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11.SOME PREVIOUS RELA TED WORKS III. THE M. K. HU'S TRADITIONAL (MASSIVE)
INVARIANT MOMENTS

The total area of the object is given by m,lO and the

.- <-

Ppq = f f (x-x,.)" (y- Ye>"¡(x. y) dtdy (2)

<- <-

IIlpq = f f xl'y. ¡(x. Y)ILrdy •. P.q = 0.1.2.... (1)

(3)

Yc = mOl /11loo .and

p+q Iy=--+
2

When the geometricalmoments l1l pq in equation (1)

are rcferred to the object centroid (x,. yJ they
beco me the Central Moments. and are given by:

and they are not invarian!. The double integrals are to
be considered over the whole area of the object
including its boundarl', this implies eomputational
complexlty of urder O~N-). The denslly dlstnbutlon

function ¡(x. y) gives the intensity color of the point

(x. y) in image space. In practical pattem recognition
applications the image space is reduced to a binary
version. and in such a case ¡(x. y) takes the value of

1 when the pixel (x. y) represents objects or even
noise and it is Owhen it is pan of the background.

In this section. a brief review of the Hu's invariant
moments is presented. The two-dimensional traditional
Geometric Moments of urder p + q of a density

distribution (intensity fonction) ¡(x. y) are defined
as

Central Moments J.1l'q are invariant to translation

and Illay be normalized to tum also invariant to arca
scaling through the relation:

l/p.
1] -

PIJ r
1100

The set of seven lowest urder RTS invariant functions

1J; include invariants up to the third urder. it is given
by:

After the works of Hu [1.2] several attempts have
been made to reduce the eomputation complexity
involved in the ealculation of the invariant moments.
From all these. some attempted to work only with the
objeet boundary. among these works there is the one of
Li and Sheng [5] whose method requires pixel-by-pixel
summations along the object contour in an ordered
way.

The work of Singer [61 is based on a polygonal
approximation of the object and a list of neighbouring
pixels.

Jiang and Bunke [71 repon using the Green's
theorem to shift from an arca integral to a line integral.
Their method requires a counterclockwise direction list
of the border pixels.

Jia-Guu Leu [8J uses a series of triangles to compute
the object moments. this method requires a list of the
object polygonal approximation venices in clockwise
direction.

Dudani et al [9J earried out moment invariant
computations over both. objeet body and con tour. using
a normalization factor different to that of the type
originally propossed by Hu. In the case of contour
moments these authors do not specify whether they are
performed by edge-tracing or image-space sweeping.

Mingfa et al r 10] computes boundary moments after
applying a boundary-tracing algorithm.

Fu et al [11] apply some pre-processing to obtain
the object edge and trace the boundary curve clockwise.
then these authurs use the Hadamard transfonnation to
compute the momenl invariants.

Wen and Lozzi [12J compute line moments of
object boundaries. They consider object polygonal
approximations and their method reguires a list of the
polygon venices so as to compute the moments of each
linear segmento

As it can be seen the abo ve mentioned aUempts to
compute the boundary moments have aH included sorne
son of edge-traeing. Even though those works are
proposing alternative methods to evaluate Hu's
traditional moments. they do not provide any
experimental data so as to compare their recognition
performance with that of Hu's method. they are rather
concerned with the computer complexity and
computational cost of the algorithms involved. The
results of the research [41 being reponed in this paper
lead to the conclusion that if applying the Chen's
improved moments it is more convenient to simply
sweep the image space and to consider the object pixels
as they are meto instead of carrying out edge tracing.

r/J, = ,],,,+ 1]02
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Discretizing equation (7), m"" results in

mpq = I f(x, y) xl' yq (8)
(X.Y)E e

1/1,= (1)'0 - 31),,)(1)'0 + 1)1')[(1)'0+ 1)12)'- 3(1J,1+ 1Jo,)'] +
+ (31)'1 -1)0,)(7],1 + 110,)[3(1)30+ 1),,)' - (1)'1 + 110')']

As usual the coordinates of the object centroid
(xc,Yc) are given by:

_ 2 2
ljl. -(11'0 -1102)[(11,0 +1112) -(11,1 +1103) ]+41111
(11'0 +11,,)(11,1 +l1u,)

notice that muo is in this case the length or the curve
C, the edge of the object.

to

( 10)

(11 )

In the investigation reported in this paper, 16
computer synthetized objects (N, = 16 ) (see figures 1
and 2) were used, each one was randomly sampled in 6
different RTS versions (N, = 6) and after computing the
seven invariants (see equations (4» of every sample s, a
point in the Invariants Coordinate Space was obtained.
For every object n the distances d, (s = 1,2,3, ... N,-
1 ) between its first sample invariant-space coordinates
and the coordinates of the other 5 samples was

V. THE INVESTIGATION

here ¡Jo<1 is the length of e. The Tlp. are seale and
translation invariant.

