  |  |  |
| :---: | :---: | :---: |
| 1 | 2 | 3 |
| Yeso en gramos <br> Grupos de frecuencia | Punto meaio | Valores medios de la <br> estatura (mm) |
| $0-19$ |  |  |
| $20-39$ | 10 | 58.8 |
| $40-59$ | 30 | 76.4 |
| $60-79$ | 50 | 91.1 |
| $80-99$ | 70 | 99.0 |
| $100-119$ | 90 | 108.1 |
| $120-139$ | 110 | 115.1 |
| $140-159$ | 150 | 122.7 |
| $160-179$ | 170 | 129.5 |
| $180-199$ | 190 | 135.0 |
| $200-219$ | 210 | 141.1 |
| $220-239$ | 230 | 144.0 |
| $240-259$ | 250 | 150.0 |
| $260-279$ | 270 | 152.8 |
| $280-299$ | 290 | 155.6 |
| $300-319$ | 310 | 158.6 |
| $320-339$ | 330 | 161.3 |
| $360-379$ | 350 | 160.5 |
| $340-359$ | 370 | 171.0 |
| $380-399$ | 390 | 169.5 |

[^24]Columna l- Corresponde a la división de los datos del peso (gramos), obtenidos en las 454 determínaciones, en grupos de frecuencia.
La manera como se procede para calcular los grupos de irecuencia que corresponde a una serie de datos está explicada en el Capítulo I.
En este ejenaplo so ha dividido, arbirariameate, los datos de peso en 20 grupos de frecuencia; el primer zrtpo incluye el valor lor más bajo ( 12 gramos) y el último grupo incluye el valor más alto ( 387 gramos).

El intervalo de grupo equivale a 20 gramos.
Columna 2- Corresponde al punto medio de cada grupo de frecuencia.
El punto medio es igual a la mitad del intervalo de grupo más el valor correspondiente al límite inferior de cada grupo de frecuencia.
Así, en nuestro ejemplo (en el que el intervalo de grupo es igual a 20) tenemos:

Para el ler. grupo: $\frac{20}{2}+0=10$
Para el $2^{\circ}$. grupo: $\frac{20}{2}+20=30$
Para el 3er. grupo: $\frac{20}{2}+40=50$
y asi sucesivamente.
Columna 3- Son los valores medios de la estatura (mm) que corresponden a cada uno de los grupos de frecuencia del peso. Así, en nuestro ejemplo tenemos que correspondiendo a un peso de 0 a 19 gramos hay 4 datos de estatura:

$$
\begin{array}{ll}
62.8 & 60.3 \\
54.8 & 57.3
\end{array}
$$

El valor promedio equivale a la suma de estos 4 valores (235.2) dividida entre 4:

$$
\frac{235.2}{4}=58.8 \mathrm{~mm}
$$

Para in peso que varía entre 20 y 39 gramos tenemos 8 observaciones de estatura:

| 79.4 | 77.6 |
| :--- | :--- |
| 73.4 | 75.2 |
| 78.2 | 77.5 |
| 74.6 | 75.3 |

El valor proncdio equivale a la stma de estos 8 valores (611.2) dividida entre 8:

$$
\frac{611.2}{3}=76.4 \mathrm{~mm}
$$

X asi sucesivamente, se calcula, utilizancio los datos originales de las observaciones hechas. los valores promedios de estatura que corresponden a los demás grupos de irecuencia del peso.

En scguida se construye el Cuadro 4A
CUADRO 44

| 1 |  |  |
| :---: | :---: | :---: |
|  | 2 | 3 |
|  |  |  |
| 10 | $y$ |  |
| 30 | 58.8 |  |
| 30 | 76.4 | 1 |
| 70 | 91.1 | 2 |
| 90 | 99.0 | 3 |
| 110 | 108.1 | 4 |
| 130 | 115.1 | 5 |
| 150 | 122.7 | 6 |
| 170 | 129.5 | 7 |
| 190 | 135.0 | 8 |
| 210 | 141.1 | 9 |
| 230 | 144.0 | 10 |
| 250 | 150.0 | 11 |
| 270 | 152.8 | 12 |
| 290 | 155.6 | 13 |
| 310 | 158.6 | 14 |
| 330 | 161.3 | 15 |
| 350 | 160.5 | 16 |
| 370 | 171.0 | 17 |
| 390 | 169.5 | 18 |
|  | 173.6 | 19 |

Columna l-Es igual a la Columna 2 del Cuadro 43.
Columna 2-Es igual a la Columna 3 del Cuadro 43.
Columna 3-Corresponde a la numeración ascendente de cada línea comenzando por 1 .
Finalnente, los datos contenidos en el Cuadro 44 son utilizados para el cálculo de la linca recta o de las curvas parabolica y logaritaica, de acuerdo con las instrucciones daclas en las páginas 252 a 267.
En este ejemplo, la curva logarímica es la que mejor corresponde a la posición de los 20 puntos en el diagrama, y, por consigniente, es la que mejor representa la relación entre estatura y peso de los embrios (Figura 37).
La curva logaritmica de la Figura 3 ? ha sido construida calculando, por medio de la fórmula $y=\mathrm{a}+\mathrm{bx}+$ clogx, los valores de estatura (mm) que corresponde a $\mathrm{x}=\mathrm{l}$ (peso: 10 gramos); $\mathrm{x}=2$ (pesu: 30 gramos); $\mathrm{x}=3$ (peso: 50 gramos), y asi sucesivamente hasta $\mathrm{x}=20$ (peso: 390 gramos).


PESO (GRAMOS)
FIGURA 37-Relacion entre el peso y la estatura (sentada) de embrios humanos. Ia curva ha sido construida por medio de la jormula: $y=a+b x+c l o g x$.

PARA SER USADO EN LOS CALCUI.OS DE LNA LINEA RECTA Y DE CURVAS PARABOLICA Y LOGARITMECA

| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | Suma x | Suma $\mathrm{x}^{2}$ | Suma $\mathrm{x}^{3}$ | Suma $\mathrm{x}^{4}$ |
| 1 | 1 | 1 | 1 | 1 |
| 2 | 3 | 5 | 9 | 17 |
| 3 |  | 14 | 36 | 98 |
| 4 | 10 | 30 | 100 | 354 |
| 5 | 15 | 55 | 225 | 979 |
| 6 | 21 | 91 | 441 | 2.275 |
| 7 | 28 | 140 | 78.4 | 4,676 |
| 8 | 36 | 204 | 1.296 | 8,772 |
| 9 | 4.5 | 28.5 | 2.025 | 15,333 |
| 10 | 53 | 385 | 3,025 | 25,333 |
| 11 | 66 | 506 | 4,356 | 39,974 |
| 12 | 78 | 650 | 6,084 | 60,710 |
| 13 | 91 | 819 | 8,231 | 89,271 |
| 14 | 105 | 1,015 | 11,025 | 127.687 |
| 15 | 120 | 1,240 | 14,400 | 178.312 |
| 16 | 136 | 1,496 | 18,496 | 243,848 |
| 17 | 153 | 1,785 | 23,409 | 327,369 |
| 18 | 171 | 2,109 | 29,241 | 432,345 |
| 19 | 190 | 2,470 | 36,100 | 562,666 |
| 20 | 210 | 2,870 | 44.100 | 722,666 |
| 21 | 231 | 3,311 | 53,361 | 917.147 |
| 22 | 253 | 3,795 | 64,009 | 1,151.403 |
| 23 | 276 | 4.324 | 76,176 | 1.431 .244 |
| 24 | 300 | 4.876 | 89,424. | 1,749.196 |
| 25 | 32.5 | 5.501 | 105.0:9 | 2,139.821 |
| 26 | 3.51 | 6,177 | 122,625 | 2.596 .797 |
| 27 | 378 | 6.900 | 142,308 | 3.128.238 |
| 28 | 406 | 7,590 | 164,200 | 3.712 .894 |
| 29 | 435 | 8,531 | 188,549 | 4.450 .175 |
| 30 | 465 | 9,431 | 215.649 | 5,260,175 |
| 31. | 496 | 10,392 | 245.440 | 6,183,696 |
| 32 | 528 | 11.416 | 278,208 | 7.232.272 |
| 33 | 561 | 12,505 | 319.145 | 8.418 .193 |
| 31 | 595 | 1,3,66] | 353.449 | 9.754 .529 |
| 35 | 6.30 | 14.386 | 396.324 | 11.255 .154 |
| 35 | 666 | 16.182 | 4142,920 | 12.931 .750 |
| 37 | 703 | 17.551 | 493.633 | 14.8.08.531 |
| 33 | 741 | 18.995 | 548.505 | 16.894. 967 |
| 39 | 780 | 20.516 | $607,824$. | 19:207,508 |
| 40 | 820 | 22.116 | 671.824 | 21.767 .503 |
| 41 | 861 | 23.797 | 740,745 | 24.593 .269 |
| 42 | 903 | 25,561 | 814.833 | 27,704,965 |
| 4.3 | 946 | 27.410 | 894.340 | 31,123.766 |
| 44 | 990 | 29,346 | 979.524 | 34.871 .862 |
| 45 | 1.035 | 31,37] | 1,070.649 | 38.972.487 |
| 46 | 1.081 | 33,487 | 1.167,985 | 43,449,943 |
| 47 | 1,128 | 35,696 | 1,271,808 | 48,329,624 |
| 48 | 1,176 | 38,000 | 1,382,400 | 53,638,040 |
| 49 | 1.225 | 40,401 | 1,500,049 | 59,402,841 |
| 50 | 1,275 | 42,901 | 1,625,049 | 65,652,841 |

