Embedded Microcontrollers and FPGAs Soft-cores

Daniel Francisco Gomez Prado

Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA

ABSTRACT: The FPGA’s soft-cores main idea is to
provide designers with the flexibility of creating a
perfect fit in terms of processor(s)*, peripherals and
memory interfaces for embedded applications, this
perfect fit usually, but not always, can imply a tradeoff
with performance and cost. This paper presents a
comparison in speed, power, flexibility and cost
between a microcontroller and its soft-core version. For
this, an HDL synthesizable soft-core of an 8 bit
microcontroller capable of executing the same
assembler code of a middle range Microchip PIC, as
the 16F84, is performed. The delays introduced by the
FPGA interconnect is considered after synthesis by
performing post placement & routing simulations.

I. INTRODUCTION

Since 1980, when Intel designed the 8051, an 8-bit
microcontroller, embedded systems have used
microcontrollers as a core part of their system. The
applications in which they have been used came from
automotive, industrial control, office automation and
communications, to name a few; in general any
application that needs fast time to market, lower total
system cost and low-risk product development have
been designed using a microcontroller; thus promoting
the use of microcontrollers everywhere.

This market was particularly understood by
Microchip Company which upon foundation in 1989
released an 8 bit one time programmable (OTP) and a
reprogrammable (Flash) microcontroller based on a
modified Harvard RISC (Reduced Instruction Set
Computing) architecture. This simple architecture
combined with a reprogrammable capability provided

' One or more microprocessors can be embedded inta the same FPGA

The research reported in this paper has been supported in part by the
National Science Foundation, contract No. CCR-0204146.

ELECTRONICA - UNMSM

embedded designers with even faster time to market
and lower cost systems; which in turn made Microchip
grew in the market share of 8 bit microcontrollers
(based on worldwide unit shipments) from the 20"
place in 1990 to the number one in 2002 [3].

Even though Microchip core architecture has
remained unchanged, Microchip now offers more than
180 PIC devices [6] featuring numerous on-chip
peripherals to fit best the needs of the huge spectrum of
embedded applications in which they are used.

The customization of the instruction set for a given
application has resulted in literally hundreds of
microcontrollers available today, not just from
Microchip but from different companies; each one with
a different set of peripherals, memories, interfaces, and
performance characteristics. Being one of the biggest
challenges faced by embedded designers the selection
of a processor thatfits best their application
requirements; although, designers usually end up either
buying more processor than they need to get the right
mix of peripherals and interfaces, or settling for a less
than ideal solution to keep costs down.

This wide variety of microcontroller peripherals and
memories have been understood lately by major FPGAs
companies such as Xilinx, Altera and Actel which have
developed softcores to embed microcontrollers into
their FPGAs, microBlaze [10], Nios [2] and core8051
[1] respectively. Xilinx and Altera provide different
kind of configurations, implementing softcore
microcontroller from 4 bits to 32 bits, each with
different add ons inside the FPGA to handle a variety
of peripherals as USBs, UARTs, LCDs, Ethernet,
DMA, etc.

II. PREVIOUS WORK AND OVERVIEW

Even though the design of Microchip devices in
FPGAs have been successfully done in [4][5][8] and
[9], none of them really fully implemented the same
architecture. For example the configuration bits on the

N° 18, Diciembre del 2006

TRIS registers that sets the data direction on the ports
of the microcontroller does not work as specified in [7]
in none of the designs previously mentioned.

In our microcontroller softcore, referred from now
on as UMASScore, the TRIS registers are implemented
and the bidirectional ports works as in [7]. The power
save mode, implemented via the SLEEP instruction,
adds a control signal that stacks the phase clock of the
UMASScore. This keeps all registers with the same
value and disables the arithmetic unit, thus eliminating
the dynamic power dissipation. The interruptions (IRQ)
are implemented by a process that reads every clock
cycle one of the bits of the input ports configured as
IRQ. This process can set a flag that will tell the fetch
unit to save the PC on the stack and to jump to a known
ROM location in which the IRQs are handled.
Additionally, to allow the UMASScore embedded
microcontroller interacts with the rest of the FPGA, two
instructions are added to the original instruction set:
EXTWR and EXTRD. These instructions define an
extension module for the UMASScore, so more
functionality can be added to the design without
changing its primary specification. The concept of
expansion module has been successfully used to
customize the instruction set provided by NIOS II [2] in
which the expanded operations are added using
multiplexes as part of the ALU instruction set. In our
design the expansion module is going to use the
concept of program active memory as presented in [13]
so the expansion module will be accessed as a memory
block rather than as ALU operation.

The main features in which UMASScore differ from
the PIC16F84 and other previous implementations are
summarized in the table 1.

TABLE I
3 R If in any
Feature Microchip 16FB4A UMASScore
t [IBI8]9]
Oscillator Several oscillator options Direct clock input | Direct clock input
o b Varies (1-4 . |
Clocking 4 phased clock ghased elock) 4 phased clock
Active low MRST and a Low MRST and Low MRST, no
Reset B - . . .
power-up circuit high Reset power-up circuit
Sleep Sleep instruction and circuitry None Sleep instruction
Tri-stable Bidirectional ports Bidirectional
P“;{ . programmed by the None ports as in the
= TRIS register 16F84
Tatcl
¥ atllon WDT circuit Done in [8] WDT circuit
timer
Timer{) Free running or external source Free running Free running
Multiple and programmable .
5 ST : . Multiple and
TteFipGSi IRQ, with prioritics and) Dedicated pin for rrogtamitmebl
configurable to rising or falling IRQ IRQ
edge.
Extended None Done in [9]. also PAM oriented
Inst Set o [][2)(10] [13]

This project uses Xilinx ISE 6.3i webpack and
Xilinx ModelSim II v5.8c software to synthesize, place,
route and simulate the VHDL design; and a spartan3
device as the target architecture. The MPASM
programming language and its compiler MPLAB IDE

ELECTRONICA - UNMSM

v6.62 from Microchip 1s wused to write the
microcontroller programs. In [8] and [9] a program to
convert from HEX to VHDL has been done, so the
assembler code written for the PIC16F84 can be
compiled, and the hexadecimal file obtained can be
translated into a VHDL format that contains the binary
instructions to add to the UMASScore ROM module to
simulate and test the design.

