Estudio Preliminar de la Dinámica de los Meandros del Río Ucayali Cerca de Pucallpa usando Imágenes de Satélite (1975-2005)

Joel Rojas Acuña¹, José Carlos Eche Llenque¹, Flavio Carrillo Gomero², Rómulo Miguel Ato² y Jimmy Bonilla Valencia¹

¹Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, Perú ² Facultad de Ingeniería Electrónica y Eléctrica, Universidad Nacional Mayor de San Marcos, Lima, Perú

RESUMEN: Este artículo trata de un estudio preliminar acerca del desplazamiento espacial y temporal del río Ucayali cerca de la ciudad de Pucallpa en la selva peruana. Se han utilizado imágenes Landsat, ASTER, y Radarsat en el periodo de 1986 a 2004. Las imágenes fueron procesadas con el software ENVI 4.0 en entorno Linux, generando imágenes de composición de 3 bandas y ejecutando la corrección geométrica usando puntos de control. La curva del meandro del río cerca de Pucallpa se desplaza a una rapidez aproximada y en promedio de 332 m/año desde 1986 hasta 2003. Por el método de interpolación se concluye que el río cruzaría la ciudad en el mes de diciembre 2004. La correlación obtenida es de 0.988 y por inspección visual de las imágenes procesadas se observa que los meandros tienen comportamientos muy complejos en su movimiento en espacio y tiempo.

Palabras claves: Meandros, Río Ucayali, Pucallpa, ASTER, CBERS, Selva.

I. INTRODUCCIÓN

El objeto de estudio es el río Ucayali cerca de Pucallpa, Perú, localizado en el este-central de Perú (ver Figura 1 y 2). El río Ucayali es el principal afluente del río Amazonas en Perú, tiene una longitud aproximada de 1,610 km, y esta formado por la confluencia de los ríos Tambo y Urubamba. Este río presenta una serie de meandros en la dirección norte hasta unirse con el río Marañón. El río Ucayali es navegable y es un importante enlace de comunicación entre la ciudad de Pucallpa y la ciudad de Iquitos.

Fig. 1. Río Ucayali en Perú

Se está estudiando el desplazamiento espacial y temporal del río Ucayali en un periodo de 19 años (1986 – 2004) cerca de Pucallpa (Perú) usando imágenes de satélite (Ver tabla 1). Se han utilizado los datos imágenes TM y ETM / Landsat, ASTER /Terra, Radarsat y CBERS. En el periodo de 1985 a 2004 se ha trabajado con 9 imágenes . Esto es debido a que la nubosidad del lugar de estudio y la resolución temporal de los satélites arriba mencionados es muy baja (aproximadamente 16 días). Estas imágenes originales han sido georeferenciadas (excepto las CBERS) usando puntos de control que fueron obtenidos durante un trabajo de campo y complementadas con cartas nacionales a escala 1:100,000 distribuidos por el Instituto Geográfico Nacional IGN sobre Pucallpa. El desplazamiento del recodo del río con respecto al punto fijo (551800E, 9072200N, refinería MAPLE) fue tomado como referencia (Limite de la ciudad de Pucallpa mas cerca al río).

El punto móvil está en el recodo del meandro que se aproxima al punto de referencia. La tendencia del río es de aproximarse a razón de 332 m/año. A partir de las imágenes georeferenciadas se ha obtenido una animación de la evolución del río Ucayali en el periodo 1986–2004. En esta animación se demuestra el comportamiento complejo de los meandros y en especial el acercamiento de uno de ellos a la ciudad en forma muy peligrosa.

Fig. 2. Mapa político del Perú y la cuenca del río Ucayali.