## CUADRO 46

PARA SER USADO EN EL CALCULO DE LA CURVA LOGARITMICA

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| x | $5 \log x$ | $5 \mathrm{x} \log \mathrm{x}$ | Slogx ${ }^{2}$ |
| 1 | 0.000000 | 0.000000 | 0.000000 |
| 2 | 0.301030 | 0.602060 | 0.090619 |
| 3 | 0.77815 I | 2.033424 | 0.318264 |
| 4 | 1.380211 | 4.441664 | 0.680740 |
| 5 | 2.079181 | 7.936514 | 1.169299 |
| 6 | 2.857332 | 12.605412 | 1.774818 |
| 7 | 3.702430 | 18.521107 | 2.489009 |
| 8 | 4.605520 | 25.745827 | 3.304581 |
| 9 | 5.559763 | 34.334010 | 4.215159 |
| 10 | 6.559763 | 44.334010 | 5.215159 |
| 11 | 7.601156 | 55.789329 | 6.299658 |
| 12 | 8.680337 | 68.739504 | 7.464290 |
| 13 | 9.794280 | 83.220768 | 8.705160 |
| 14 | 10.940408 | 99.266561 | 10.018770 |
| 15 | 12.116500 | 116.907929 | 11.401960 |
| 16 | 13.320620 | 136.173849 | 12.851865 |
| 17 | 14.551068 | 157.091481 | 14.365870 |
| 18 | 15.806341 | 179.686386 | 15.941579 |
| 19 | 17.085095 | 203.982704 | 17.576789 |
| 20 | 18.386125 | 230.003304 | 19.269469 |
| 21 | 19.708344 | 257.769909 | 21.017732 |
| 22 | 21.050767 | 287,303208 | 22.819831 |
| 23 | 22.412494 | 318.622949 | 24.674134 |
| 24 | 23.792706 | 351.748018 | 26.579117 |
| 25 | 25.190646 | 386.696519 | 28.533353 |
| 26 | 26.605619 | 423.485826 | 30.535503 |
| 27 | 28.036983 | 462.132647 | 32.584305 |
| 28 | 29.484141 | 502.653072 | 34.678571 |
| 29 | 30.946539 | 545.062614 | 36.817179 |
| 30 | 32.423660 | 589.376252 | 38.999066 |
| 31 | 33.915022 | 635.608464 | 41.223226 |
| 32 | 35.420172 | 683.773264 | 43.488703 |
| 33 | 36.938686 | 733.884224 | 45.794587 |
| 34 | 38.470165 | 785.954507 | 48.140015 |
| 35 | 40.014233 | 839.996888 | 50.524161 |
| 36 | 41.570535 | 896.023:78 | 52.946238 |
| 37 | 43.138737 | 954.047242 | 55.405495 |
| 38 | 44.718520 | 1,014.079019 | 57.901211 |
| 39 | 46.309585 | 1,076.130538 | 60.432698 |
| 40 | 47.911645 | 1,140.212938 | 62.999294 |
| 41 | 49.524429 | 1,206.337076 | 65.600366 |
| 42 | 51.147678 | 1,274.513546 | 68.235304 |
| 43 | 52.781147 | 1,344.752690 | 70.903523 |
| 44 | 54.424599 | 1,417064608 | 73.604460 |
| 45 | 56.077812 | 1,491.459171 | 76.337572 |
| 46 | 57.740570 | 1,567.94603 | 79.102335 |
| 47 | 59.412668 | 1,646.534631 | 81.898246 |
| 48 | 61.093909 | 1,727.234210 | 84.724819 |
| 49 | 62.784105 | 1,810.053818 | 87.581581 |
| 50 | 64.483075 | 1,895.002318 | 90.468080 |

# CAPITULOVII 

## BIO - ESTADISTICA

## COEFICIENTES

En el estudio de ciertos aspectos biológicos y sanitarios de una población, o de un grupo de individuos, es importante apreciar la frecuencia de nacimientos, defunciones y casos de determinada enfermedad, en relación a un período dado de tiempo y al número total de sujetos observados. La expresión de la natalidad, mortalidad y morbosidad, denominaciones aplicadas a los fenómenos mencionados, se hace, generalmente, por'medio de coeficientes o tasas, algunos de los cuales se utilizan, además, para inquirir sobre procesos relacionados, tales como el crecimiento de una población.

Es necesario tener presente que la veracidad, y, por lo tanto, el significado, de estos coeficientes, depende, fundamentalmente, de la precisión de los datos censales de población y de la manera como se cumplen los requisitos obligatorios de registro e inscripción.

Algunos de los coeficientes más usados, y cuyo cálculo describiremos en este capítulo; * son los siguientes:

A- MORTALIDAD-
Coeficiente general de mortalidad;
Coeficiente especifico de mortalidad;
Coeficiente de mortalidad infantil;
Coeficiente de mortinatalidad;

[^25]Coeficiente de morbimortalidad, y
Coeficiente de letalidad.
Coeficiente general de mortalidad corregido o ajustarto.
B- NATALIDAD-
Coeficiente general de natalidad, y Coeficiente especifico de natalidad.

## C- MORBOSIDAD-

Coeficiente general de morbosidad; y -
Coeficiente especifico de morbosidad.
D- CRECIMIENTO DE UNA POBLACION-

Crecimiento vegetativo; e
Indice vital.

## A-MORTALIDAD--

Coeficiente general de mortalidad (símbolo: qm).-Se calcula relacionando el número de defunciones, por todas las causas, con la población total. Generalmente se refiere a un año de tiempo y se expresa por cada 1,000 o 100,000 habitantes.

Este coeficiente, que corresponde a un indice general de mortalidad, está influenciado por algunas de las carácterísticas de la población observada (distribución de edad, sexo, raza, ocupación, etc., de sus habitantes), y por condiciones ambientales (clima, altura, etc.). Por consiguiente su significado es bastante limitado cuando se le usa en estudios comparativos de una localidad con otra. En cambio tiene mayor valor en la investigación de la mortalidad en un mismo lugar, en diferentes períodos, ya que generalmente, excluyendo fluctuaciones anormales, las características mencionadas de una población cambian muy Ientamente.

El siguiente ejemplo ilustra el cálculo del coeficiente general de mortalidad:

Ejemplo: En el año 1940 arurripron un total de 8,517 defunciones on la ciudad de Lima, cuya población en dicło año fué de 520,528 habitantes.

Luego, el coeficiente general de mortalidad, por cada L,000 habitantes, fué:

$$
\frac{1000 \times 8517}{520528}=16.36 \% / 00
$$

Es decir, que por cada 1,000 habitantes ocurrieron aproximadamente 16 defunciones en la ciudad de Lima, en el año 1940.

Como en determinado año la mortalidad general puede ser influenciada por fenómenos de carácter accidental (epidemia, guerra, etc.), es a veces conveniente calcular el coeficiente general de mortalidad correspondiente a un período de varios años. El siguiente ejemplo ilustra el procedimiento a seguir:

Ejemplo: Las cifras incluidas en el Cuadro 47 corresponden al número de defunciones, por todas las causas, ocurridas en el Perú durante los años 1931 a 1940, y la población del país durante este periodo de tiempo.

$$
\text { CUADRO } 47
$$

POBLACION Y DEFUNCIONES EN EL PERU

| Año | Población | Defunciones |
| :---: | :---: | :---: |
| 1931 | $5.277,523$ | 70,132 |
| 1932 | $5.371,489$ | 70,664 |
| 1933 | $5.467,968$ | 70,472 |
| 1934 | $5.567,004$ | 74,275 |
| 1935 | $5.668,641$ | 80,876 |
| 1936 | $5.772,923$ | 89,803 |
| 1937 | $5.879,894$ | 94,374 |
| 1938 | $5.989,598$ | 95,817 |
| 1939 | $6.102,979$ | 90,579 |
| 1940 | $6.217,281$ | 85,996 |
|  | $57.314,500$ | $\mathbf{8 2 2 , 9 8 8}$ |
|  |  |  |

El coeficiente general de mortalidad, por cada 1,000 habitantes, correspondiente a este período de 10 años, es:

$$
\frac{1000 \times 822988}{57314500}=14.36 \% / 00
$$

El coeficiente general de mortalidad puede calcularse en referencia a una enfermedad determinada. En este caso se relaciona el número de
defunciones, causadas por tal enfermedad, con la población observada. El siguiente ejemplo ilustra su cálculo:

Ejemplo: En el año 1939 ocurrierın en la siadad de Lima 1.304 defunciones a causa de Tuberculosis. La población de la ciulad en ese año fué de 303.6.30 habitantes.

Luego. el coeficiente general de mortalidad por Tuherculosis, en el año 1939, fué:
$1000 \times 1304$ $\overline{303630}=4.29 \%$

Es decir, que por cada 1,000 habitantes, ocurrieron aproximadamenic 4 defunciones por Tuberculusis en la ciudarl de Lima. en an año 1939.

En el estudio de la mortalidad referente a §eterminada enferme. dad es a veces deseable establecer la relación o proporción que tiene con ia mortalidad general, por todas las causas, es decir, averiguar que número de defunciones se debe a tal enfermedad.

Ejemplo: En el año 1938 ocurricron en la ciudad de Lima un total de 0,065 defunciones; de este núnero, 1,340 fueron debidas a Tuberculesis.
L.uego:


Es decir, yue de cada 100 defunciones ocuridas en lima, en el año 1938. aproxidamamente 22 fueron debidas a Tuberculusis.

NOTA-Para un cálculo más exacto del coeficiente general de mortalidand Schruefer (Nociones de Bio-Estadistica. Biblioteca de la Caja Nacional de Seguro Social. Lima, 1941) indica que es conveniente tomar en cuenta las flucluaciones que puede sufrir durante el año la población observada, si los datos censales permiten obtener la información necesaria.