It is worth mentioning that the two extended
operations EXTWR and EXTRD are not part of the
MPASM code and not compatible with the MPLAB
IDE software; therefore these two instructions are
tested by adding their binary code manually into the
program ROM module.

III. DESIGN HIERARCHY

The design of the UMASScore is done hierarchically
as in [9]; by breaking the design into five modules: the
Rom module, the Ram module, the ALU module, the
CPU module and the expansion module.

A. The ROM module

This module implements the program memory of the
UMASScore. It contains the binary code with the
instructions to be executed. The ROM module takes as
input the 13 bits of the program counter PC, and gives
as output the 14 bits needed to encode a single
instruction in the PIC16F84. See Fig. 1.

To test the instruction set, conditional and
unconditional jumps and the proper function of the

bidirectional ports, a test program in assembler
MPASM language [7] is downloaded into the
UMASScore ROM module.

With the 13 bits PC this module can store up to 8K
instructions each one of 14 bits width, but this does not
mean that a 8Kx 14 bits memory is implemented on the
design, the number of registers inferred on the module
are as many as the number of instructions to be
executed; the previous program for example will infer a
65 registers of 14 bits each.

PC<12:0> :::E:gg Data<13:0>
11 bits UptoBKx 14 N 14pis
————————

Fig. 1. The block diagram of the ROM module.

N° 18, Diciembre del 2006

B. The RAM module

From the 14 bits instruction retrieved from the
ROM module, the 7 least significant bits <6:0> are
used to address the RAM memory. This memory of 8
bits width stores the 128 general purpose registers of
the UMASScore, from addresses 00h to 7Fh. Three
signals control the operation of the RAM: the clock, the
general enable and the write enable; and they are used
to read the data at the beginning of an instruction
execution and to store the result in the desired address.
See Fig. 2.

Address<6:0>

L ’;‘ry fromRAM<7:0>
toRAM<T7:0>
w 128 x 8
clock
enable 4
ramwr

Fig. 2. The block diagram of the RAM module.

The RAM module is written in VHDL according to
the coding style suggested in [11] [12] so the
synthesizer is able to infer that the block RAM
available in the Spartan3 device is going to be used.
Respecting the coding style is important otherwise the
synthesizer is not able to infer that the device block
memory can be used for this module and the memory
would be implemented using LUTs.

C. The ALU module:

The UMASScore has a very simple ALU capable
of doing arithmetic, logic, shift and bitwise operations
as in [7]. It takes as inputs two 8 bits operands, A and
B, and 4 bits operation selection; and it produces an 8
bits result with a carry out. There is an additional
output used to indicate that the result of the ALU
module is zero. See table II.

TABLE I
Opcode | Operation Description
0000 Addition A+B
0001 Substraction A-B
0010 AND A AND B
0011 OR AORB
0100 XOR A XOR B
0101 Complement NOT A
0110 | Shift right {Cin, A[7:1]] . Cout<= A[0]
0111__| Shifleft {A[6:0], Cin}_, Cout<=A[7]
1000 Swap {A[3:0], A[7:4]4
1001 Clear bit (Not BitMask) AND A
1010 Set it BitMask OR A
1011 Compare bit with 0 [If (BitMask AND A) =0 => Zout= |
1100 Compare bit with | | If (BitMask AND A) /= 0 => Zout = |
1101 Not defined Propagate A
1110 Not defined Propagate A
1111 Not defined Propagate A

ELECTRONICA - UNMSM

In the case of bitwise operations, the 3 more significant
bits of operand B are decoded into a BitMask which
select the bit of operand A in which the operation takes
place.

BitMask
oJoJoJolifoJo]o]

[ClollEEIEH—
[hlokloblbbH—
GIoREEERH—

Fig.3. Bitmask selection

The operation to perform in the ALU is determined
on the CPU module when decoding the instruction to
execute. Once the ALU operation is determined the
operands for the ALU A and B are selected.

D. The CPU module

This is the top level hierarchy of the UMASScore
and it implements the program flow. Therefore the
instruction decode, the specific purpose registers, the
data and address buses, the multiplexers and the
decoders are implemented here.

The instruction cycle of the UMASScore is divided
into a four phased clock that is used to provide
synchronization between the different execution steps
of an operation. These synchronizations are scheduled
in the table III.

TABLE III
Qi Qz Q3 4

Decode instruction
register Update | Update | ; s
and determine the w Op A Update Wnext Write RAM
ALU op
Read RAM and (o
Special Update | Update Update Write Special
Purpose Registers, RegF OpB ToRAM Registers
read Ports.

Retrisve st Stall if actual Update the
Increment PC if not stalled 2 : Instruction Instruction

instruction . .

requires it register

The operation of the CPU module can be divided
into three functions: The program counter control, the
instruction decode and the datapath control.

1) The Program counter control

Upon reset or at start the program counter is loaded
with the address 1FFFh and a NOP instruction is forced

N° 18, Diciembre del 2006

into the UMASScore; thus the instruction in 1FFFh is
not executed. With this address in the PC the next
instruction to be fetched is in 0000h so in the next 4
phased cycle the instruction in 0000h has been stored in
the instruction register; and at the beginning of phase
QI1, as shown below, the instruction is ready to be
decoded and executed.