!J.pq = I f(x, y) (x-xc)" (y- yy
(x,y)E e

and it can be seen that after discretization it is not
necessary to carry out the sum in any particular order;
this means lhat (x, Y)E e can be taken in any order,
for example, as they are met when sweeping the image
space top-down and left-right.

The e.e. Chen's scale norrnalized central moments
are given by:

~ (~1Jpq=-. a=p+q+1 p+q=2,3,... 12¡
!J.oo

and the integral must be evaluated along the boundary
C of the object. In the discrete case !J.pq aboye

becomes(5)

(6)!J.pq =I I f(x, y) (x-xc>" (y- yY
x ,.

mpq = I If(x,y)xPyq
x ,.

IV. THE e.e. CHEN'SIMPROVED (nOUNDARY)
MOMENTS

where mpq and !J.P'l are computed by sweeping the

lmage space.

Here the Boundary Moments are quickly reviewed.
The paper of C.e. Chen [3) introduces a method to
compute a set of slightly different invariant functions
based on computations only along the boundary of lhe
object. In this way the computational complexity of the
problem and the computer time are reduced from
O(N') to O(N). In his work, e.e. Chen uses the same
RTS invariant functions given by equations (4) deduced
originally by Hu, however he introduces a new scaling
factor a instead of y (see equations (12) and (3» 10

achieve invariance to boundary length scaling.
The Chen's boundary geometrical moments are

given by:

m =5. f(x,y)xPy'ldl p,q=O,I,2,.... (7)
pq e

1/1,= (31)" -1)03)(1)'0 + 1),,)[(1)'0 + 1),,)2 - 3(1)" + 1)03)']- The boundary central moments --invariant

-(1)'0 -31)")(1),, +1)03)[3(1)'0 +1),,)2 -(1)'1 +1)03)'] tr't',Wation-- are given by:
J.lpq = fe f(x,y)(x-xc)P (y- yclq di

where the integral is to be evaluated along the
objectedge e.

in practical pattern recognition applications the
equations (1) and (2) are discretized for binary images
according to
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computed, \Vhcre the first sample \Vas laken as a
reference. Then the mean distan ce

( d) ,11 = 1,2,..., N \Vas calculated for every
/1 ()

where !/J," is lhe sel of invariants of the reference

sample and !/Ji is lhe sel of invariants of any sample.

The mean distance < d >" for object n is

obj ....,.t as the mean ds' This process was rcpeated for

each one of lhe three methods studied.
Each object sample, lhis is every object RTS

versioll, describes a paint in lhe invariants hcpta-
dimcnsional space of coordinates !/Ji ,i= 1.2,. .. ,7

ror the masslve case lhe scalíng factor was y In

equation (3), whereas for the boundary case the factor
was a in equation (12).

The research ineluded hollowed objecls, in this case,
objects with up to two hollows were used and their
massi ve and boundary moments were computed. The
massivc momcnts were evaluated as usual by sweeping
the image space.

When evalualing the improved momenls by walking
along the boundary, every object contour was tracked
down separately (in no pm1icular direction) and ils
invariant moments were compllled, the objecl boundary
invariants wcrc lhe sum of these con tour

moments. ror lhe boundary momenls by sweeping
the image space, the pixels in the inner and outer
boundaries were considered for compulations as lhey
were mel, this is in no particular order, jusI as a chunk
of pixels.

In tables (1), (2) and (3), i -!/Ji slands for lhe

improved momenls, !/Ji' for the lradilional momenls,
W appears \Vhenever lhe moments refer to those
computed by walking along the boundary, S appears if
lhe moments are related to lhose compuled by
sweeping lhe image space.

Tables 1 and 2 display lhe experimental resulls
obtained for lwo of lhe sixleen objecls used in lhe
sludy, the position, orientation and size of the objects
are random; each of the six RTS samples was evalualed
wilh the lhree melhods being investigaled, lhus every
object has three associaled sub-lables within eaeh table.

In every sub-table each 7-elemenl column represents
lhe coordinales of a poinl in lhe hepla-dimensional
invariants space. The firsl column in each sub-table was
chosen as the reference for the other five columns in
lhat sub-table.