Las diversas fórmulas, indicadas por Schruefer, son las siguientes: M
(a)-Coeficiente general de mortalidad $=\overline{A+1 / 2(N+I+S)}$
en la que $M=n^{0}$ de defunciuncs en el año;
$A=n^{0}$ de loabitantes al inicio del año;
$\mathrm{N}=\mathrm{n}^{\circ}$ de nacimientos en el año;
$1=n^{0}$ de immigrantes ell cl año;
$\mathrm{S}=\mathrm{n}^{0}$ de emigrantes en el año.

Así, por ejemplo, aplicando esta fúrmula a la siudad de Lima, cuäos dalos, en el año 1935, fueron:

$$
\begin{aligned}
\mathrm{M} & =5,722 \\
\mathrm{~A} & =281,350 \\
\mathrm{~N} & =9,199 \\
\mathrm{I} & =0 \\
\mathrm{~S} & =0
\end{aligned} \quad \text { (movimiento migwatorio desconocido) }
$$

Luego el coeficiente general de mortalidad por cada 1,000 habitantes, de la ciudad de Lima, en el año 1935, seria:

(b) - Cuando no existen datos referentes al movimiento migratorio ni al múmero de nacimientos ocurridos durante el añs, pero en cambio se conoce el numero de habitantes al inicio $y$ al fin del año, el cálculo se hace mediante la fórmula:

$$
\text { Coeficiente general de mortalidad }=\frac{M}{1 / 2(A+B+M)}
$$

en la que $M=n^{0}$ de defunciones en el año;
$\mathrm{A}=\mathrm{n}^{9}$ de habitantes al inicio del año;
$B=n^{\circ}$ de habitantes al fin del año.

Así, por ejemplo, aplicando esta fórmula a la ciudad de Lima, cuyos datos, en el año 1935, fueron:

$$
\begin{aligned}
& \mathrm{M}=5,722 \\
& \mathrm{~A}=281,350 \\
& \mathrm{~B}=284,827
\end{aligned}
$$

El coeficiente general de mortalidad, por cada 1,000 habitantes, de la ciudad de Líma, en el año 1935, sería:
$\frac{1000 \times 5722}{\frac{281350+284827+5722}{2}}=20.01 \% \% 00$
(c)-Cuendo se determina el coeficiente general de mortalidad correspondiente a un periodo de varios años, y se conoce el número de habitantes al inicio y al fin de dicho período, los cálculos se hacen de la manera como está ilustrada en el siguiente ejemplo:

Se trata de determinar el coeficiente general de morialidad de la cin. dad de Lima durante el período de 3 años: 1933, 1934 y 1935.

Los datos de población y defunciones son los signientes:
$\mathrm{A}=\mathrm{n}^{9}$ de habitantes al inicio de $1933=\quad 276,315$
$\mathrm{B}=\mathrm{n}^{0}$ de habitantes al fin de 1933 - inicio de $1934=978,438$
$\mathrm{C}=\mathrm{n}^{0}$ de habitantes al fin de 1934 - inicio de $1935=281,350$
D) $=n^{\circ}$ de habitantes al fin de $1935=\quad 284,827$
$\mathrm{Ml}=\mathrm{n}^{9}$ de defunciones en $1933=5,833$
M2 $=n^{\circ}$ de defunciones en $1934-5,872$
$\mathrm{M} 3=\mathrm{n}^{0}$ de defunciones en $1935=5,722$
En seguida, se aplica la signiente fórmula:
Cofficiente general de mortalidad

$$
=\frac{M 1+M 2+M 3}{-\frac{A}{2}+B+C+\frac{D}{2}}+\left(\frac{M 1+M 2+M 3}{2}\right) .
$$

Remplazando, el coeficiente general de moxtalidad, por cada 1,000 habitantes, de la ciudad de Lima, en el periodo 1933, 1934 y 1935, sería:
$\frac{1000 \times(5833+5872+5722)}{\frac{276315}{2}+278438+281350+\frac{284827}{2}+\left(\frac{5833+5872+5722}{2}\right)}=20.52 \% / 00$
(d)--El ceoficiente general de mortalidad puede lambién ealcularse para un período comprendido entre dos censos de la población. En este caso la fórmula que se aplica es la siguiente:
Coeficiente general de mortalidad $=\frac{\frac{M}{n}}{1 / 2\left(A+B+\frac{M}{n}\right)}$
en la que $M=n^{\circ}$ de defunciones en el periodo entre los dos censos;
$\mathrm{n}=\mathrm{n}^{\circ}$ de años entre los dos censos;
$A=n^{0}$ de habitantes según e] primer censo;
$B=n^{\circ}$ de habitantes según el segundo censo;
Así, por ejemplo, en una población X un censo verificado en 1930 dió 281,750 habitantes, y un segundo censo realizado en 1940 dió 343,446 habitantes. En este período de 10 años, transcurridos entre los dos censos, ocurrieron 62,342 defunciones.

Luego, el coeficiente general de mortalidad, por cada 1,000 habitantes, para el período de 10 años entre los dos censos, sería:


Coeficiente especifico de mortalidad.-Es un indice de mortalidad correspondiente a un grupo de la población, seleccionado por edad, sexo - ambas caracteristicas. Generalmente se expresa por cada l,000 habitantes del grupo seleccionado y se refiere a un año de tiempo.

Los coeficientes específicos de mortalidad tienen un elevado significado en la estadistica demográfica, pues toman en cuenta la influencia decisiva que tiene el factor edad sobre la mortalidad, y proporcionan una medida de las probabilidades de ocurrir, en un tiempo dado, cierto número de defunciones en determinada clase de habitantes.

Cuando se estudia, comparativamente, el grado de mortalidad en dos poblaciones diferentes es conveniente realizar tal estudio por medio de la determinación de los coeficientes especificos para los diversos grupos de habitantes. Estos grupos, con excepción de aquel que corresponde al primer año de vida, se forman con sujetos cuya edad difiere en 5 o 10 años. Aunque es costumbre calcular los coeficientes específicos de mortalidad solamente en relación con la edad o sexo, o ambos factores, la especificidad puede también incluír el concepto de raza, ocupación, clase de! vivienda (urbana o rural), etc., pues todos estos factores tienen también influencia sobre el grado de mortalidad. Puede, por ejemplo, en el estudio de una población, compararse el grado de mortalidad en habitantes de 10 a 19 años de edad, separados en dos grupos: (a) -
sujetos de raza blanca, y (b)-sujetos de raza india; o en grupos de habitantes de 20 a 25 años de edad. clasificados según su ocupación.

El siguiente ejemplo ilustra el cálculo del coeficiente específico de mortal:dad correspondiente a un grupo de habitantes de determinada edad:

Ejemplo: En el año 1940 rcurrieron en la ciudad de Lima 804 defunciones en habitantes de 20 a 29 años de cdad. Según los datos censalés, el número total de habitantes de esa edad alcanzó en Lima, en cl inismo año, la cifra de 113,501.

Luego, el coeficiente específico de mortalidad, por cada 1,000 habitantes de 20 a 29 años de edad, fué, en la ciudad de Lima y en el año 1940:
$1000 \times 804$
$113501=7.08 \% / 00$

Es decir, que de cada 1,000 habitantes de 20 a 29 años de edaf, apro. ximadamente 7 fallecieron en la ciudad de Lima, en el año 1940.

El coeficiente específico de mortalidad alcanza su valor máximo en el primer año de vida; en seguida desciende, bruscamente, presentando sus valores más bajos entre los 10 y 19 años de edad, ascendiendo después, progresivamente, durante el periodo adulto y de ancianidad. El siguiente ejemplo ilustra estas fluctuaciones, e indica la marcada influencia que tiene el factor edad sobre el grado de mortalidad.

Ejemplo: En el cuadro 48 están consignados los datos referentes a la dis. tribución de la población de Lima por grupos de edades en el año 1940. Igualmente está incluído el número de defunciones ocurridas durante cse año en cada uno de los grupos.
Los respectivos coeficientes especificos de mortalidad han sido calculados utilizando los datos anteriores, y están dados en la última columna.

La mortalidad, elevada para el primer año de vida, desciende, hasta alcanzar su nivel más bajo en la edad 10 - 14 años; sube, en seguida alcanzando, nuevamente, un valor elevado sobre los 60 años de edad.

## CUADRO 48

POBLACION X DEFLNCIONES DISTRIBUIDAS SEGUN EDAD
CIUDAD DE LIMA - AÑO 1940

| $\begin{aligned} & \text { Edad } \\ & (\text { años }) \end{aligned}$ | $\begin{aligned} & \text { Nu de hatsi- } \\ & \text { tantes } \end{aligned}$ | $\begin{aligned} & N^{U} \text { de de- } \\ & \text { funciones } \end{aligned}$ | Coeficiente especifico de mortalidad por cada 1,000 habitantes |
| :---: | :---: | :---: | :---: |
| Menos de 1 | 13,605 | 2,083 | 153.11 |
| $1-9$ | 97,828 | 1,749 | 17.88 |
| 10-14 | 58,274 | 249 | 4.27 |
| 15-19 | 63,295 | 411 | 6.49 |
| 20-29 | 113,501 | 804 | 7.08 |
| $30-39$ | 75,296 | 544 | 7.22 |
| $40-49$ | 47,779 | 559 | 11.70 |
| $50-59$ | 27,779 | 606 | 21.82 |
| 60 y más | 23,171 | 1,464 | 63.18 |

El siguiente ejemplo se refiere al cálculo del coeficiente específico de mortalidad en dos grupos de habitantes, de igual edad pero de diferente sexo:

Ejemplo: En el aña 1940 ocurrieron en la ciudad de Lima 373 defunciones en hombres de 20 a $\%$ años de edad, y 431 defunciones en mujeres de Ia misma edad.
El múmero de habita:les correspondiente a estos grupos de edad fué: Hombres: 58,819; Mujeres: 54,682.