QL Q2 Q3 Q4 QI Q2 03 Q4 QI Q2 Q3 4
Clk I
o 1 1 |
El_r L=t 1 3 I
Qs — I | 1
ol i] ! 1

L J
I |
Bt PL 1 PC | |
I 1
Feich Inst PC |
Execute Inst PC - Fetch Inst PC + |
Execute Inst PC Fetch Inst PC + 2
Execute Inst PC +

Fig. 4. The instruction fetch

The control of the PC also determines if the
instruction in execution produces a conditional or an
unconditional branch.

For conditional branches, instructions BTFSC and
BTESS, the zero flag from the ALU module is checked
and if the condition is satisfied the next instruction is
replaced by the NOP instruction. In this two
instructions the PC continues is normal count, only the
next instruction to be executed is changed with the
NOP instruction if needed. For example in the
following instructions if the RAM address 0x16 has the
value 58h:

) DECFSZ 0x16,1 //NoJump (57 h)

g
21 ANDLW 0x6C /IW=20h
22 BTFSS 0x16.1 Jump

23 IORLW 0x9F 'W=20h

The instruction DECFSZ will decrement by one that
value and store it, as the result is 57h different than 00h
the next instruction ANDLW is executed, BTFSS
check if the last bit in the address 0x16 is 1, as that
value 1s 57h, the condition is satisfied and the next
instruction [ORLW is changed by a NOP instruction.
This is shown in the next table 3:

TABLE 111
Fetch 21 Fetch 22 Fetch 23 Fetch 24
PC=20 PC=21 PC=22 PC=23
DECFSZ | ANDLW | BTFSS NOP

For unconditional branches, instructions CALL,
GOTO, RETLW and RETURM, the next instruction is
replaced by a NOP and the PC is loaded with the
destination address. Actually the PC is loaded with the
destination address — 1; so the fetch unit, that retrieves
the instruction PC + 1, retrieves the instruction in

ELECTRONICA - UNMSM

destination address while the NOP instruction is still
being executed. For example in the following

Instructions:

49 CALL subroutine /fJump

50 BSF STATUS,RPO /<0x03>=
subroutine:

384 MOVLW Ox04 /MW=04 h

385 MOVWF 0x20 /i<0x20>=04 h
386 inner_loop

387 DECFSZ 0x20,1 /1<0x20>=03 h
388 GOTO inner_loop

389 RETLW 0x77 /IW=T7h

The instruction CALL forces a NOP instruction to be
executed instead of BSF and in the meantime it loads
the PC with the address 383, which is used for the
fetching unit to retrieve the instruction MOLW,
instructions 384 and 385 write into the RAM address
0x20 the value 04h. The instruction DECFSZ
decrements the value in RAM 0x20 by 1, and checks if
it is 00h, as it is not the next instruction GOTO is
executed. The GOTO instruction loads in the PC 385,
and forces a NOP meanwhile the fetch unit retrieves the
instruction from 385, DECFSZ. This process goes on
until the value stored in the RAM 0x20 is 0Olh, a
decrement here will produce 00h which will force a
NOP instruction to replace the GOTO instruction. The
instruction RETLW instruction will be executed then
loading the PC with the address 49 and forcing a NOP
instruction, this will make the fetch unit to retrieve the
instruction BSF from the address 50. This is shown in
the table I'V.

TABLE IV
Fetch 50 Fetch Fetch Fetch Fetch Fetch Fetch
384 385 186 387 388 386
PC 49 PC 50 PC 384 PC 385 PC 386 PC 387 PC 388
CALL NOP MOVLW MOVWF DECFSZ GOTO Nop
0x20=04h 0x20=03h

Fetch Fetch Fetch Fetch Fetch Fetch Fetch
387 388 86 387 388 186 387
PC 386 PC 387 PC 388 PC 386 PC 387 PC 388 PC 386
DECFZ GOTO NOP DECFSZ GOTO NOP DECFSZ
0x20=2h 0x20=1h 0x20=0h

Fetch 388 Fetch 389 Fetch 50 Fetch 51

PC =387 PC = 388 PC =389 | PC=50

NOP RETLW NOP BSF

2) The Instruction decode

The instruction set supported by the UMASScore is
described detailed in [7], and its summary is shown
below

In the table V, C and Z denote the carry and zero status
bits modified by the ALU module; the File register F
represents any position in the RAM, the register W is
an internal working register not directly addressable
that accumulates the last computation of the ALU, and

N° 18, Diciembre del 2006

K is any constant value passed together with the

instruction.

The 14 bits of binary code retrieved from the ROM

module has the following formats:

TABLE V
NEMONTECNIC BINARY
CODE INSTRUCTION CODE FLAG
Byte oriented operations
ADDWF F.d W+F 00 0111 dfff ffff C z
ANDWF Fd WANDF 00 0101 dffT fITF Z
CLRF F Clean register F 00 0001 IfFFFAE [Z
CLRW Clean register W {}0 0001, 0xxx zZ
XXXX
COMF Fd Complement F 00 1001 dfff ¥ z
DECF Fd Decrease F by 1 00 0011 dfff ffff Z
DECFSZ Fd Decrease F by 1. skip if 0 00 1011 dfff fffF
INCF F.d Increase F by | 00 1010 dfff £ff Z
INCFSZ Fd Increase F by 1, skip if 0 00 1111 dfff ffiF
IORWF Fd WORF 00 0100 dfff ffif z
MOVF Fd Move F 00 1000 dfff fiff Z
MOVWF F.d Move Wto F 00 0000 1ff fiff
. - . 00 0000 0000
NOP No operation 0000
RLF F.d Shift F to the left through C 00 1101 dfff fAT (&)
RRF Fd Shift F to the right through C 00 1100 dfff fff C
SUBWF F.d F-W 00 0010 dfff fiff G;Z&
SWAPF F.d Swap nibbles in F 00 1110 dfff fiff
XORWF Fd W XOR F 00 0110 dfff {Tff Z
Bit oriented operations
BCF F,b Clean bit b of F 01 00bb biff i
BSF F.b Setbitb of F 01 01bb bIIT {17
BTFSC Fpb Check bit b of F, skip if 0 01 10bb bfff ffff
BTFSS F.b Check bit b of F, skip if | 01 11bb bfff ffff
Literal or Control operations
_ IT 111x kkkk
ADDLW K K+ W=>W kkkk C.Zz
11 1001 kkkk
ANDLW K KAND W Kkkk A
CALL ExtendeK | Call to subroutine 10Okl Kk
kkkk
CLRWDT No implemented (ignored) S
GOTO 10 1kkk kkkk
ExtendeK Go to ExtendeK kkkk
11 1000 kkkk
' ;
IORLW K KORW kkkk Z
& - 11 00xx kkkk
MOVLW K K=>W Kkkk
RETFIE No implemented (Ignored) ?g 00{000 b000
RETLW K Return from subroutine with K == W llcll(k[f Lxkklk
RETURM Retum from subroutine (1}000%0()0 0
SLEEP No implemented (ignored) g[:]01000 D110
g 11 110x kkkk
J T = w
SUBLW W, K K-W=> Kkkk C,Z
= 11 1010 kkkk
w f
XORL W. K K XOR W Kkkkk Z
Extended operations
EXTWR F Write to address in [F] value W 11 0100 1 ffF f7FF
EXTRD F &fad from address in [F] and save in 11 0101 1£FF FifF
13 8 7 6] 13 a8 7 0
1 Opcode 1 D l Address J ’ Opcode | Literal K |

Byte oriented operation

13 10 9

76 a 13

Literal oriented operation

11 10

Opcode

‘ B | Address l l

Opcode

l Extended Literal K

Bit oriented operation

CALL & GOTO operation

Fig. 5. The instruction format.

ELECTRONICA - UNMSM

The more significant bits are compared and the
instruction to be executes is determined. Each
instruction correspond to a state in a finite state
machine and depending on which state is reached the
control signal of the datapath will vary.

3) The Datapath control

The control of the datapath can be further divided in
different processes, each one synchronized to a phase
of the 4 phased clock.

a) The Working register and the File register:

As mentioned before the file register represents
any position in the RAM and the working register is
an internal register use to accumulate the output of
the ALU. When we start the execution of a byte or
bit oriented instructions, phase Q1 of the 4 phased
clock, the working register, W, needs to be updated
with the value accumulated in the previous
instruction and held in Wnext. And similarly the
memory needs to be accessed to update the value of
the file register.

As the first 12 bytes of the memory correspond
to special registers implemented on the same CPU
module and not in the RAM, the file register will be
updated with the values from the special registers
when the address is less or equal to 0Ch and with
the values from the RAM when the address is from
0Dh to 7Fh. See figure 6.

Special
Register
00h to
0Ch

fromRAM

Fig. 6. The working and file register.

At the end of the execution of byte or bit
operation, phase Q4, the file register might need to
be saved. If so the RAM is written with the value
coming from the ALU module or from the file
register.

These two operations of reading and writing the
RAM are controlled by the signals ENABLE and

N° 18, Diciembre del 2006

RAMWR. When ENABLE is set to 1 and there is a
rising edge of the clock, the RAM outputs the value
indexed by the address bus; and, when ENABLE is
1, RAMWR is 1 and there is a rising edge of the
clock, the data placed in the bus toRAM is stored.

If we need to read and write on the phases Q1 and
Q4, then the signal ENABLE is set to 1 during the
phases Q3 and Q4, and the signal RAMWR is set to
1 during Q3. For example, if we need to write a
value in memory, we set ENABLE and RAMWR
both to 1 during phase Q3, and in the next rising
edge of the clock the RAM will be written. This is
because phase Q4 will start after the rising edge of
the clock as it is derived from the main clock and
therefore some delay is associated to them, so after
RAMWR and ENABLE are set in Q3 the rising edge
of the clock will produce the memory to store the
value, so it will look as the memory is being written
in the beginning of the phase Q4.

b) The Input/Output Ports:

The UMASScore interacts with the external
device through the bidirectional ports A and B.
These ports are addressed as part of the special
registers at addresses 0x05 and 0x06 respectively,
and the direction of each bit is set in the registers
TRISA and TRISB at addresses 0x05 and 0x06. The
UMASScore differentiates which register is being
accessed TRISA or PORTA by checking the status
of the bit RPO, fifth bit of the register STATUS in
address 0x03. If RPO is set to 1 then the registers
TRIS are accessed, otherwise the registers PORT
are accessed. This is important because modifying
the bits on the register TRIS the respective bits of
the register PORT are configured; thus a value of 1
in the register TRIS configures the same bit in its
PORT as input, and a value of 0 as output.

c¢) The ALU operation:

The instruction to be executed has been fetched
and decoded in the last phase Q4 of the previous
instruction. With the instruction to execute
determined, the operation to perform in the ALU
module can be determined in phase Q1 meanwhile
the working register and the file register are being
updated; and in phase Q2 the operands for the ALU
are selected according to the operation to perform.
See figure7.