II. DATOS IMÁGENES

Se han utilizado seis imágenes TM Landsat de los años 1986, 1987 1988, 1993, 1996 y 2000. Una imagen ASTER / Terra del año 2002; dos del Radarsat del año 2003 y una CBERS del año 2004. El área de interés (Pucallpa) se encuentra ubicada en las coordenadas geográficas aproximadas de -8.5° en latitud y -74.5° en longitud. Estos satélites son de orbita polar (Figura 3)

Fig. 3. Orbita del satélite Landsat, TERRA y RADARSAT

TABLA I

	DATO	DS IN	AÁGENES I	RECO	LECT	TADAS
		VAC	IANTE		CRE	CIENTE
Año	MES	DIA	SATELITE	MES	DIA	SATELITE
1975	07	06	LANDSAT	10	04	LANDSAT
1977	03	18	LANDSAT			
	07	22	LANDSAT	08	09	LANDSAT
1981				08	24	LANDSAT
1985	07	14	LANDSAT			
1986	07	16	LANDSAT			
1987	06	09	LANDSAT			
1988	07	22	LANDSAT			
1990				05	09	LANDSAT
1993	08	05	LANDSAT			
1995	07	27	LANDSAT	01	03	LANDSAT
1996	10	16	LANDSAT			
2000	09	1	LANDSAT	04	10	LANDSAT
2001	08	03	LANDSAT	02	16	LANDSAT
2002	09	29	ASTER	02	27	LANDSAT
2003				05	21	LANDSAT
2003	09	29	RADARSAT	05	29	RADARSAT
2004	07	06	CBERS			

Azul - Imágenes adquiridas [1.2.3.4]

Rojo - Imágenes Landsat por adquirir [5]

Negro – Por adquirir en INPE [6]

Verde - Imágenes recientemente adquiridas [6]

Todas las imágenes elegidas han sido georeferenciadas (excepto la imagen CBERS) y muestreadas a una resolución espacial de 30m por píxel. Medimos la distancia que existe entre la posición del punto de referencia y el punto del recodo del meandro. El primer punto de referencia tiene coordenadas 551800E y 9072200N. El segundo punto (punto móvil en el tiempo) corresponde al recodo del meandro del río Ucayali. Este es un primer estudio preliminar que nos permitirá conocer la rapidez del desplazamiento con otro método más sofisticado.

	TABLA II
BANDAS I	DE LONGITUDES DE ONDA DEL
	SATÉLITE LANDSAT.

SENSORES		TM	ETM+
		(µm)	("m)
	1	0.45-0.52	0.45-0.52
в	2	0.52-0.60	0.53-0.61
A	3	0.63-0.69	0.63-0.69
N	4	0.76-0.90	0.78-0.90
D	5	1.55-1.75	1.55-1.75
A	6	10.4-12.5	10.4-12.5
The atte	7	2.08-2.35	2.09-2.35
	8		0.52-0.90

III. PROCESAMIENTO PRELIMINAR DE LOS DATOS IMÁGENES

A. Visualización y procesamiento preliminar de las imágenes

Para la visualización, procesamiento preliminar, y tratamiento de las imágenes de satélite se ha utilizado el software de procesamiento de imágenes ENVI 4.0 en la plataforma Linux (Figura 4).

B. Composición de bandas Espectrales

El sensor Tematic Mapper (TM) a bordo del satélite Landsat 5 recibe la radiación reflejada y emitida por la superficie de la tierra. Las bandas del espectro visible y del infrarrojo mantienen la resolución espacial de 30 m del Landsat 5 (bandas 1,2,3,4,5 y 7). La Tabla II ilustra las diferencias de resolución espectral entre el sensor TM del Landsat 5 y el sensor ETM+ del Landsat 7. Los valores, expresados en micrómetros (µm), representan los límites de longitudes de onda a los que es sensible cada banda espectral [10]. La combinación de bandas (Figura 5) utilizadas en este trabajo corresponde a la combinación. R:5, G:4 y B:3. En donde las aguas en movimiento se distinguen en color azul claro (río Ucayali), las aguas estacionarias se representan en color azul oscuro (Laguna Yarinacocha), la vegetación esta representada por el color verde y las

construcciones y arcillas se distinguen en color rosado (ciudad de Pucallpa).

Fig. 4. Ventana principal del software de procesamiento de imágenes ENVI 4.0.

TABLA III BANDAS DE LONGITUDES DE ONDA DEL SATÉLITE TERRA Y CBERS [11], [12].