Lucgo, el coeficiente espcifico de, mortalidad por cada 1,000 habitantes de 20 a 29 años de edad fué:

$$
\text { En hombres: } \frac{1000 \times 373}{58819}=6.340 / 00
$$

$$
\text { En mujeres: } \frac{1000 \times 431}{54682}=7.880 / 00
$$

El coeficiente específico de mortalidad puede referirse a deterninada enfermedad, tal como está jlustrado en el siguiente ejemplo:

Ejemplo: En el año 1940 ocurrieron en la ciudad de Lima 435 defunciones por Tuberculosis en habitantes de 20 a 29 años de edad.
En dicho año, el número total de habitantes de esa edad, fué 113,501 en la ciudad de Lima.

Luego, el coeficiente específico de mortalidad por Tuberculosis, en la ciudad de Lima, por cada 1,000 habitantes de 20 a 29 años de sdad, fué en el año 1940:

$$
\frac{1000 \times 435}{113501}=3.83 \%
$$

El cálculo de la relación entre el número de defunciones ocurri. das en una edad dada y el número total de defunciones, en todas las edades, proporciona información importante en el estudio de las caracteristicas de la mortalidad en una poblacion, especiaimente cuando se comparan las observaciones hechas cada cierto tiempo. La proporción se expresa generalmente en porcentaje y en referencia a un año de tiempo.

Ejemplo: En el año 1940 ocurrieron en la ciudad de Lima 1,749 defunciones en babitantes de la a años de edad. El número total de defunciones, en todas las edades, alcanzó en ese año, en la ciudad de Lima, la cifra de 8,517 .

Luego:
$\frac{100 \times 1749}{8517}=20.5 \%$

Es decir, que de cada 100 defunciones aproximadamente 21 ocurrieron en habitantes de la a 9 años de edad.

Coeficiente de mortalidad infantil.--Se calcula relacionando el número de defunciones ocurridas en niños menores de laño de edad con el número de nacimientos. Los nacidos muertos no son considerados en el cálculo. Generalmente se refiere a un año de tiempo y se expresa por cada 1,000 nacimientos (vivos).

El cálculo del coeficiente de mortalidad infantil se hace en referencia al número de nacimientos, y no al número de habitantes menores de 1 año, por ser difícil la estimación de la población de esta edad. En cambio, el número de nacimientos indica, con aproximación, el número de niños expuestos a morir durante el próximo año de vida. Esta última suposición no es estrictamente cierta, pues si se calcula el coeficiente de mortalidad infantil en un año dado, por ejemplo en 1940, resulta que los niños nacidos en Noviembre o Diciembre sólo están expuestos a morir durante unas pocas semanas de ese año. Sin embargo, como este es un error constante, que se repite de año en año, no influencia
significativamente el estudio comparativo del coeficiente obtenido en años sucesjos o separados.

El coeficiente de morialidad infantil es un indice sanitario importante.

El adelanto en la salubridad de una población está generalmente acompañado por una disminución en este coeficiente.

El cáiculo del soeficicrte de mortalidad infantil está ilustrado con el siguiente ejemplo:

Ejemplo: En el año 1940 ocurrieron en la ciudad de Lima, 2,083 defunciones en niños menores a l año de edad. En el mismo año tuvieron lugar 15,328 nacimientus (vivos).

Luego, el coeficiente de mortalidad infantil, por cada 1,000 nacimientos, fué:

$$
\frac{1000 \times 2083}{1.5328}=13.59 \% / 00
$$

Es decir, que de cada 1.000 niños nacidos, ap:oximadamente 14 murieron durante el primer año de vida.

En el Cuadro 49 etán consignados el número de nacimientos y el número de defunciones de niños menores a $l$ año de edad, ocurridos en la ciudad de Lima en los años comprendidos en el periodo 1936-1940. Los respectivos coaficientes de mortalidad infantil están dados en la última colımna.

CLADRO 49

MORTALJDAD INFAVTIL. CIUDAD DE LIMA 1936-1940

| Año | N0 de nacimientos | $\mathrm{N}^{\mathrm{V}}$ de delunciones (niños nuenores de l año) | Coeficiente de mortalidad infantil (por cada 1,000 nacimientos) |
| :---: | :---: | :---: | :---: |
| 1936 | 9,653 | 1,550 | 16.01 |
| 1937 | 10,414 | 1,462 | 14.04 |
| 1938 | 10,858 | 1,298 | 11.87 |
| 1939 | 11,642 | 1,246 | 10.70 |
| 1940 | 15.328 | 2,083 | 13.59 |

La mortalidad infantil puede también ser apreciada en relación al número total de defunciones ocurridas en todas las edades durante el año de observación. Esta proporción es generalmente expresada en porcentaje.

Ejemplo: En el año 1940 ocurrieron en Lima 8,517 defunciones en toda la población. De este número 2,083 correspondieron a niños menores de 1 año de edad.

Luego:

$$
\frac{100 \times 2083}{8517 \ldots}=24.4 \%
$$

Es decir, que de cada 100 defunciones ocurridas en la ciudad de Lima en 1940 aproximadamente 24 correspondicron a niños menores a 1 año de edad.

Cooficiente de mortinatalidad (o natimortalidad). -Los nacidos muertos no son incluídos en el cálculo de los coeficientes de mortalidad y natalidad. Son considerados aparte, en el Llamado coeficiente de mortinatalidad (o natimortalidad), que, expresado en porcentaje, relaciona el número de nacidos muertos con el número total de nacimientos en un periodo dado de tiempo, el que generalmente es de un año.

Ejemplo: En el año 1940 se registraron en la ciudad de Lima 15,328 nacimientos (vivos) y 628 nacidos muertos.

Relacionando el número de nacidos muertos con el número total de nacimientos ( $15,328+628=15,956$ ) tenemos:

$$
\frac{100 \times 628}{15956}=3.9 \%
$$

Es decir, que de cada 100 nacimientos ocurridos en la ciudad de Lima en el año 1940 aproximadamente 4 correspondieron a nacidos muertos.

Coeficiente de morbimortalidad.- Este coeficiente indica la relación entre el número de defunciones y el número total de enfermos. Se refiere habitualmente a un año de tiempo y se expresa por cada 100 o 1,000 enfermos. Es difícil, si no imposible, conocer el número total de enfermos en una población, ya que la mayoria de las enfermedades no
se registran obligatoriamente; por consiguiente este coeficiente es generalmente calculado en determinados grupos de sujetos enfermos, tales como los hospitalizados, en quienes tal apreciación es posible. El coeficiente de morbimortalidad hospitalario es más alto que el corresponde a la población total, pues los enfermos hospitalizados adolescen por lo general, de enfermedad de cierta gravedad.

Ejemplo: En el año 1935 se asistieron en el Hospital Dos de Mayo, de la ciudad de Lima, un total de 10,078 enfermos. En el mismo año ocurrieron en ese Hospital un total de 1,263 defunciones.

Luego, el cueficiente de morbimortalidad, por cada l,000 enfermos, fué:


Es decir, que de cada 1,000 enfermos hospitalizados en el Hospital Dos de Mayo, en 1935, fallecieron 125, aproximadamente.

El coeficiente de morbimortalidad puede calcularse en referencia a una enfermedad determinada, relacionando el número de defunciones: a consecuencia de esta enfermedad con el número total de enfermos (por todas las causas).

Ejemplo: En el año 1935 ocurrieron 513 defunciones por Tuberculosis en el Hospital Dos de Mayo de la ciudad de Lima. En el mismo año se asistieron en este Hospital un total de 10,078 enfermos.

Luego, el cocficiente de morbimortalidad hospitalario por Tuberculosis, por cada l,000 enfermos, fué:


Es decir, que de cada 1,000 enfermos asistidos en el Hospital Dos de Mayo, en el año 1935, aproximadamente 51 fallecieron a consecuencia de Tuberculosis.

Coeficiente de letalidad-Este coeficiente relaciona el número de detunciones a causa de una enfermedad determinada con el número total de enfermos a consecuencia de la misma enfermedad. Se refiere, por lo general: a un año de tiempo y se expresa en porcentaje.

Si se desea, este coeficiente puede hacerse específico, agrupando
los casos según sus características de edad,, sexo raza, ocupación, localidad de la vivienda (urbana o rural), etc.

El coeficiente de letalidad, teóricamente de importante significado, y que interesa particularmente al clínico, no puede calcularse satisfactoriamente en una población total, por carecerse de registros que indiquen el número de casos que ocurren por tal o cuaì enfermedad. Aún, tratándose de algunas enfermedades infecto-contagiosas, cuyo registro es obligatorio, no se cumple adecuadamente esta prescripción. Por esta razón el coeficiente de letalidad es generalmente aplicado a estudios estadisticos hospitalarios, o en relación a determinadas enfermedades que pueden ocurrir en grupos de individuos sujetos a un control especial (cuarteles, colegios, etc.).

Los coeficientes de letalidad hospitalarios no reflejan satisfactoriamente la situación en la población total. Los enfermos hospitalizados son sujetos en quienes la enfermedad ha adquirido por lo general, cierta gravedad. Además, el tratamiento hospitalario puede influenciar, significativamente, la evolución de la enfermedad, en contraste con lo que ocurre en el enfermo tratado en su hogar o en condiciones desfavorables.

El siguiente ejemplo ilustra el cálculo del coeficiente de letalidad:
Ejemplo: En el año 1935 se așistieron en el Hospital Dos de Mayo de la ciudad de Lima un total de 1,455 enfermos de Tuberculosis; de este número, 513 fallecieron.

Luego, el coeficiente de letalidad (hospitalario) para esta enfermedad, fué:
$\frac{100 \times 513}{1455}=35.3 \%$
Es decir, que de cada 100 enfermos hospitalizados por Tuberculosis en el año 1935, en el Hospital Dos de Mayo, fallecieron 35, aproximadamente.