ELECTRONICA - UNMSM

ALU
Operands

Fig. 7. The ALU unit.

The final architecture implemented in the CPU module
is shown below. See figure8.

E. The Expansion module

The two instructions EXTWR and EXTRD added
to the instruction set allow to indirect address an
expanded memory. This memory is thought as an active
memory, so any additional functionality can be added
inside the FPGA to the UMASScore.

For both instructions the register F is used to
indirectly address an expanded memory, that is, the
value store in F is used as address; and the register W is
used to connect the expanded data bus. This expanded
memory can map up to 256 bytes and computation can
take place in this memory as described in the PAM
architecture paper [13].

To test this idea a simple fixed point 4 bit multiplier
is implemented. The following assembler lines are used
to test the proper operation of the expanded

nstructions.

57 MOVWF 0x31 HOx31=C5 h

58 EXTWR 0x31 /10XC5= W([7:4]xW[3:0]
59 CLRW HW=00h

60 EXTRD 0x31 /IW=3Ch

61 MOVWF 0x31 //0x31=3Ch

Assuming the working register has a value of C5h,
the instruction MOVWF loads that value on the register
0x31 of the RAM; then the execution of EXTWR
address the extended memory with the content of the
register file 0x31, and sends the value of W=C5h. As
this memory is an active memory, before storing the
value some computation takes place, and in our
example this computation is the multiplication of
W[7:4] with W[3:0]. So the value stored in the
extended memory 0xC5 is actually Cx5 = 3Ch, and this
is the value that is retrieved and send to the working
register with the instruction EXTRD.

N° 18, Diciembre del 2006

at
Q2 Fetch
Sync Program
e s Program | Rg
CLK] j— OM
— o4 Counter
MRST RESET

Decode
ALU Opcode

midoRAM

Special
Register
00hto
0Ch

Fig. 8 the UMASScore schematic

The interface of this module is shown below; and in
general this module can be used as an extended port,
inside the FPGA, to communicate data with some other
processes in the FPGA. See figure9.

Address<7:0>
Tz PAM

W05 Programmable

-= Active Memory

Wnext<7:0>

256x 8

clock ————p]
ext_rd '
ext wr

Fig. 9. The block diagram of the PAM module.

The VHDL description of the Expansion module is
given in annex V.

IV IMPLEMENTATION AND TIMING
ANALYSIS

After writing the VHDL code that implement the
UMASScore, we compile it and synthesize it for the
Spartan3 device xc3s200%. At this point, before
placement and routing, functional simulations are done
to correct misbehaviors and incorrect specifications in

! The reason for choosing this device, as explained later, is the big amount of
1/O pins that it provides, 173.

ELECTRONICA - UNMSM

the code. The most important problems faced at this
stage were:

Inferring the 128 bit registers as a block RAM in

the device: The coding style used produced LUT

implementation of the memory, so the XST manual

[11] was used to infer the use of block memory.

The final type of memory coded was a single-port

read first memory, so an active enable signal reads

the memory.

e Initializing and synchronizing the program counter:
Though in idea simple, making the program
counter start at IFFF and fetching the next
instruction forced a modification in the time the
next instruction was being fetched.

e When executing conditional branches the jump was
never taken: This problem was due to for
conditional branches the zero flag has be set, and
we were taking the decision of the branch at phase
Q3 looking at the zero flag on the status register
that is written at phase Q4. This problem was
solved by looking at the zero output of the ALU.

e When executing unconditional branches there was

a mismatch between the program counter and the

executing instruction: This problem was introduced

by the modification done to the fetch unit, this was
solved by setting the PC to the previous address of
the destination, this is address — 1. With this

N° 18, Diciembre del 2006

10

modification the fetching unit was able to force a
NOP at address — 1, while decoding the instruction
stored in address.

e Resetting all the registers: As the clock unit is stop
at reset and forced to phase QI, resetting the
registers at phases Q2, Q3 and Q4 with the MRST
signal was impossible. To overcome this problem
an internal RESET signal was created, this signal
propagates once with a NOP instruction when the
MRST signal is released.

After solving these problems the functional
description of the UMASScore was correct, and the
process of simulating the design after placement and
routing began. The principal problems encountered at
this point were:

e The program counter was stall in zero and the
phased clock was stack in Q1: This problem was
solved by looking at the synthesis report. The
longest path found in synthesis was from MRST to
an internal node; and we were holding the MRST
signal for less than one clock cycle, so we
increased the hold time of MRST to 4 clock cycles
which is the time taken to execute one instruction.

e [/O pin limitation on the FPGA: Doing simulation
after placement and routing is simulating from
netlist, at this level all the signals are encapsulated
in a black box and the design is observable only
from its input/output pins. At this point checking
the correctness of the UMASScore from its outputs
only was not helpful, so we extracted internal
signals to the output to observe the execution of the
instruction. The latter produced an increase of /O
pins, from 18 pins (1 bit clock, 1 bit MRST, 8 bits
PORTA and & bits PORTB) to 220 pins for
complete visibility of the control and intermediate
results on the datapath. This increase on I/O pin
requirements to verify the correct behavior of the
UMASScore leads us to change the initial Spartan2
device xc2s50 to the actual Spartan3 xc3s200. As
the xc3s200 has 173 I/O pins, only the most
important signals where extracted from the
UMASScore as outputs, some other signals where
derived from these outputs in the testbench given in
annex VI.

e [False triggering of control signals: Once the placed
and routed signals were observable during
simulation, there were a lot of mismatches between
the expected results and the observed results. Most
of these mismatches were due to control signals
triggered out of their scheduled phase. Looking in
detail at the simulation we found that the clock
signals where unbalanced, and between phase Q1

ELECTRONICA - UNMSM

and Q2 there was a middle ground where no phase
was active. This was activating incomplete
specified control signals that were corrected, and
some small reschedule of non critical path
operations were done so the four phased clock were
as balanced as possible.