SENSORES		ASTER	CBERS
В		(µm)	(µm)
A	1	0.52-0.60	0.45-0.52
D	2	0.63-0.69	0.52-0.59
Ā	3	0.76-0.86	0.63-0.69

La composición de bandas del sensor ASTER es R: 1, G: 2, y B:3N. La composición de bandas del sensor CCD del CBERS es R: 3, G: 4, y B:2.

Fig. 5. Composición de bandas R: 5, G: 4 y B: 3 para la imagen LANDSAT-5 TM del 21 septiembre de 2000.

C. Georeferenciación

En todas las imágenes, y esto es válido para todos los satélites comercialmente disponibles, se presentan distorsiones geométricas debido a diferentes factores, tales como la rotación de la tierra, la no esfericidad de la tierra, las variaciones en la velocidad, altura y orientación del satélite, barrido del sensor, etc. Para eliminar estas distorsiones se ha utilizado la técnica corrección geométrica usando puntos de control en el suelo (GCP's), obtenidos de un GPS con una precisión de 10m. En la corrección geométrica por puntos de control (Tabla IV) definimos dos sistemas de coordenadas cartesianos. Uno de los sistemas describe la posición de los puntos de control (x, y), en nuestro caso este sistema de referencia corresponde a la proyección cartográfica UTM zona 18 Sur con Datum y el otro sistema coordenado define la WGS84 posición de los píxeles en la imagen (u, v). Ahora supongamos que los dos sistemas de coordenadas están tal que: relacionados por las funciones f y g

$$\mathbf{u} = \mathbf{f} \left(\mathbf{x}, \mathbf{y} \right) \tag{1a}$$

$$\mathbf{v} = \mathbf{g} \left(\mathbf{x}, \, \mathbf{y} \right) \tag{1b}$$

Conociendo estas funciones podemos localizar un punto en la imagen conociendo sus coordenadas GPS. En general, lo inverso también es cierto. Las formas explícitas de las funciones de las ecuaciones (1a-1b) son generalmente elegidos como polinomios simples de primer, segundo y tercer orden. Por ejemplo, en el caso de segundo orden:

$$\mathbf{u} = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x} + \mathbf{a}_2 + \mathbf{y} + \mathbf{a}_3 \mathbf{x} \mathbf{y} + \mathbf{a}_4 \mathbf{x}^2 + \mathbf{a}_5 \mathbf{y}^2$$
(2a)

$$\mathbf{v} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x} + \mathbf{b}_2 + \mathbf{y} + \mathbf{b}_3 \mathbf{x} \mathbf{y} + \mathbf{b}_4 \mathbf{x}^2 + \mathbf{b}_5 \mathbf{y}^2$$
(2b)

Algunas veces los polinomios de órdenes superiores a tres son usados, pero debe tenerse en cuenta de evitar la introducción de errores difíciles de ser corregidos. Los puntos de control (x, y), deben ser puntos bien definidos y uniformemente espaciados, pueden ser intersecciones de carreteras, intersecciones de pistas de aterrizajes de aeropuertos, curvas y ríos, líneas de costas, etc. Se eligen suficientes puntos de tal manera que los coeficientes puedan ser estimados por la sustitución en los polinomios y obtener el conjunto de ecuaciones para estas incógnitas. Las ecuaciones (2a-2b) muestran que el numero mínimo requerido para polinomios de segundo orden es seis. Asimismo un mínimo de tres números es necesario para un polinomio de primer orden y diez para el de tercer orden. En la práctica sin embargo se requieren más que estos y los coeficientes son evaluados usando estimación por mínimos cuadrados. Determinado la forma explícita de los polinomios por uso de los puntos de control, se puede calcular la posición de cualquier coordenada de la imagen. La resolución de la cuadrícula se elige de acuerdo al tamaño del píxel requerido en la corrección de la imagen (30 m en nuestro caso).

La transferencia de los niveles digitales a la nueva posición en la imagen corregida geométricamente, se conoce como la operación de remuestreo. La técnica utilizada para este propósito es el Método del vecino más próximo. Este método consiste en aplicar un algoritmo que asigna a cada píxel de la imagen corregida el valor de brillo correspondiente al píxel de la imagen trasformada cuyo centro este mas cercano al de la corregida. Este procedimiento no supone alteración en los valores de brillo de la imagen original, sino solamente la traslación a otra localización.

