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Commonly authors of literature dealing with chaos report a single and truncated chaotic event occurring
in the chaotic system they have investigated. This paper reports a multiplicity of chaotic events detected
in the non-linear damped and forced oscillator. In order to detect chaos in this oscillator, a Virtual Lab
(integrated and interactive computer program) was developed by the author of this report. With this Virtual
Lab many chaos simulations were executed and the resulting Poincaré Maps for angles of 0° and 180° were
extracted and filtered to avoid event duplicity. It has been found that chaotic events do not last forever;
they have a beginning and an end, which means they are transitory. No numerical connection has been
detected between the natural frequency of a chaotic oscillator with that of the periodical applied force.
Keywords: Nonlinear, dynamics, chaos, computer simulation, Runge-Kutta, Poincaré maps, numerical
methods.

Multiplicidad y transitoriedad de los eventos caóticos

Comúnmente los autores de literatura sobre Caos reportan un solo evento caótico truncado que acontece
en los sistemas caóticos que ellos han investigado. Este documento reporta múltiples eventos caóticos
detectados en el oscilador no lineal amortiguado y forzado. Con la finalidad de detectar Caos en este
oscilador, el autor de este reporte desarrolló un Laboratorio Virtual (software interactivo e integrado), con
el cual se ejecutaron muchas simulaciones y también se extrajeron y compararon Mapas de Poincaré para
ángulos de 0° y 180°, a fin de evitar duplicidad de eventos. Se encontró que los eventos caóticos no son
imperecederos, ellos tienen un inicio y un final, lo cual significa que ellos son transitorios. Tampoco se
detectó relación numérica alguna entre los valores de la frecuencia natural del oscilador caótico con aquella
de la fuerza periódica aplicada.
Palabras claves: Dinámica no lineal, Caos, simulación computarizada, Runge-Kutta, mapa de Poincaré,
métodos numéricos.

The most common -though not the unique- route to
Chaos is that of period bifurcation, in which the oscillating
system vibrating with a single period, eventually changes
and vibrates with two periods -bifurcates-, sometime later
these two periods are replaced each by other two new
periods, and so on until chaos sets in and it becomes im-
possible to foresee the next period of oscillation.

Usually the literature research, papers and books, deal-
ing with chaos report a single and partial cascade of period
bifurcations, this is, they show only a unique and truncated
cascade. This is confusing because the newcomer to chaos
land is urged to think that chaos once established is in-
finite and that chaotic systems experiment only a single
and unique chaotic event.

This investigation is about chaos in the nonlinear
damped and forced oscillator. It has been found that
chaotic events in this system are finite, they do not last
forever, it has also been encountered that this oscillator
displays many chaotic events. Even more, this research
has not found any connection between the natural fre-
quency of the oscillator and the frequency of the applied
force. Very likely other systems prone to chaos behave the
same way.

Real-life systems likely to experiment chaos are not
prepared to vibrate the way a chaotic system does, they
usually collapse soon after chaos begins. Mechanical de-
vices commonly present in factories [1,2] collapse soon af-
ter the system changes the frequencies they are supposed
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to oscillate with. The human heart is also an oscillator
and it is suspected that when it undergoes fibrillation, it
has entered chaos. Obviously, the systems just mentioned
are not adequate to perform a chaos research, for this
reason chaos must be investigated by means of comput-
erized simulation of mathematical models. Currently high
speed computers enabled with high resolution computer
graphics are of great help in chaos research. Evidently the
algorithms developed by researchers play a critical role in
these investigations.

A Virtual Lab [3, 4], an interactive and integrated
computer program, to investigate chaos in the nonlinear
damped and forced oscillator has been developed by the
author of this report. This Virtual Lab uses the Runge-
Kutta method to numerically solve the differential equa-
tion of the above mentioned vibrator. The program has
been prepared to execute up to 30 million time steps or
iterations.