With all the bugs fixed the program shown in the
ROM module is tested in the UMASScore, and its
simulation after placement and routing is shown in
the following 6 figures. Some glitches can still be
observed on the ALU unit as this unit is not
synchronized with the clock, that is, the ALU is
asynchronous and its outputs are affected by any
change in its inputs. The glitches in the ALU unit
do not produce any misbehavior as the correct
result is already computed when the synchronous
part of the UMASScore requires it, phase Q3.

V. CAD Reports

To get accurate reports on area, power and speed the

extracted signals used in simulation are commented.
Thus the UMASScore is implemented without the
additional logic and I/O pins used for verification
purposes. Its interface is shown in the figure below. See
figure 10.

PORTA<7:0>

Clock =

MRST UMASScore

PORTB<7:0>

Fig. 10. The Block diagram of the UMASScore.

From the different steps of the CAD design process,
only the most important results of the generated report
files are shown here.

A. From Synthesis

At this step is important to notice that the

memories for the RAM and PAM module where
inferred correctly.

Synthesizing Unit <PicPAM>.

Found 4x4-bit multiplier for signal <Store>.

write enable
address
data in

Found 256x8-bit single-port block RAM for signal <PAM>.
mode | |
aspect ratio | |
clock | |
enable | connected to signal <ENABLE> | high

| |
| |
| |
| I
[|

read-first
256-word x 8-bit
connected to signal <clock>

connected to signal <PAMWR>
connected to signal <PAMAddr>
connected to signal <Store>
connected to signal <EXT_Dout>
Auto

N° 18, Diciembre del 2006

Synthesizing Unit <PicRAM>.
Found 12BxB-bit single-port block RAM for signal <RAM>.

mode read-first

aspect ratio 128-word x 8-bit

clock connected to signal <clock> rise
enable connected to signal <Enable> high

write enable	connected to signal <RAMWR>	high
	[
	[
[| I |

address connected to signal <RamAddr>
data in connected to signal <Dataln>
data out connected to signal <DataQut>
ram_style Auto

The adders in the ALU module where inferred as well
as the decoder for the bitwise operations

Synthesizing Unit <PicALU>,
Found B-bit adder for signal <$n0000> created at line 61.
Found 8-bit adder for signal <$n0006> created at line 61.
Found 8-bit adder carry out for signal <$n0032> created at
line 61.
Found 8-bit xor2 for signal <$n0048> created at line 78.
Found l-of-8 decoder for signal <BitMask>.

And the finite state machines for the instruction set, the
adder of the program counter and multiplexer controls
where implemented.

Synthesizing Unit <piccpu>.
Using one-hot encoding for signal <opcode>.
Using one-hot encoding for signal <StallOpcode>.
Found 13-bit adder for signal <AddrPreFetch>.
Found 74 1-bit 2-to-1 multiplexers.
inferred 349 D-type flip-flop(s).
inferred 4 Adder/Subtracter(s).
inferred 3 Comparator(s).
inferred 87 Multiplexer(s).

The big amount of flip flops inferred is to implement
the registers of the control and data signals in the CPU
module. After synthesis the total amount of resources
used by the UMASScore microcontroller are:

Design Statistics

I0s ;18

Macro Statistics :

RAM 2
128xB-bit single-port block RAM: 1
256x8-bit single-port block RAM: 1

Registers : 110
1-bit register : B2
11-bit register s L

13-bit register

l4-bit register

3-bit register

4-bit register

5-bit register

8-bit register
Multiplexers

13-bit B-to-1 multiplexer

2-to-1 multiplexer
Decoders

l-0f-8 decoder
Adders/Subtractors

11-bit subtractor

13-bit adder

8-bit adder

8-bit adder carry out
Multipliers

4x4-bit multiplier
Comparators

4-bit comparator greater

8-bit comparator greatequal :

8-bit comparator less

(=0

0

Xors

4t 3 oaE dF 9t % 9r dp ok a4k 35 3 Ak 4k 9 3E 36 36 O 9K I 3 3 9F e de 3F 3F W

DI RO B b b L b b R U b e L e N D

1-bit xor3

And these resources for the
represent a device utilization of:

Spartan3 xc3s2000

ELECTRONICA - UNMSM

Device utilization summary:

Selected Device : 35200£t256-5

Number of Slices: 568 out of 1920 29%
Number of Slice Flip Flops: 373 out of 3840 9%
Number of 4 input LUTs: 1015 out of 3840 26%
Number of bonded IOBs: 17 out of 173 9%
Number of BRAMSs: 2 out of 12 16%
Number of MULT18X18s: 1 out of 12 8%
Number of GCLKs: 1 out of 8 12%

It is important to notice that the device utilization varies
when:

e Not all the instructions are implemented: When a
instruction is not used the corresponding state on
the FSM becomes not reachable, for example if the
CALL instruction is never used not only the state is
drop but also the circuit controlled by the GOTO
state is minimize on the synthesis process. This
prunning reduces the number of slices used in the
device.

e The number of instructions increase or decrease:
We’ve seen that the UMASScore is capable of
storing up to 8K instructions, each of 14 bits. As
the ROM memory is implemented with LUTs
reducing or increasing the number of instructions
well result in more or less device utilization.