D Imágenes georeferenciadas

Todas las imágenes elegidas han sido georeferenciadas a una resolución espacial de 30 m el píxel y con las coordenadas geográficas límites mostrados en la Tabla V. Con lo que tenemos como resultado una imagen de tamaño 1002 x 1002 píxeles para todos los casos (Fig 6).

	Puntos de Control - Pu Utilizados para la Correcciór	ucalipa n Geométr	ica	
ITEM	NOMBRE	E	N	z
1	Cruce Av. Sáenz Peña y 17 Junio	550749	9073419	163
2	Punto Geodésico Rotary - Plaza Grau	551843	9072868	163
3	Plaza de Armas - Pucallpa	551490	9073294	163
4	Cruce Av. Principal hacia el Aeropuerto	547204	9072596	164
5	Torre de Control Aeropuerto	546944	9073126	162
6	Torres de la Laguna Yarinacocha	546746	9076794	152
7	Plaza de Armas - Yarinacocha	546694	9076454	156
8	Campo Verde Camino a Pueblo Libre	521349	9063198	201
9	Campo Verde Camino a Santa Teresita	523132	9064594	193
10	Carretera Camino a San Luis	544781	9071982	162
11	Puerto Playa Italia	552786	9073476	164
12	Cruce de Carretera a Misión Suiza	537047	90699912	139
13	Inflexión en carretera principal entre Carretera a Misión Suiza y Carretera IVASSA	535514	9069180	155
14	Cruce de carretera principal con la carretera de IVASSA – Caserío Raymondi Madera	533585	9069164	161
15	Inflexión camino a vista alegre de campo verde	520690	9064962	209
16	Cruce Carretera Puerto Nuevo Piuracon Nuevo Requena	517632	9073642	179

TABLA IV PUNTOS DE CONTROL EN PUCALLPA

TABLA V COORDENADAS GEOGRÁFICAS EN UTM DE LAS IMÁGENES DE SATÉLITE

	E (m)	N(m)
Esquina superior izquierda	540000	9090000
Esquina superior derecha	570000	9090000
Esquina inferior izquierda	540000	9060000
Esquina inferior derecha	570000	9060000

Figura 6 – Esquema de la medición de la distancia Refinería con el recodo del río Ucayali.

E. Determinación de la distancia Refinería MAPLE -Río Ucayali

Para tomar la distancia que existe entre la refinería MAPLE GAS Corporation, primero debemos fijar dos puntos para cada imagen y unir estos puntos por una recta y a partir de ello medir la longitud de la recta como la distancia deseada. El primer punto es la refinería MAPLE GAS (punto fijo) con coordenadas E = 551800 y N = 9072200, este punto corresponde a las coordenadas fila = 595 y columna = 395 en la imagen georeferenciada (Figura 6). El segundo punto (punto móvil en el tiempo) corresponde a la intersección del cauce antiguo y al cauce principal del río Ucayali. Como se observa en las imágenes, el meandro se acerca a la refinería – oleoducto siguiendo el cauce antiguo. Las distintas medidas de distancias para los años en estudio se resumen en la Tabla 6.

TABLA VI -DATOS ESTIMADOS DE LA DISTANCIA REFINERÍA RÍO UCAYALI

Año	Distancia Refinería – Río Ucayali (m)	
1986	6072.83	
1987	6943.75	
1988	6091.00	
1993	3730.00	
1996	2954.00	
2000	1506.00	
2002	1050.00	
2003	780.00	

Fig. 7. Variación anual del nivel medio del río Ucayali en metros sobre el nivel del mar durante los años 2001 a 2003.[13]

IV. RESULTADOS

La variación del nivel del río Ucayali se muestra en la Figura 7 para los años 2001, 2002 y 2003. Esto nos demuestra que los meses denominados crecientes del río son desde octubre hasta mayo. Entonces consideramos los meses junio a septiembre como los vaciantes. La Tabla VII muestra los diferentes caudales de varios ríos peruanos. El río Ucayali es uno de los mas caudalosos en Perú.