Cocficiente general de mortalidad corregido o ajustado

Hemos visto, en parrafos anteriores, que el factor edad influencia, notablemente, el índice de mortalidad. Este hecho hace conveniente que en la comparación de coeficientes generales de mortalidad, correspondientes a dos o más localidades, se tome en cuenta la distribu-
ción de las respectivas poblaciones por edades. Puede, por ejemplo, una localidad A tener un coeficiente general de mortalidad más clevado que otra localidad B, revelando, aparentemente, condiciones sanitarias más favorables en B. Sin embargo, un estudio de la distribución en grupos de edades de las respectivas poblaciones muestra que la población A tiene una proporcion mayor de habitantes de edad avanzada, Io que naturalmente influencia en elevar su coeficiente general de mortalidad. Ambas localidades no son, pues, estrictamente comparables desde este punto de vista.

Por estas razones, es conveniente, en el estudio comparativo de coeficientes generales de mortalidad correspondients a dos o más localidades, corregir o ajustar, estos coeficientes en relación a la distribución por edad de las respectivas poblaciones. Una de las maneras de efectuar esta corrección, o ajustamiento, es relacionar los coeficientes especificos de mortalidad (coeficientes correspondientes a diferentes grupos de habitantes separados según su edad) de las localidades comparadas a una población tipo o standard, la que puede ser la correspondiente al pais entero, y en seguida calcular, con los datos obtenidos, los respectivos coeficientes generales de mortalidad. Estos coeficientes expresan; entonces, ei indice de mortalidad que correspondería a dichas localidades en el supuesto que ambas poblaciones tengan una idéntica distribución en edad. Se elimina, asi, la influencia que pueda tener en los coeficientes generales de mortalidad una distribución desigual en edad de las poblaciones.

Ilustraremos con un ejemplo los procedimientos que se emplean en la corrección, o ajustamiento, de coeficientes generales de mortalidad.

Ejemplo: Se trata de comparar los coeficientes generales de mortalidad obtenidos en las ciudades de Lima y Arequipa on el año 1940.

En Lima, con una población de 520,528 habitantes, ncurrieron 8,469 defunciones en 1940.
Luego, el coeficiente general de mortalidad, por cada 1,000 habitantes, fué:
$1000 \times 8469$

$$
520528
$$

En Arequipa, con una población de 79,185 habitantes, ocurrieron 1,063 defunciones en el mismo año.
Luego, el coeficiente general de mortalidad, por cada 1,000 habitantes, fué:


Aparentemente, la mortalidad general es pues menor en Arequipa que en Lima ( $16.27-13.42=2.85 \% / o o$ ). Sin embargo, para una comparación más precisa, vamos a corregir, a ajustar, dichos coeficientes en relación a la distribución por edades de las respectivas poblaciones.
Para esta correcrión, o ajustamiento, se procede de la manera siguiente:
(a) --En primer lagar, es necesarin tomar en cuenta, la distribución de las dos poblaciones por grupos de edades, y el número de defunciones ocurridas en cada grupo, en el año 1940.

El Cuadro 50 consigna dichos datos, obtenidos en los estudios censales y estadisticas municipales correspondientes a dicho año.

## CUADRO 50

## POBLACION Y DEFUNCIONES DISTRIBUIDAS SEGUN EDAD.

## CIUDADES DE LIMA Y AREQUIPA - AÑO 1940

|  | Lima |  | Arequipa |  |
| :---: | :---: | :---: | :---: | :---: |
| Edad (años) | Número de <br> habitantes | Número de <br> defunciones | Número de <br> habitantes | Número de <br> defunciones |
|  |  |  |  |  |
|  |  |  |  | 236 |
| Menos de 1 | 13,605 | 2,083 | 2,550 | 265 |
| $1-9$ | 97,828 | 1,749 | 18,235 | 29 |
| $10-14$ | 58,274 | 249 | 10,128 | 2,463 |
| $15-19$ | 63,295 | 411 | 9,463 |  |
| $20-29$ | 113,501 | 804 | 14,673 | 38 |
| $30-39$ | 75,296 | 544 | 8,924 | 99 |
| $40-49$ | 47.779 | 559 | 6,351 | 50 |
| $50-59$ | 27,779 | 606 | 3,928 | 50 |
| 60 y más | 23,171 | 1,464 | 4,933 | 47 |

(b) - En seguida, con los datos del Cuadro 50 , y de acuerdo con los procedimientos ya descritos (Coeficiente especifico de mortalidad) se calcutan les eneficientes especificos de mortalidad correspondientes a cada uno de los grtupos de habitantes clasificados según edad.
Los resultados obtenidos están daclos en el Cuadro 51.

## CUADRO 51

CIUDADES DE LIMA Y AREQUIPA - AÑO 1940.

|  | Coeficiente específico de morialidad por <br> cada 1,000 <br> habitantes |  |
| :---: | :---: | :---: |
| Edad (años) | Lima | Arequipa |
| Menos de l | 153.11 | 92.55 |
| $1-9$ | 17.88 | 14.53 |
| $10-14$ | 4.27 | 2.86 |
| $15-19$ | 6.49 | 4.02 |
| $20-29$ | 7.08 | 6.75 |
| $30-39$ | 7.22 | 5.60 |
| $40-49$ | 11.70 | 7.67 |
| $50-59$ | 21.82 | 11.97 |
| 60 y más | 63.18 | 50.48 |

(c) -Se toma, en seguida, como referencia, la distribución pn grupos de edades de una población tipo o standard de $1,000,000$ de habitantes. Esta población puede ser la que corresponde al país entero.
En el Cuadro 52 está consignada la distribución por edlades de 1.000 .000 de habitantes del Perí. *

## CUADRO 52

DISTRIBUCION POR EDAD DE $1,000,000$ DE HABITANTES DEL PERU

| Edad (años) | Núnero de habitantes |
| :---: | :---: |
|  |  |
| Menos de I | 35,366 |
| $1-9$ | 268,225 |
| $10-14$ | 117,318 |
| $15-19$ | 94,885 |
| $20-29$ | 163,133 |
| $30-39$ | 122,149 |
| $40-49$ | 83,768 |
| $50-59$ | 51,277 |
| 60 y más | 63,879 |

* Para este cálculo se ha utilizado los datos contenidos en el Cuadro No 7 del Censo Nacional de Población y Ocupación de 1940. Vol. I (pagina 67). República del Perú, Dirección Nacional de Estadística, A. Arca Parró, Director. Lima, 1940, que corresponde a la población total del Perú distribuida por grupos de edades.
Asi, eliminando el número de habitantes con edad no declarada, tenemos que en una población total de 6.205 .997 hay 219,483 habitantes menores de 1 año de edad. Luego en $1.000,000$ hay:

$$
\frac{1000000 \times 219483}{6205997}=35666
$$

De la misma manera se ha calculado el número de habitantes por cada $1.000,000$ que corresponde a los otros grupos de edad.
(d) - En seguida, los coeficientes especificos de mortalidad, obtenidos en las ciudades de Lima y Arequipa (Cuadro 51) se aplican a los respectivos grupos de edades de la población tipo o standard (Cuadro 52). para obtener el número de fallecimientos que ocurriria en esta población si sus coeficientes especificos de mortalidad fueran: (I) - iguales a los hallados en la ciudad de Lima y (2) iguales a los hallados en la ciudad de Arequipa.

Los calculos correspondientes están dados en el Cuadro 53.

## CUADRO 53

| Edad laños) | Lima | Alequipa |
| :---: | :---: | :---: |
| Menus de l | $153.11 \times 35.366=5414.9$ | $92.55 \times 35.366=3273.1$ |
| $1-9$ | $17.88 \times 268.225=4795.9$ | $14.53 \times 268.225=3997.3$ |
| $10-14$ | $4.27 \times 117.318=500.9$ | $2.86 \times 117.318=325.5$ |
| 15-19 | $6.49 \times 94.885 \sim 615.8$ | $4.02 \times 94.885=381.4$ |
| 20-29 | $7.08 \times 163.133=1155.0$ | $6.75 \times 161.133=1101.1$ |
| $30-39$ | $7.22 \times 122.149=881.9$ | $5.60 \times 122.149=684.0$ |
| $40-49$ | $11.70 \times 83.768=980.1$ | $7.87 \times 83.768=6.59 .3$ |
| $50-59$ | $21.82 \times 51.277=1118.9$ | $11.97 \times 51.277=613.8$ |
| 60 y más | $63.18 \times 63.879=4035.9$ | $50.48 \times 63.879=3224.6$ |
|  | 19499.3 | 14170.1 |

NOTA-El número de habitantes en cada grupo de edad (que ha sido tomado del Cuadro 52) ha sido previamente dividido entre 1,000, pues los coeficientes específicos de mortalidad de las ciudades de Lima y Arequipa corresponden a 1,000 habitantes.
(e) -Finalmente, los coeficientes generales de mortalidad, corregidos, o ajustaclos, por cada 1,0000 leabitantes, para las ciudades de Lima y Arequipa, son:
$1000 \times 19499$
Lima: $\quad \frac{1000000}{10.50}$ O/vo.
Areq̧uipa: $\frac{1000 \times 14170}{1000000}=14.17 \% / 00$
Interpretacion: El estadio comparativg de los cocficientes generales de mortalidad, por cada 1,000 habitantes, correspondientes a las ciudades de Lima y Areguipa, en el año 1940 ,proporciona los siguientes datos:


Utilizando los procedimientos que acaban de ser descritos dichos coeficientes han sido corregidos, o ajustados, obteniéndos 1 rs sig: ientes datos:

> Coeficiente seneral de mortalidnd, corregido ajustado, por cada
> l,000 habitantes

| Lima | $19.50 \% / 00$ |
| :--- | :--- |
| Areruipa: | $14.17 \% / 00$ |
| $\quad$ Diferencia: | $5.33 \% / 00$ |
| Proporción: | 19.50 |
|  | $\underline{14.17}=1.38$ |

En resumen, la comparación directa de los coeficientes generales de mortalidad correspontlientes a las ciudades de Lima y Arequipa, en cl año 1940, revela un indice de mortalidad más bajo en Arecruipa.
Si ambas poblaciones tuvieran una identica distribución por edad de sus habitantes, se acentuaria la diferencia; que a favor de Arequipa, tiene el indice de mortalidad.