B. From Placement and Routing

As from synthesis we got the device utilization, the
the most important information after placement and
routing is to generate the timing analyzer report. This is
shown below:

Release 6.3.031i - Timing Analyzer G.38

Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

Physical constraint file:
C:\Xilinx\My_Designs\PiccpuPR\piccpu.pcf
Device, speed:

xc3s200,-5

Timing constraint: Default period analysis for net "Q4"
26766 items analyzed, 0 timing errors detected. (0 setup
errors, 0 hold errors)
Minimum period is 14.337ns.

Delay: 14.337ns (data path - clock path skew)
Source Reglnst 0 (FF)
Destination: BufferPortA_l (FF)

Data Path Delay: 13.820ns (Levels of Logic = 6)

Clock Path Skew: -0.517ns
Source Clock: Q4 rising
Destination Clock: Q4 rising
Clock Uncertainty: 0.000ns

Data Path: RegInst 0 to BufferPortA_l

Delay type Delay(ns) Logical Resource(s)
Tcko 0.626 ReglInst_0

net (fanout=8) 2.353 RegInst<0>
Tilo 0.529 Ker28112_SwW0
net (fanout=1l) 0.343 Ker28112_SwW0/0
Tilo 0.529 Ker28112

net (fanout=3) 0.690 N28114

Tilo 0.529 Ker2952630

net (fanout=16) 1.574 CHOICE4025
Tilo 0.529 RamAddr<2>1
net (fanout=11) 1.515 RamAddr<2>

N° 18, Diciembre del 2006

Tilo 0:529 Ker296221

net (fanout=16) 1.697 N29624

Tilo 0.529 _n0669

net (fanout=1) 1.324 _n0669

Tececk 0.524 BufferPortaA_1

Total 13.820ns (31.3% logic., 68.7% route)

All constraints were met.

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 28727 paths, 0 nets, and 4375 connections
Design statistics:

Minimum period:

Minimum input required time before clock:

14.337ns (Maximum frequency: 69.750MHzZ)
15.571ns

From this report the maximum frequency of the
UMASScore is 69.75 MHz, though we were only able
to run the post placement and routing simulation at a
frequency of 62.5 MHz (clock period of 16 ns). At
higher frequencies some registers started getting
unknown values, though the simulation at the end of
phase Q4 was still valid.

This timing analysis is more accurate than the one
obtained in synthesis where a maximum frequency of
106 MHz was found.

Timing Summary:

(From synthesis, before P&R)

Speed Grade: -5
Minimum period: 9.346ns (Maximum Frequency: 106.998MHz)
Minimum input arrival time before clock: 13.189ns

Another important result is that the critical path is given
by phase Q4 with a minimum period of 14.337 ns; and
the next critical path comes from phase QI with a
minimum period of 9.670 ns. This is important as we
thought at the beginning of the design that the critical
path will be given by the ALU computation in phases
Q2 or Q3. There are two reasons for these:

e The paths on phase Q4 and Q1 have to determine
lots of signals, i.e decode the instruction and select
the control signals to write to memory. This means
that the clock of these two phases Q4 and Q1 have
more load than Q3 and Q2, as shown in the following

report:

Clock Signal | Clock buffer (FF name)l | Load
03:0 | NONE | 8 \
Q1:Q | NONE | 164 |
02:0 | NONE | 32 |
Q4:Q | NONE | 149 |
EXT_WR:Q | NONE | 8
PAM_ENABLE (PAM__n00011:0) | NONE(*) (PAM_PAMAddr_7) | 8 |
clock | BUFGP | 6 |
e The ALU implemented on our design is

asynchronous, so it is always computing the selected
operation when the values at its inputs change. And
this means that the computation of the right value

ELECTRONICA - UNMSM

can be splitted between the phase Q2 and the
moment on phase Q3 where its output is needed.

C. From Power Analyzer

To be able to run the power analyzer, files with
extension NCD and VCD for our design where needed.
The VCD files where obtained by checking the option
to write an output VCD file on the post P&R
simulation, and the NCD files where obtained from the
Map and Place & Route property menu.

Setting the power analyzer to a confidence level name
reasonable, the average power consumption of the
UMASScore is 28mWatts®. This result is shown in the
following fragment of the power report file:

Release 6.3.03i - XPower SoftwareVersion:G.38
Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

Design: piccpu

Preferences: C:\Xilinx\My_Designs\PiccpuPR\piccpu.pcf
VCD File: C:\Xilinx\My_Designs\PiccpuPR\piccpu.ved
Part: 3s200££256-5

Data version: ADVANCED,v1.0,11-03-03

Power summary: I{mA) P{mW)

Total estimated power consumption: 28
Vececint 1.20V: 3 3
Vccaux 2.50V: 10 25
Vcco25 2.50V: 0 0
Quiescent Vccaux 2.50V: 10 25

Thermal summary:

Estimated junction temperature: 26C

Ambient temp: 25C
Case temp: 26C

VI. COMPARISON BETWEEN THE
UMASSCORE AND THE PIC16F84 MICROCHIP
MICROCONTROLLER

The UMASScore device is compared against the
PICI6F84 and PICI6F877 in frequency, power
dissipation, program memory, flexibility and price.
Even though initially we had the objective of
comparing area, at this point we realize that it really
does not make much sense to compare the number of
slides or gate count used on the FPGA against the PIC
device; so we take into consideration the area or
percentage of utilization to reduce the price of the
FPGA. It can be argued that this is an artificial price
and it does not correspond to market, but at least this

¥ This power dissipation is really small and it is probably due to the low
toggle of signals for the tested program. it will be of interest to see how this
power varies if the I/O ports are used frequently.

" The PICI6F877 is similar to the PICI6F84 and support the same
instruction set. It has a bigger program memory and some specialize
registers for UART communication.