Interested readers who are not so fond of computer
programming, may numerically solve the differential equa-
tion dealt with in this report, by means of commercial
computer softwares like MathLab, Mathematica, Maple,
etc., which are available in the market. It is worthwhile
mentioning that a very great amount of the literature on
chaos is based on research performed with these commer-
cial softwares. Obviously these investigations are limited
by what the softwares are prepared to accomplish.

Figure 1: In left, the State Space is the plotting of displace-

ment and velocitiy versus time (vertical axis). The depicted

curve corresponds to a damped oscillator, which as time elapses

reduces its amplitud and velocity until the ocillator stops. In

right side, the sketched plane P is the Poincaré section at some

angle θ. The curve intersects the Poincaré section at some

points which constitute the Poincaré Map at angle θ.

Brief introduction to Chaos research

This section contains a brief theoretical introduction to
the techniques used in this research.

The State Space

The time evolution of a system can be visualized in a State
Space [5–7], in the case of a mechanical system this is a
tridimensional plotting of displacement X(t) and velocity
V (t) versus time, as depicted in Fig. 1. The State Space
of a Hamiltonian of energy preserving system is known as
a Phase Space. The state space is a geometrical represen-
tation of the behavior of the system.

In the simplest cases a state space is presented as the
bi-dimensional projection of the evolution of the system
on the X − V plane, and if the system is not chaotic the
shape of its state space is smooth and understandable, but
when the system is chaotic the shape of the state space
becomes extremely irregular as time elapses, hence in or-
der to analyze the 3D-version of the state space a Poincaré
section, Fig.1, is used.

Attractors

The orbit in the state space of a simple pendulum is an
elipse, showing the energy conservation at points when the
position and velocity are zeros, respectively. But, with dis-
sipation the orbit reaches a point in the state space after
some oscillations. This means, that a system with dissi-
pation the orbit in the state space has been attracted to
some central region, in this case a point showing a lower
dimension.

Then, an Attractor is the orbit in the state space show-
ing the behavior of a system that settles down to, or is
attracted to a point in the long term [5].

The Fig.1 shows the state space of a damped oscilla-
tor, which eventually stops, it can be seen that the state
space orbit gradually approaches a point and once there,
it remains there. Whatever the initial amplitude of this os-
cillator, its orbits collapse to a point in state space, hence
the point is known as an Attractor. If the oscillator were
not damped, energy would be conserved and the shape of
the orbit would be a loop, circle or ellipse, and this would
be the attractor.

Chaotic attractors have a complicated geometry, they
are associated to unpredictable motions and they are frac-
tals, i.e., their dimension is fractional. Fractal structures
unveil more and more details as they are more and more
magnified.

Poincaré maps

Commonly in order to visualize chaos in a given system,
the Poincaré sections [5, 6] are extracted and plotted. A



Rev. Inv. Fis. 17, 141702852 (2014) 3

Poincaré section is the 2D plotting, see Fig. 1, of the
points where the phase space orbit intersects a surface,
usually a plane, at a selected angle chosen from 0° to 360°
on the X−V plane. The objective of the Poincaré section
is to detect any structure in the attractor, if there is one.

Notice that while the state space is a 3D plotting, the
Poincaré section is a 2D one, hence the latter is easier to
analyze than the former.

Experimental detection of the oscillation period

It is worthwhile recalling that in the case of a regular oscil-
lator the oscillation period may be experimentally obtained
as the distance in the amplitude versus time plotting, be-
tween any two consecutive points with the same phase.
Obviously, chaotic oscillators are far from regular, how-
ever this criterion at the time of inspecting the period is
maintained and, in the chaos argot researchers speak of a
period doubling cascade.

Figure 2: Forced oscillations of a vibrator immersed in a

medium of variable damping.

Analyzing chaos simulations

Chaos computer simulations are accomplished by numer-
ically solving the differential equations modeling the sys-
tems in which chaos is to be investigated. When using the
Runge-Kutta method to solve these equations, two time
series are generated [3,4], one being displacement x(t) and
the other velocity, v(t), both as a function of time. With
the x(t) and v(t) time series a State Space is generated.
Since directly analyzing the state space is rather difficult,
a Poincare Section at some selected angle is extracted and
plotted for analysis [3,4].