## B- NATALIDAD-

Coeficiente general de natalidad.-Indica la relación entre el número de nacimientos (excluyendo los nacidos muertos) y el número total de habitantes. Generalmente se refiere a un año de tiempo y se expresa por cada l,000 habitantes.

Este coeficiente no proporciona ina medida exacta de la capacidad reproductiva de una polbación, puesto que en su cálculo están incluídos habitantes en quienes no existe tal capacidad. Debido a la influencia que sobre su valor tiene la distribución por edad y sexo de la población observada, este coeficiente debe usarse con cierta reserva en estudios comparativos de dos o más poblaciones, que pueden ser diferentes en lo que respecta a tales características de sus habitantes.

En cambio, como una población determinada canbia muy lentamente su composición, en referencia a la edad y sexo, ei coeficiente general de natalidad puede indicar con bastante fidelidad, cuando es calculado En años sucesivos, la evolución de la naialidad en una misma poibación. El cálculo de este coeficiente está ilustrado con el siguiente ejemplo:

Ejcmplo: Según el censo realizado en à año 19.t0, la población del Perá fué calculada en ese año en $6.217,381$ habitantes. En ese mismo año ocurtierun en el pais un total de 167,290 nacimientos.

Lucgo, el cueficiente gencral de natalidad, por cada l,900 habitantes, sue:

$$
\frac{1000 \times 167290}{6217381}=26.910,00
$$

Es decir, que por cada 1,000 habitantes en el Perú, en el año 1940 , ocurrieron, aproximadamente, 27 nacimientos.

El coeficiente generai de natalidad. por cada 1.000 habitantes, puede también calcularse para un período de varios años, como se puede apreciar en el siguiente ejemplo:

Ejemplo: Los datus consignados an et Cuadre fot comespundrn a la puhlacion total $y$ al numen de nacimientos ocurridos en ef Perú, durante los años crimprendidos en el períuto 1931-1940.

## CUADRO 54

Nlimero de: habitantes y Nacimentos en el peru. PERIOIOO 1931 - 1940

| Año | Número de habitantes | Numero de nacimientos |
| :---: | :---: | :---: |
| 1931 | $5.277,523$ | 165,074 |
| 1932 | $5.371,499$ | 166,636 |
| 1933 | $5.467,968$ | 168,962 |
| 1934 | $5.567,004$ | 174,731 |
| 1935 | $5,668,641$ | 179,863 |
| 1936 | $5.772,923$ | 132,981 |
| 1937 | $5.879,894$ | 187,134 |
| 1938 | $5.989,598$ | 187,996 |
| 1939 | $6.102,079$ | 177,664 |
| 1940 | $6.217,381$ | 167,290 |
|  | - | $1.758,331$ |

El coeficiente general de natalidad, por cada 1,000 habitantes, correspondiente a pste período de 10 años, es:

$$
\frac{1000 \times 1758331}{57314500}=30.680,00
$$

Coeficiente especifico (o natural) de natalidad.-Se refiere al número de nacimientos (excluyendo nacidos muertos) ocurridos durante un periodo dado, que es generalmente de un año, en relación con d número de habitantes mujeres entre 15 y 44 años de edad, período en el que se les considera aptas para ser madres." Este coeficiente se expresa por cada 100 o 1,000 mujeres.

Ejemplo: En el año 1940 ocurrieron en él Perú 167.290 nacimientos 'excluyendo nacidos muertos). El número de habitanies mujeres, entre 15 y 44 años de edad, fué, en ese año: 1.334,065.

Luego, el coeficiente especifico o natural de natalidad, per cada 1,000 mujeres, fué:

$$
\frac{1000 \times 167290}{1334065}
$$

Es decir, por cyda 1,000 mujeres, aptak para ser madres. ocurrieron en el Perú, en el año 1940, aproximadamente 125 nacimientos.

Con frecuencia se interpreta el coeficiente especifico (o natural) de natalidad como un índice de fertiiidad o fecurndidad de una joblación. Sin embargo, este criterio es más veraz si se deriva de la relación entre el número de nacimientos legítimos y el número de mujeres casadas, cuya edad las hace aptas para ser madres (entre 15 y 44 años).

Eiemplo: En el año 1935 ocurrieron en Lima 4,702 nacimientos legítimos. Fn dicho año el número de habitantes mujeres, casadas de 15 a 44 años de edad, iué de 23,756.

Luego:

$$
\frac{1000 \times 4702}{28756}=163.510 \% 00
$$

[^26]Es decir, que de cada 1,000 mujeres casadas, en edad de poder ser inadres, aproximadamente 164 contribuyeron a la natalidad en 1935, en la ciudad de Lima, representando esta cifra un indice de fertilidad.

Este índice de fertilidad puede calcularse en diferentes edades, si se conoce el número de mujeres casadas en los diferentes períodos de cdad, y la edad de las madres al tiempo del nacimiento.

Ejemplo*: El Cuadro 55 contiene el número de mujeres casadas, divididas en diferentes grupos de edad, y el número de estas.mujeres que tuvieron un hijo, en el año 191l, en Australia.

En la última columna se ha calculado el coeficiente específico de natalidad ( o fertilidad en este caso), por cada 1,000 mujeres, en los diferentes grupos de edad.

El Cuadro 55 muestra que el indice de fertilidad en mujeres casadas desciende a medida que su edad se hace mayor.

CUADRO 55
DATOS CORRESPONDIENTES A AUSTRALIA. AÑO 1911

| $\begin{gathered} \text { Elad } \\ (\text { años }) \end{gathered}$ | Número de mujeres casadas | Número de mujeres casadas tuvieron un hijo durante el año | Coeficiente espe. cifico de natalidad (o fertili. dad) par cada 1,000 mujeres |
| :---: | :---: | :---: | :---: |
| 19 o menos | 8,716 | 4,146 | 476 |
| 20-24 | 65,956 | 25,957 | 394 |
| 25-29 | 110,591 | 33,817 | 306 |
| $30-34$ | 113,310 | 25,682 | 227 |
| $35-39$ | 105,550 | 16,839 | 160 |
| 40-44 | 95,573 | 6,763 | 71 |
| 45 y más | 82,933 | 713 | 9 |

## C- MORBOSIDAD-

Coeficiente general de morbosidad.-Relaciona el número de enfermos (por todas las causas) con el número total de habitantes, en un tiempo dado, el que es generalmente de un año. Se expresa por cada 1,000 habitantes, aunque a veces es también expresado por cada 10,000 o

[^27]100,000 habitantes. Es dificil, sino imposible, calsular este coeficiente en referencia a la población de un pais o ciudad, por la falta de datos demográficos que reg:stren la incidencia de iodas las enfermedades. Por consiguiente, los coeficientes de morbosidad se refieren, casi siempre, a pequeños núcleos de habitantes, tales como obreros de un centro industrial, escolares, miembros de institutos armados, etc., que son individuos que pueden estar sujetos a un control médico más o menos ríg.do. Basándose en estudios estadísticos relacionados con el Seguro Sucial, establecido en distintos paises, Schruefer * señala que de la población asegurada enferman arualmento un 35 a $40 \%$; de estos una quinta parte, o sea más o menos un $7 \%$ de la población asegurada, requiere tratamiento hospitalario, lo que significa la necesidad de 4 a 6 camas por cada 1,000 habitantes en regiones urbanas y 3 camas por cada 1,000 habitantes en zonas rurales.

Los coeficientes de morbosidad iienen una destacada importancia desde un punto de vista sanitario, pues los coeficientes de mortalidad, que cuentan con un registro demográfico que permite su caiculo más o menos preciso, no siempre reflejan adecuadamente los resultados obtenidos en actividades sanitarias o la necesidad de su desarroilo. Muchas enfermedades, de evidente significado sanitario, tienen un índice bajo de mortalidad.

El estudio comparativo de coeficientes generales de morbosidad, deteminados en diversos núcleos de sujetos, debe tomar en cuenta la edad, sexo, raza, ocupación, vivienda, caracteristicas ambientales, etc., en cada núcleo, pues todos estos factores influyen marcadamente en tal coeficiente.

El ejemplo que sigue se refiere al cálculo del coeficiente general de morbosidad en un grupo seieccionado de sujetos.

Ejemplo: En el año 1943 se registraron 406 enfermos, por diversas causas, en un cemtro industrial constituido por 1,125 obreros.

Luego, el coefjciente general de morbosidad, por cada 1,000 individuos obreios de este centro, fué:

$$
1000 \times 406=360.890 / 00
$$

1125
Es decir, que de cada 1.000 obreros de este centro industrial, enfermaron aproximadamente 361 en diclıo año.

[^28]El coeficiente general de morbosidad puede referirse al número de enfermos por una causa determinada. Su cálculo se hace, casi siempre, Gi giujos pequeños de sujetos, por la falta de datos demográficos que registren la incidencia de enfermedades en la población de un país o ciudad. Aún en el caso de ciertas enfermedades infecto-contagiosas, cuyo begistro es obligatorio, las disposiciones legales no se cumplen satisfactoriamente.

Ejemplo: En el año 1939 se asistieron en el Hospitai Dos de Mayo de la cindad de Lima un total de 9,375 sujetos. De este numero, 122 correspondieron a Fiebre Tifoidea.