Las imágenes Landsat tiene una composición de bandas, R = 5, G = 4 y B = 3 del sensor TM para el periodo de 1986 - 2000 (ver Figura 8(b,c,d,e,f,g)). La imagen ASTER tiene la composición de las bandas R = 1, G = 3 y B = 2 y es del año 2002 (ver Figura 8h). Las imágenes Radarsat están en niveles de gris por ser de una sola banda (Fig 8i, 8j). La imagen CBERS tiene la composición de las bandas R = 3, G = 4 y B = 2 y es del año 2004 (Figura 8k).

El desplazamiento del recodo del río con respecto al punto fijo es observado en la secuencia de imágenes. El punto móvil es el recodo (o cresta) del meandro que se aproxima al punto de referencia. A partir de las imágenes georeferenciadas se ha obtenido una animación de la evolución del río Ucayali en el 1986-2004, en la que se muestra el período comportamiento complejo de los meandros y en especial el acercamiento de uno de ellos a la ciudad. Según el análisis de ajuste de rectas (Figura 8 l), la rapidez de por año es de del meandro acercamiento aproximadamente 332 metros. Esto quiere decir que en los meses de noviembre y diciembre del 2004 el río cruzará la ciudad. Esto se consigue al poner y=0 en la ecuación de la recta de ajuste obteniéndose x=2005 al interpolar. Este resultado debe ser constatado con otra imagen de satélite de diciembre 2004.

Este resultado cuantitativo debe ser tomado con mucho cuidado ya que se observa por las imágenes de satélite que los meandros se forman en forma muy compleja y a cierta longitud y ancho se cortan por el cuello o base ([7], [8], [9]). Esto es observado en las imágenes para dos meandros antiguos. Es posible que la cabeza del meandro no llegue a la ciudad si se analiza con mas cuidado, cuales son las características o comportamiento para que el meandro se corte por la base o cuello.

Este trabajo debe continuar en el año 2005 adquiriendo mas datos imágenes desde 1975 hasta 2005. Una tarea es modelar la dinámica del meandro cerca de Pucallpa.

Ikeda, Parker y Sawai [16] determinaron un modelo teórico para los meandros de un río mucho mejor a los modelos anteriores y que están mas de acuerdo con los datos de campo. Nosotros estudiaremos la teoría de los meandros de los ríos a partir de aproximaciones físicas usando las ecuaciones de St. Venant. Esta ecuación permite el estudio de la sinuosidad y los desplazamientos del río.

TABLA VII CAUDAL DE VARIOS RÍOS EN PERÚ [13]

Cuenca	Caudal medio anual (m3/s)	Volumen total anual (MMC)
Chirlaco	88.9	2803.6
iualana	3796.4	119723.3
Marañon Medio	7385.4	232906.0
Baio Marañon	15436.2	486796.0
Amazonas	40238.3	1 2689 55.0
Acre	150.3	4739.9
Umhamha	2234	70451.4
Vicanota	233.7	7370.0
Chotano	20.9	659.1
Huancabamba	37.1	1170.0
Tabaconas	58.3	1838.5
Puturnayo	1770	55818.7
Naco	6072.3	191496.1
Yavan	3400	107222.4
Tiare	2720.4	00042.0
Pastaza	2290.4	72230.1
Santiago	1642.7	51804.2
Nieva	200.3	8316.7
Ceneba	312.5	9855.0
Chinchipe	208.3	6568.9
Litrubarrita	117.2	3696.0
Chamava	106.5	3358.6
Llaucano	40.1	1264.6
Crisnelas	425	1340.3
Ato Marañon	751	23683.5
Aquavtia	883.5	27862 1
Pachitea	1837	57931.6
Perene	595.5	18779.7
Mantaro	429.9	13557.3
Apurimac	1050	33112.8
Pampas	228.3	7199.7
Licavali	13375.2	421800.3
Vinua	6363	20066.4
Purus	1002.1	31602.2
De las Piedras	1207.7	39086.0
Tamhonata	1132.6	35717.7
Inamhari	1200.4	37855.8
Martra de Dine	65779	2074406.5

V. CONCLUSIONES

A partir de las imágenes de satélite originales se ha conseguido la composición de tres bandas. Por inspección visual los meandros del río Ucayali tienen un comportamiento muy complejo. Después de aumentar su longitud a un determinado tamaño se corta en el cuello o base. La variación de la distancia entre el punto de referencia y el recodo del meandro del río con el tiempo disminuye a razón de 332 m/año acercándose a la ciudad muy peligrosamente. Por el método de interpolación simple se concluye que en el mes de diciembre 2004 el río invadirá la ciudad.