In lhe case of non-hollowed objects il was
experimentally found tlJat the evaluation of the
boundary moments with lhe IwO methods sludied
produced exactly lhe same numerical values, lhis was
expected because in both cases il is lhe very same set of
pixels that is being considered.

In lhe case of hollowed objects, the values resulling
from the two ways of evaluating the boundary
invarianls were different, this was also expected, since
when sweeping the image space, pixels from inner and
outer conlours are considered togelher as a single
chunk and so a unique centroid is computed for lhem
all; when walking along the boundaries, every object
contour is associaled lo its particular centroid, its
moments are computed wilh respecl to this particular
centroid and the definitive object moments result form
lhe addition of these contour momenlS.

(14)

(15)

5=12 N-I (13). , .....

11 = 1,2, ... , N"

i = 1,2, ... ,7

N,-l

(d) = -' '" d" N, -1 L..J .f

s=l

The average dislance O for every object n in each
method studied is given by:

Afler detecting lhe object edge, the improved
(boundary) momenls i -!/Ji i= 1,2, ... ,7

were computed by two different melhods, in the
firsl, the edge pixels \Vere taken into account by
\Valking along the object boundary in no particular
direction, being this a rather slo\V process since it is
necessary to search in the neighbourhood surrounding
every pixel in order to find ilS nearesl neighbour, lhis
procedure would fail if the objecl boundary presenled
gaps.

In the second melhod the image space was simply
swept top-down and right-Iefl, \Vhenever an edge pixel
was mel it is considered in the computations, this
process is very simple and quick since there is no
particular edge sequence to maintain.

When compuling bolh, massive and boundary
moments the set of iovarianls (equations (4)) was used,

The distance d, bel\Veen t\Vo poinls in lhe invarianls
space yields a measure of the similitude of two
different samples of a given object, thus a null dislance
would mean thal t\Vo differcnt samples produce exaclly
the same sel of7 invariant functions !/J"i = 1,2,... ,7.

The distance bctween t\Vo points is measured with a
generalizalion of lhe Pylhagoras thcorem:

ti, = t (¡p;' - rp,J
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Fig. 1. Same RTS inslances of some of lhe computer synthctizcd objccts uscd in lhe cxperiments
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TABLEI
EXPERIMENTAL VALUES FOR A HOLLOWED OBJECT

RTS Invariant function table
Obiect : Hollowed Wrench (hollowed)

1/1, : massive moments i -1/1, : improved moments

Rotation 45° 25° -140° -133° -125° 23°
Size 80% 75% 85% 78% 50% 65%

1/1, S 1045 1.44 1.44 1046 1047 1.44

1/1, S 10.53 9.21 11.14 9.79 11.85 13.64

1/1, S 8048 8.51 8.97 8.70 9040 8.12

1/14 S 12.25 10.51 10.86 10040 13.70 10.99

1/1, S 23.06 20.04 22.54 22.03 25.77 20.57

1/16 S 17.61 15.88 16.53 15.31 20.02 17.96

1/1, S 22.87 21.44 20.80 19.97 25046 22.15

i- 1/1, W 3.01 3.08 3.06 3.03 3.04 3.11

i- 1/1, W 9.95 10.96 10.84 10.61 10.69 10.83

i- 1/13 W 14.04 14.07 14.26 14.71 14.84 14.35

i- 1/14 W 16.36 15.11 15.20 15.13 14.85 14.24

i- 1/1, W 32.16 32.15 30.26 31.31 32.13 29.69

i- 1/16 W 21.74 22.86 24.00 21.91 20.72 19.73

i -1/1, W 33.87 29.97 31.24 30.87 30.01 28.72

i- 1/1, S 4.69 4.73 4.73 4.67 4.73 4.78

i- 1/1, S 15.21 14.76 15.24 14.88 14.76 14.56

i- 1/13 S 19.19 18.81 19.76 19.08 20.08 18.86

i -1/14 S 20.34 19.17 20.44 19.70 20.60 20041

i- 1/1, S 40.23 41.19 40.55 40.50 41.62 40.04

i- 1/16 S 28.08 26.93 28.91 29.23 28.23 27.70

i -1/1, S 40.82 38.16 42.96 39.12 41.09 43.08

In everV case the obiect location is random
Since this is a hollowed object, then i- 1/1, w is different from i- 1/1, S

AlI values are -ln( abs( 1/1, ) )