Luego, el cofficiente general de morbosidad por Fiebre Tifoidea, por 1,000 asistidos en el Hospital Dos de Mayo, en el año 1939, fué:

$$
\frac{1000 \times 122}{9375} \cong 13.010_{7} 00
$$

Es decir, que de cada 1,000 asistidus en el Huspital Dos de Mayo, en 1935, aproximadamente 13 lo fueron debido a Fiehre Tifoidea.

Coeficieme especifico de morbosidad.-Indica la relación entre el múmero de enfermos por todas las causas, o por una causa determinada, en un grupo de habitantes seleccionados por edad, sexu, o ambas características. Se refiere generalmente a un año de tiempo y se expresa por cada $1,000,10,000$ o 100,000 habitantes.

Ejemplo*: En el año 1928 ocurrieron en California 73 casos de Poinomielitis ell niños de lataños de edad. El número de habitanter de esa edad era, en dicho estado $y$ en el mismo año: 292,000.

Luegu, el coeficiente específico de morbosidad por Poliomielitis, por cada 100,0000 niños de l a t años de edad, fué:


Es decir, que por cada 100,000 niños de 1 a 4 años de ellad, ocurrieron 25 casos de Poliomielitis en California, en el año 1928.

[^29]Puede ser interesante, en determinado caso, aumentar aún más la especificidad del coeliciente de morbosidad, calculándolo en grupos de sujetos dividjdos no solamente según edad y sexo, sino también en referencia a su raza, ocupación, lugar de residencia (urbana o rural), etc.

## D- CRECIMIENTO DE UNA POBLACION-

Crecimiento vegeikivo.-El crecimiento vegetativo de una población se aprecia relacionando el múmero de nacimientos con el número de defunciones o:urridos durante un periodo dado, que puede ser uno o varios años.

Si se resta el número de defunciones del número de nacimientos, en el período considerado, el resultado expresa el erecimiento vegetativo en cifras absolutas. Si se resta el coeficiente general de mortalidad del coeficiente general de natalidad, ambos expresados por sada 1,000 habitantes, el resultado indica el crecimiento vegetativo en cifras relativas, u sea por cada 1,000 habitantes.

Los siguientes ejemplos ilustran los cálculos correspondientes.
Ejemplo: En el año 1938 ocurrieron en el Perú 187,996 nacimientos; en el mismo añu se registraton 95,81 ; defunciones.
lucgo, el crecianicito vegefativo, en cifras absolutas, fué en ese año:

$$
187996-95817=92179 \text { habitantes }
$$

En el año 1938, en el Perú, el roeficiente general de natalidad y at coeficiemte general de mortalidad, ambos expresados por cada l,000 habitantes. fueron, respectivamente: 31.39 no y 16.00 o, wo.

Luego. al crecimiento vegetativo, por casa 1,000 habitantes, fué:

$$
31.39-16.00=15.39 \% u
$$

Es decir, que por cada 1,000 habitantes del Perú, an el año 1938, la población anmenté aproximadamente 15 habitantes.

En el Cadro 56 essán consignadas las cifras de crecimiento vegetativo, absoluto y relativo, de la población del Perá durante el periodo 19311940.

## CUADRO 56

REPUBLICA DEL PERU. PERIODO 1931-1940.

| Año | Nacimientos |  | Defunciones |  | Crecimiento vegetativo |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | $\begin{gathered} \text { Por } 1,000 \\ \text { hab. } \end{gathered}$ | Total | Por 1,000 hab. | Absoliuto | $\begin{gathered} \text { Por } 1,000 \\ \text { hab. } \end{gathered}$ |
| 1931 | 165,074 | 31.28 |  | 1329 |  | 17.99 |
| 1932 | 166,636 | 31.02 | 70,664 | 13.15 | 95,972 | 17.87 |
| 1933 | 168,962 | 30.90 | 70,472 | 12.89 | 98,490 | 18.01 |
| 1934 | 174,731 | 31.39 | 74,275 | 13.34 | 100,456 | 18.05 |
| 1935 | 179,363 | 31.73 | 80,876 | 14.27 | 98,937 | 17.46 |
| 1936 | 182,981 | 31.70 | 89,803 | 15.56 | 93,178 | 16.14 |
| 1937 | 187,134 | 31.83 | 94,374 | 16.05 | 92,760 | 15.78 |
| 1938 | 187,996 | 31.39 | 95,817 | 16.00 | 92,179 | 15.39 |
| 1939 | 177,664 | 29.11 | 90,579 | 14.84 | 87,085 | 14.27 |
| 1940 | 167,290 | 26.91 | 85,996 | 13.83 | 81,294 | 13.08 |

Indice vital.-Se obtiene dividiendo el número de nacimientos entre el número de defunciones ( $N / D$ ), ocurridos durante un período determinado, que puede ser uno o varios años.

Si el indice vital es igual a la población es estacionaria desde el punto de vista de crecimiento; si es menor a l la población decrece, y , finalmente, si el índice vital es mayor a 1 la población crece. *

Ejemplos En el año 1941 ocurrieron en el Perú 157,492 nacimientos y 91,367 defunciones.

Luego, el indice vital, correspondiente a dicho año, fué:

$$
\frac{157492}{91367}=1.72
$$

En el Cuadro 57 está incluído el índice vital que corresponde a la ciudad de Lima durante los años comprendidos en el período 1936-1940. Puede apreciarsc, en este cuadru, que en el año 1939 por cada defunción ocurrieron, aproximadamente, dos nacimientos.

[^30]
## CLAADRO 57 <br> CIUDAD DE LINA.

| Año | Número de naci- <br> mientos | Número de defun- <br> ciones | Indice vital |
| :---: | :---: | :---: | :---: |
| - | 9,653 | 6,073 | 1.59 |
| 1936 | 10,414 | 6,222 | 1.67 |
| 1937 | 10,858 | 6,065 | 1.79 |
| 1939 | 11,642 | 5,610 | 2.08 |
| 1940 | 15,328 | 8,517 | 1.80 |

El indice vital puede adquirir cierto carácter de especificidad si se le calcula separadamente para cada núcleo racial de habitantes de una población. Los resultados, así obtenidos, pueden ser interesantes desde un punto de vista comparativo.

Por ejemplo, si se quisiera establecer el índice vital correspondiente a los habitantes de raza blanca y a los habitantes de raza negra de una población, se aplicarian las siguientes fórmulas:

$$
\begin{aligned}
& \text { Indice vital on la aza blanca }=\frac{N^{0} \text { de nacidos de raza blanca }}{N^{0} \text { de muertos de raza blanca }} \\
& \text { Indice vital en la raza negra }=\frac{N^{0} \text { de nacidos de raza negra }}{N^{0} \text { de muertos de raza negra }}
\end{aligned}
$$

APENDICE A
logaritmos


## APENDICE B

Ejemplos para efectuar operaciones aritméticas de cantidades con signo diferente.

Suma-

$$
\begin{aligned}
& (-2)+(-4)=-6 \\
& (-2)+(+4)=+2 \\
& (+2)+(-4)=-2 \\
& (-2)+(+4)=-6
\end{aligned}
$$

Resta-
$(-2)-(--4)=+2$
$(-2)-(+4)=-6$
$(+2)-(-1)=-16$
$(+2)-(+4)=-2$
Multiplicación-
$(-2) \times(-4)=-13$
$(-2) \times(\div 4)=-3$
$(+2) \times(-4)=-3$
$(-4) \times(+4)=+3$
División-

$$
\frac{-4}{+2}=-2
$$

$-4$
$\overline{-2}=+2$
$+4$
$-\frac{}{-2}=-2$
$+4$
$+=+2$
$+2$
Resta y mulitiplicación-


## INDICE ALFABETICO

Abcisa, 189
Asimetría, medida de la, 147
Asimetría negativa, 147
Asimetría positiva, 147

Bio-estadistica, 274
coeficientes de, 274
Corficiente de asimetría, 148
cálculo del, 148
Coeficiente de correlación, 153
cálculo del, 155,159
diferencia entre la razón de
correlación y el, 172
significado del, 154
Coeficiente de correlación parcial, 176
cálculo del, 176
Coeficiente de variación, 131, 138
cálculo del, 134
definición dei, 132
representación gráfica del, 238
Correlación, cuadro de, 161
Correlación, parcial, 155, 176
Crecimiento vegetativo, 275, 298
Curva logaritmica, 249
cálculo de la, 261, 268
Curva parabólica, 249
cálculo de la 255,268

Desviación cuadrática media, 131
Desviación standard, 131, 138
cálculo de la, 134
definición de la, 131
Desviación í́pica, 131

Diagramas, 189
caracteríticas generales de los, 189
de barras horizontales, 192
de dispersión de datos individuales, 192, 235
de frecuencias acumuladas, 192, 206
diversas clases de, 191
en coordenadas angulares, 192, 208
en coordenadas con escala aritmética, 192, 239
en coordenadas con escala logarítmica o
cemi-logarítmica, 192, 222
pautas internacionales para la construcción
de, 190
polar, 192, 236
Difercncia, entre cceficientes de correlación, 184
entre desviaciones standard, 182,
entre medias, 180
entre porcentajes, 183
Diferencias, significado estadístico de las, 130
Ecuación de regresión, 1.54
cálculo de ìa: 175
representación gráfica de la, 246
Error probable, 134
cálculo del, 134.
significado del, 134
Error standard, 131
definición del, 134
del coeficiente de correlación, 159, 167
del coeficiente de correlacion parcial, 179
de la desviación standard, 137, 143
de la diferencia entre el coeficiente de
correlación y la razón de correlación: 173
de la media, 137, 143
de la mediana, 145
Escala aritmética, 223
Escala logarítmica, 222
construcción de la, 222
Grupo modal, 146
Grupos de frecuencia, 140