N® 18, Diciembre del 2006

approach gives us an estimate on how much resources
are left on the FPGA for continuing adding
functionality. In the following table the values shown
for the PIC16F84 and PIC16F877 are taken from their
datasheet [7]; and the values shown for the
UMASScore are taken from the report analysis.

TABLE V
XC35200- PIC16F84 PIC16F877
4VQ100C Microchip | Microchip
e UMASScore
Max Frequency 69.75Mhz 10Mhz 20Mhz
Power dissipati 28mWatls B00mWatts 1 Watt
Memory ROM 8K instructions 1K 8K
instructions instructions
Instruction PAM memory None None
Percentage of 29%
utilization
Device Price 13.45% 4.398 5.11%
Utilization Price 395" 4.398 5.118

This table shows that the UMASScore device achieves
a speed up of 6.9X against the PIC16F84 for a similar
price’. The UMASScore has some degree of flexibility
that none of the PIC devices have; as a customize
hardware can be added inside the FPGA to perform
specialized functions that are not provided on the
instruction set of the microcontrollers.

VII. CONCLUSIONS

The more advanced VLSI process of the FPGA
technology plays a key role on speed and power. This
gives an advantage to the soft-core version over the real
microcontroller. The price, per percentage of silicon
used, is also cheaper for the soft-core version. In this
case, the FPGA soft-core version of the microcontroller
outperforms the microcontroller in speed by a factor of
6.9, and in power by a factor of 28 for roughly the same
price.

The design of the soft-core has been verified by
executing the whole instruction set with post placement
and routing simulations. From the synthesis process we
have observed that the softcore implementation of a
microcontroller saves space when there are unused
resources, as these unused resources are found to be
unreachable or never used for the synthesizer and they
are ripped out by the optimization tool. Looking at the
report files generated from placement and routing we
have seen that, for the UMASScore, the critical path
lies on the decoding of the instruction to execute and

™ This price can be misleading as the 29% of device utilization correspond
to a program of 389 lines, a more fare comparison will synthesize the FPGA
with the ROM fully utilized, 1K or 8K instructions, and use that as
percentage as utilization. Though this 30% of device utilization while be
valid up to 2K instructions if the remaining block memories of the device
are used to implement the ROM.

ELECTRONICA - UNMSM

13

not on the arithmetic operation to be performed as we
initially thought.

Some modifications were done to the initial
UMASScore code in order to work properly after
placement and routing, as interconnect delays and loads
were not taken into account on the first behavioral
simulation. The changes done were merely on retiming
certain operations or fully specifying multiplexers and
decoders to avoid glitches on control signals. When
proper simulation of the post place and route model
was achieved, the cad processes were redone for the
UMASScore, commenting all the signals that were
placed as outputs during the verification analysis.

The verification of the UMASScore let us understood
the complexity of this process and its important, as
most time of the design process was devoted to the
verification process. This also shows the importance of
the JTAG port for testing as if the design is placed on a
printed board we will not be able to extract our internal
signals to verify its internal execution as we did it here.
The process of verification gave us a practical example
of Rent’s rule, in which the design without the
predefine port interface exploded the [/O pin
requirements from 18 pins to 220 pins.

From here we can see that the gain in speed and power
of the soft-core version comes with a more complex
design process, and longer times of verification. This
detriment can be neglected if we use IP soft-cores for
the microcontrollers, but of course at an additional cost.
If the FPGAs manufactures release their soft-core IPs,
the market of embedded systems will drift to FPGA
devices.

ACKNOWLEDGMENTS

I would like to thanks professors Guy Gogniat
and Rusell Tessier for their valuable comments and
corrections.

REFERENCES

[1] Actel Inc, the core8051, http://www.actel.com.

[2] Altera Corporation, Nios Il Device,
http://www.altera.com/products/ip/processors/nio
s2/

[3] Gartner Dataquest rankings, 2002
Microcontroller Market Share and Unit
Shipments, http://www?3.gartner.com/

N° 18, Diciembre del 2006

http://www.actel.com.
http://www.altera.com/prod
http://www3.gartner.com/

(6]

(7]
(8]

J. Zafra, VHDL implementation of the
microcontrollers PIC-16/17, University of
Sevilla, Jun 2000.

J. Clayton, the PIC16F84 in Verilog,
http://www.opencores.org/projects.cgi/web/risc1
6184/

Microchip Company, Microchip Technology
Jumps to Number One in Worldwide 8-bit
Microcontroller Shipments,
http://www.microchip.conv/stellent/, press release
Jul 2004.

Microchip Company, PICI16F8X Datasheet,
http://www.microchip.com

S. Morioka, VHDL implementation of the
PIC16F84 in FPGA, Transistor Gijutsu

ELECTRONICA - UNMSM

(9]

[10]

[11]
(12]

Magazine, Dec 1999, http://www02.s0-
net.ne.jp/~morioka/cqpic.htm,

T. Coonan, The synthethic PIC, 1999,
http://www.mindspring.com/~tcoonan/synthpic.h
tml.

Xilinx Inc, Processor central,
http://www.xilinx.com/products/design_resource
s/

Xilinx Inc, XST manual, http://www xilinx.com/
Xilinx Inc, Application notes: xapp463 and
xapp464 — Spartan3 FPGA family,
http://www.xilinx.com/, Jul 2003.

P. Bertin, D. Rocin and J. Vuillemin,
Programmable Active Memories: a Performance
Assesment, Digital Equipment Corporation Paris
Research Lab, 1993

N° 18, Diciembre del 2006

http://www.opencores.orglprojects.cgi/web/risc
http://www.microchip.comlstellentl.
http://www.microchip.com
http://www.mindspring.coml-teoonanlsynthp

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012