25
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TABLE"
EXPERIMENTAL VALUES FOR A NON-HOLLOWED OBJECT

RTS Invariant funetion table
Obieet: L.shaped wreneh (non-hollowed)

!/Ji : massi ve morncnts ¡-!/Ji : improved momenls

Rolation _330 -1450 _270 400 _450 800

Size 75% 100% 60% 80% 110% 50%

!/J, S 1.31 1.31 1.26 1.34 1.30 1.32

!/J2 S 3.72 3.71 3.56 3.82 3.70 3.83

!/J, S 6.51 6.49 5.80 6.10 6.34 5.32

!/J. S 8.06 8.65 7.60 7.80 8.71 7.11

!/J, S 16.17 16.23 17.17 18.33 16.58 13.91

!/J. S 9.95 10.81 11.07 11.55 10.57 9.54

!/J7 S 15.44 18.18 14.31 14.75 16.59 13.52

¡-!/JI W 4.52 4.50 4.51 4.40 4.37 4.51

i-!/J2 W 10.54 10.48 10.40 10.30 10.18 10.47

i -!/J, W 15.97 16.20 15.54 15.78 15.83 15.13

¡-!/J. W 16.85 17.50 17.16 17.00 17.21 17.19

i-!/J, W 39.98 34.61 33.69 33.80 33.91 33.50

¡-!/J. W 22.83 22.82 22.37 22.49 22.37 22.72

i -!/J7 W 33.26 34.82 34.13 33.67 34.36 34.01

¡-!/JI S 4.52 4.50 4.51 4.40 4.37 4.51

i-!/J, S 10.54 10.48 10.40 10.30 10.18 10.47

i-!/J, S 15.97 16.20 15.54 15.78 15.83 15.13

i-1/J4 S 16.85 17.50 17.16 17.00 17.21 17.19

i-!/J, S 39.98 34.61 33.69 33.80 33.91 33.50

¡-!/J. S 22.83 22.82 22.37 22.49 22.37 22.72

i-!/J7 S 33.26 34.82 34.13 33.67 34.36 34.01

In everv case lhe obieel loeation is random
Sinee lhis is a non-hollowed objeel, lhen ¡-!/Ji W is equal lo ¡-!/Ji S

AII values are -In( abs( !/Ji»
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Table 3 displays the experimental average distances
D for the No = 16 objects (16 objecls, 6 samples per
object) investigated, fram these 16 objects, 8 were
hollowed and the other 8 non-hollowed. The resulling
average distances D for lhe hollowed objects
(identitied 1 to 8 in table 3) are:
¡-<Pi W D = 3.77, after normalizing: D = 1.00 (16)

i -!/Ji S D = 3.28, after normalizing: D = 0.87 (17)

<Pi S D = 3.19, after normalizing: D = 0.84 (18)

the average distances D for lhe non-hollowed objecls (9
to 16 in table 3) resulted

¡-<Pi W D = 3.36, after nonnalizing: D = 1.00 (19)

¡-<Pi S D = 3.36, after normalizing: D = 1.00..(20)

<Pi S D = 3.22, after normalizing: D = 0.95 ..(22)

the total average dislances for the 16 objecls are:

¡-<Pi W D = 3.57, after nonnalizing: D = 1.00 (23)

i-!/J, S D = 3.32, after normalizing: D = 0.92 (24)

<Pi S D = 3.20, after normalizing: D = 0.89 (25)

Fram lhe lolal average distances aboye it can be
seen that in general it is more convenient lo compute
the boundary moments by simply sweeping the image
space instead of carrying out edge-tracing.

lt can also be seen fram the resulls that in the case
of non-hollowed objects the distances in the case of
boundary moments are close enough to lhose
corresponding to the massive moments --which are
being taken as a reference for this research-- this mean s
lhat computing the boundary moments by sweeping the
image space implies a reduclion in computer time and
computalional complexity and enough accurateness.

When computi ng the boundary moments of
hollowed objecls, the resulting values suggest that
image space sweeping is more practical than object
edge-tracing. The fact that the resulting values are close
to those of the reference massive invariants, suggest
that the method prapossed in this paper to perfonn
pattern classitication of hollowed objects achieves its
mission satisfactorily.