Histograma, 192, 195

Indice vital, 275, 299

Letalidad, coeficiente de, 275, 'z.
Línea de regresión, 154, 246
Línea recta, 249
cálculo de la, 252, 268
Logaritmos, tabla de, 301
Media aritmética, 131
cálculo de la, 134, 138
definición de la, 131
Mediana, 131
cálculo de la, 138
definición de la, 133
Modo, 131
cálculo del, 138
definición del, 133
Morbi-mortalidad, coeficiente de, 275, 285
Morbosidad, 275, 295
coeficiente específico de, 275, 297
coeficiente general de, 275,295
Mortalidad, 274, 275
coeficiente especifico de, 274, 230
coeficiente general de, 274, 275
coeficiente general ajustado o corregid
de, 275,287
Mortalidad infantil, coeficiente de, 274, 283
Morti-natalidad, coeficiente de, 274, 285

Natalidad, 275, 292
coeficiente especifico de, 275,294
coeficiente general de, 275; 292
Nati-mortalidad, coeficiente de, 285
Nomograma, 192
Ordenada, 189

Población, crecimiento de una, 275, 298

Poligono de frecuencia, 192, 202
Probabilidades, cálculo de, 185
Promedio, 131
cálculo del, 131
definición del, 131

Razón de correlación, 154
cálculo de la, 168
corrección de la, 171
diferencia entre el coeficiente de
correlación y la, 172
significado de la, 154, 172
Relación directa, 153
Relación inversa, 153
Relación lineal, 153
Relación, medida de la, 153
Relación no lineal, 153, 154
Representación gráfica, 189

Serie asimétrica, 147
Scrie simétrica: 147


[^0]:    * Algunos autores usan, con la mismos lines y de idéntica manera, el llamado ERROR PROBABLE (E, P.), en lugar del error standard. El error probable equivale al error standard $\times 0.6745$.
    Para que una constante, o diferencia, tenga significado estadistico debe ser tres o mas veces major que su error probable.

[^1]:    * El número de 20 datos no es un limite estricto para usar los métodos descritos en esta sección; de igual manera puede procederse con 25, 30, o aún más datos, pero en estos casos es prelerible aplicar los métodos indicados en la siguiente secciòn (página 138).
    Con respecto al número minima de datos que pueden ser sometidos a un análisis estadistico no hay una indicación precisa, pero en términos generales puede señalarse como 6 o 8. El criterio final, a este respecto, debe ser dado por la relación que se encuentre entre las diversas constantes $y$ sus respectivos errores standard, que pueden ser elevados dado el corto número de datos analizados. Si el error standard $\times 2$ excede en valor a la constante que lo precede hay que concluír que esta ultima no tiene significado estadistico.

[^2]:    * El número de decimales que debe incluirse en los resultados hallados para las constantes depende de la unidad de medida a que se refieren estas constantes. Así, en nuestro ejemplo, las constantes se refieren a gramos de Hb por 100 cc. y esta determinación generalmente se expresa hasta el segundo decimal, o sea hasta el centigramo.

    En las operaciones que se emplean para obtener estas constantes (correspondientes a (b) en nuestro ejemplo) es costumbre calcular hasta el cuarto decimal. Para el coeficiente de variación solo es necesario incluir una cifra decimal en el resultado obtenido.
    Cuando la cifra que sigue a la última decimal que se desea incluir es mayor a 5, se añade 1 a la que precede. Así, en nuestro ejemplo, la desviación stan. dard que solo incluye dos decimales, se expresa: 0.90 porque corresponde a 0.8975 .

[^3]:    * Es conveniente mencionar los valores extremos (menor y mayor) de los datos analizados. En nuestro ejemplo estos son: 11.90 y 14.60 gramos, respectivamente.

[^4]:    * Debe tenerse caidado de anotar, claramente, los limites de cada grupo de Irecuencia para evitar errores. Asi, en nuestro ejemplo, el primer grupo incluye datos entre 0.10 y 0.29 miligramos INCLUSIVE; el segundo grupo entre 0.30 y 0.49 miligramos $/ N C L U S I V E$, etc.

    Si en cambio, se fijaran los limites de estos grupos como 0.10 - 0.30 y 0.30 - 0.50 miligramos, etc., ante un valor de 0.30 no se sabria si le correspondia el primer o segundo grupo.

[^5]:    * Un procedimiento conveniente para llenar esta columno es el siguiente: se tienen anotados los datos por analizar en hoja separada, y conforme se va contando los que corresponden a cada grupo de frecuencia se les tarja, o se les pone una señal al lado. De esta manera, al concluir, puede verilicorse fácilmente si se ha omitido dato alguno.

[^6]:    * Si an cl cuadro de írcuencia de los datos que se analizan (en nuestro ejem. plo :Cindro 5) hay dos grupos modales, es decir, dos grapos de frecuencia que presentan idéntica concenticción maxima de datos, es necesario, para aplicar la iormula descrita, hacer un ctadro nucvo, variando el numero de grupos de irecuencia y la magnitud del intervalo de grapo hasha gue se consiga un solo grupo modal.

[^7]:    * La mamera como se construye ěve cmatro, utilizande los datos originales, esta descrita en el Capialo 1 foagina l40).

[^8]:    * Los procedimientos que se emplean para calcular la media y la mediana, con los datos contenidos en el Cutadro 7, cstán descritos en el Capitulo I (paginas 138 y 144 , respectivamente).

[^9]:    * La manera como se construye csye riadro, "tilizando los datos originales, está descrita un al (apitulo I (primind lito).

[^10]:    * Los procedimientos que se emplean para calcular la media y la mediana, con los datos contenidos en el Cuadro 8 , están descritos en el Capitulo I (páginas 138 y 144 respectivamente).
    ** Los procedimientos que se emplean para calcular el primer cuartil (Q1) y el tercer cuartil (Q3) han sido ya descritos en este capitulo.

[^11]:    * En los calculos relacionados con el coeficiente de correlación es frecuente realizar operaciones aritméticas de cantidndes con signo diferente. Como guia para eifectuar estas operaciones pueden consultarse los ejemplos dados en el Apéndice $B$.

[^12]:    * Las operaciones descritas en esta sección pueden también ser empleadas para el cálculo de la media, desviación standard y el coeficiente de varinción, correspondicntes a ambas series de datos: hematies y hemoglobina (Ver Capitalo Is pexina (3q).

[^13]:    * Las instrucciones para dividir una serie de datos en "grupos de frecuencia" están dadas en el Capitulo 1 , (página 140 ).

[^14]:    * Adoptadas en 1915 por un comité internacional de peritos estadisticos; Joint Commitee on Standards for Graphic presentalion. Preliminary report. Quart. Publ. Amer. Stat. Ass. 1915, volume lif, page 790.

[^15]:    * Tomado de Introduction to Medical Biometry and Statistics. R. Pearl - W. B.

[^16]:    * Método descrito por A. T. Shohl and L. K. Diamond - Science, 1943, 98; 22.

[^17]:    * Tomado de Keeping Fit for flying. Pan American Airways System, New York, 1943.

[^18]:    * Tomado de Introduction io Medical Biometry and Statistics. R. Pearl - W. B. Saunders Co., Philadelphia, 1940.

[^19]:    flGURA 31- Relación entre Volumen y Hemoglobina globular en 106 deter. minaciones hechas en casos de Enjermedad de Carrión.
    La linea recta corresponde a la "inen de regresión" derivada del coeliciente de correlación $(+0.87 .58 \pm 0.0226)$ hallado. Cada pun-
    to corresponde "t una observacion.

[^20]:    * Los valores medios de $\% \mathrm{Hb}^{2}$ correspondientes a las alturas de $1,750,4,330$ y 5,340 metros han sido tomados de la literatura médica. Los restantes han sido obtenidos en investigaciones realizadas en este Departamento.

[^21]:    * En esta fórmula, aplicada a nucstro cjemplo, y representa \% H 302 .

[^22]:    * En esta fórmula, aplicada a nuestro ejemplo, y representa \%Hb02.

[^23]:    * En el Cuadro 42 se ha tomado en cuenta que, según lo expresado en el Cuadro 41, $X=1$ corresponde a una altura de 150 metros; $X=2$ corresponde a una altura de 1,750 metros; $\mathrm{X}=3$ corresponde a una altura de 2,390 metros, y así, sucesivamente.

[^24]:    * Tomado de Introduction to Medical Biometry and Statistics. R. Pearl - W. B. Saunders Co., Philadelphia, 1940.

[^25]:    * La mayoría de los ejemplos utilizados en este capítulo están tomados de: (1) - Censo Nacional de Población y Ocupación de 1940. Vol. I. República del Perú, Dirección Nacional de Estadística, A. Arca Parró, Director. Lima, 1940; (2) - Nociones de Bio-Estadística. Franz Schruefer. Biblioteca de la Caja Nacional de Seguro Social, Lima, 1941; y (3)- Boletín Demográfico Municipal de la Ciudad de Lima. Inspección de Estadística y Demografía del Concejo Provincial de Lima. Lima, 1940. Algunos datos demográficos han sido amablemente proporcionados, por el Departamento de Estadistica, Ministerio de Salud Pública y Asistencia Social, y por la Dirección Nacional de Estadística, Sección Censos.

[^26]:    * Algunos autores consideran 15 y 50 años de edad como límites de este periodo.

[^27]:    * Tomado de Introduction to Medical Biometry and Statistics, R. Pearl - W, B. Saunders Co., Philadelphia, 1940.

[^28]:    * Nociones de Bio-Estadística. Franz Schruefer. Bißlioteca de Ia Caja Nacional del Seguro Social, Lima, 1941.

[^29]:    * Tomado de Introduction to Medical Biometry and Statistic. R. Pearl-W. B. Saunders Co., Philadelphia, 1940.

[^30]:    * El índice vital no toma en cuenta las fluctuaciones de la población debidas a los movimientos inmagratorio y emigratorio.