AGRADECIMIENTOS

Agradecemos a la empresa peruana estadounidense MAPLE GAS CORPORATION por el financiamiento de este trabajo en diciembre 2003. También agradecemos a la UNMSM por financiar este proyecto en el año 2005. Agradecemos a USGS por los datos imágenes Landsat que han sido adquiridos via ftp. Al ERSDAC por la imagen ASTER y al INPE por la imagen CBERS.

REFERENCIAS

- [1] U.S. Geological Survey USGS, US GeoData Available Through the Internet http://www.usgs.gov; Febrero 2004.
- [2] Earth Remote Sensing Data Analysis Center -ERSDAC, ASTER GDS Web Site; http://imsweb.aster.ersdac.or.jp; Enero 2004.
- [3] Maple Gas Corporation, Peru operations. http://www.maplecos.com/proj_peru.html, Marzo 2004.
- [4] National Institute for Space Research INPE, CBERS Image, http://cbers.inpe.br, Marzo 2004.
- [5] LANDSAT, Landsat imagery, http://www.landsat.org/, Marzo 2004.
- [6] Instituto Nacional de Pesquisas Espaciais INPE, Satellite Images and Data, http://www.inpe.br, Febrero 2004

- [7] Smith, Ch. E. Modeling high sinuosity meanders in small flume. Geomorphology, v. 25, p. 19 - 0, 1998.
- [8] Solari, L. Et. Al. Sand bars in tidal channels, Part 2, Tidal meanders. Journal Fluid Mechanic, v. 451, p. 203-238, 2002.
- [9] Fagherazzi, S. Basic flow field in a tidal basin. Geophysical Research Letters, v. 29, No. 8, p.62-1 - 62-3, 2002
- [10] Richard, J.A. 1999. Remote Sensing digital image analysis – An introduction. Berling: Spring – Verlag.
- [11]Chinese-Brazilian Earth Ressource Satelite Ficha Tecnica Resumida:C-BERS 1 e C-BERS 2, http://www.engesat.com.br, Enero 2004.
- [12]Abrams, M. and S. Hook, 2002. ASTER user Handbook version 2.0, JPL Jet Propulsion Laboratory California Institute of Technology.
- [13]Ministerio de Agricultura, http://www.minag.gob.pe, Mayo 2004.
- [14]Landsat 7. Image Assessment System (IAS). Geometric Algorithm Theoretical Basis Document.
- [15]Beaulieu, N., J. Puig y S. Fujisaka, 1999. The use of JERS-1 images in CIAT's benchmark sites in Puerto López, Colombia, and Pucallpa, Peru. Erik Veneklaas, Faculty of Agriculture, The University of Western Australia, Nedlands, WA 6907, Australia. JERS-1 Science Program '99 PI reports, Global Forest Monitoring and SAR interferometry, March 1999. Earth Observation Center, NASDA, Japan. pp.7-12.
- [16]S. Ikeda, G. Parker, and K. Sawai, J. Fluid Mech. 112, 363 (1981).

Fig. 8. (a) Mapa de Perú donde muestra el sitio de estudio (superior izquierda). (b) Imagen Landsat 1986, (c) 1988, (d) 1993, (e) 1996, (f) 2000, (g) Imagen ASTER 29 septiembre 2002 (centro). (i) Radarsat 29 mayo 2003, (j) Radarsat 29 septiembre 2003, (k) Imagen CBERS 06 julio 2004. (ℓ) Variación de la distancia entre el punto de referencia y el recodo del río en función del tiempo del recodo del río (inferior derecha).