ELECTRÓNICA. UNMSM
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TABLE III
AVERAGE DlSTANCES, O

I"varla"t Moments O
Object !/Ji S i-<Pi S ¡-!/Ji W

1 3.021 2.967 3.775
2 4.157 2.416 4.592
3 4.340 4,070 2.813
4 1.052 3.881 6.395
5 2,375 3.115 2.506
6 5.776 3,387 4.244
7 2.074 2.015 3.050
8 2.707 4.368 2.787

9 2.541 6.207 6.207
10 7.411 4.201 4.201
l1 2.652 4.605 4.605
12 2.289 2.641 2.641
13 3,847 2.751 2,751
14 1.462 2.148 2.148
15 1.876 1.581 1.581
16 3.666 2.756 2,756

Avera<>e 3.20 3.32 3.57
Table 3: Average Distances, O

Average distances O for the 16 objects used in the
experiment. Objects from 1 to 8 are hollowed. 'rom 9

lo 16 are non hollowed

t/J i :Massive Moments

i - q,i :80undary Moments

S : momenls COffiouted bv 5weeo¡n ¡mace 50aee
W : moments computad by walking al009 object

boundarv
Notica that the non.hollowed objects haya

¡-!/Ji S = !/Ji W

VI. DISCUSSION OF RESULTS

A study of the impraved (boundary) moments in
noise-free image-space has been carried out in a frame
of reference given by the traditional (massive)
moments.

The boundary moments have been computed
following two different methods, in

Ihe tirst, the edge pixels were considered by walking
along Ihe object boundary, this is by edge-lracing, in
the second method the pixels are taken into account as
they are met when sweeping the image space, this
implies no particular order. For the massive

moments the totality of the object pixels were
considered as usual by just sweeping lhe image space.

lt was found in the experimenl that in the case of
non-hollowed objects, lhe average distance D between
differenl object samples is the least when computing
the massive moments, a slightly larger distance is
oblained wilh the boundary moments.

If lhe traditional massive moments are taken as a
reference, it can be concluded that the Chen's boundary
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moments perform quite ",el\. This means that the
boundary momcnls and the massivc mOlllcnts are
practieally equivalent eoneerning distanees bet",een
objeets, however in the case of the massive moments
lhe eompulational eomplexity is O(N') while in the
boundary moments it is only O(N).
11has been experimentally found that from lhe three

methods studied. the mosl eonvenient is the
eomputation of the boundary momenls by sweeping the
image spaee. This conclusion is based on the fact that it
is more economical lO ",ork with only the boundary
pixels than with all lhe objecl pixels. and also in lhe
fael that there is no need to compute the boundary
moments by eonsidering the pixel sequence. it is
enough to compute them as lhey are mel when
sweeping the image space.
In order to compule the boundary moments 01.

hollowed objects, the inner and outer edges were
obtained for every RTS sample. In the case of the
improved moments by walking along the boundaries. a
walking was carried oul in lhe inner and outer edges
separately in no particular direction. The total boundary
moments in this case were con sidered as the sum of lhe
boundary moments 01. all the boundaries in the sample.
In the case 01. boundary moments by sweeping lhe
image spaee, the pixels of the inner and outer edges
were considered simply as they were met, lhis is, in no
particular sequenee.
It was found that lhe method propossed here to

evaluate the invariants of hollowed objeets perforrns
satisfactorily.
Besides the reduetion in eomputer lime and in

computational complexity. an addilional advanlage 01.
the improved moments by sweeping the image space is
lhat lhe boundaries of the object do not need to be
perfeet, lhere can be any size gaps and lhe
computations will not be significatively affeeled.
In the case 01. the improved moments by walking

along the boundary. the presenee of a gap may lead the
eomputalions to dire strails, so after obtaining the
boundaries of a sample it would be necessary to pre-
process so as to refill eventual gaps, a procedure lhat
implies additional computations.
Even though the objects used in this research were

computer synthetized and
consequently had very well defined boundaries, the

application 01. the boundary
momenls to real objects -whieh contours are not

necessarily perfect- would have no problem seeing that
when sweeping the image space the object contours do
not need to be impeccable.

ELECTRÓNICA - UNMSM

VII. CONCLUSION

lt has been experimentally found lhal the
eomputation of the Chen's improved moments yield
practieally the same average distances between
invariants as those obtained by Hu's massivc moments.
\Vhen computing the improved moments it is nO!

neeessary to use any ehain eode
representation 01. the object boundary. as suggested

by Chen. Simply sweeping the image space produces
exaetly lhe same values lhat ",ould be oblained by
edge-tracing.
The improved moments have been applied to

hollowed objeets, the results demonstrate thal lhis kiml
of objects may also be suceessfully elassified wilh the
boundary mament invariants.
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