The Chaos research being reported

This research is focused in the chaotic oscillations of a pe-
riodically forced nonlinear vibrator immersed in a medium
of variable damping, which may be modeled by the me-
chanical system shown in Fig. 2, and which is mathemat-
ically represented by the differential equation

dx2

dt2
+ b

dx

dt
+ ω2

0 sin x = F0 sinΩt , (1)

where ω0 is the natural frequency of the oscillator and
Omega is the frequency of the applied periodic force F0.

At simulation time the damping b of the system was
kept constant and the applied force was continuously var-
ied, this is equivalent to maintaining the applied force con-
stant and varying the damping.

The Virtual Lab used in this investigation is pre-
pared to show on screen a vibrator oscillating according
to the simulation evolution and simultaneously depicting
the state space. This feature helps to understand the or-
bits appearing in state space, which not always are so easy
to follow, because for example, sometimes the chaotic os-
cillator makes weird kicks instead of completing an orbit,
some other times the oscillator makes unexpected stops
and changes in its motion direction.

The Virtual Lab [3,4] is enabled to detect the Poincaré
section at any angle. However it has been experimen-
tally found that the state space orbit not necessarily hits a
Poincare section at every angle, it has been observed that
for some angles the Poincare sections have very few hits
or they are completely empty. With the aim on maintain-
ing a unique frame of reference for all simulations, this
research was focused on the Poincaré sections at 0° and
at 180°. Previous research had determined that chaotic
events display rather rich Poincare sections at these two
angles.

Results

It has been encountered that chaotic events do not last
forever, they are finite, having a beginning and an end; ev-
idence of this may be appreciated in Figs.3, 4 and 5, where
the complete chaotic events are displayed. Also it has been
found that the studied system may display many chaotic
events. Actually some 25 chaotic events were detected,
but after screening them some of them were discarded
due to parameter similitudes and all were reduced to the
five shown in Fig.5, where to save space only Poincaré
Maps at 0° are shown.

The Fig. 3 displays the Poincaré Maps for a chaotic
event along 30 million time steps. The Fig. 4 displays
these maps for a simulation along 4.7 million time steps.
Recalling that the Poincaré Map allows visualizing por-
tions of the state space, it is evident that the phase space
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orbit is not uniform, the X and V behavior of the system
continuously changes as time elapses.

The Figs.3 and 4 displays two period bifurcation cas-
cades for the nonlinear damped and forced oscillator, both
are Poincaré Maps, the upper corresponds to 0° and that

at the bottom is at 180°. Obviously with higher-resolution
computer graphics more details may be appreciated. It is
evident that chaotic events are transitory, they have a be-
ginning and an end, it is also evident that the system
abandons chaos with the same smoothness it entered.

Figure 3: Chaos in the nonlinear damped and forced oscillator. The image shows the results of a simulation along 30 million time

steps. Up to three period bifurcations are clearly seen ath the left side. The upper and lower cascades are the Poincaré Sections

at 0° and at 180°, respectively. When higher resolution computer graphics are used to display this image, more bifurcations and

details are seen with the naked eye. It can be seen that the chaotic event has a beginning, at the left, and an end at the right

side, besides this, it is also evident that the system leaves chaos, right side, with the same smoothness it entered into it at the left

side.

Figure 4: Chaos in the nonlinear damped and periodically forced oscillator. Poincaré Sections for 0° (top) and for 180° (bottom)

along 4.7 million time steps. It is evident that chaos does not last forever. When antering chaos there is a series of periodic

bifurcations, when abandoning chaos there is a series of period collapses, being in both cases a smooth transition.
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Figure 5: Poincaré Maps at 0° (Periods vs time) for five different chaotic events. As it can be seen, all the events have a beginning

and an end and, the system abandons chaos as smoothly as it entered it. In each case the number of time-steps is shown.

For every identified chaotic event the natural frequency
of the oscillator was compared with that of the applied
force and, no common feature was observed, this is, no
connection between them was detected.

Concerning the relationship between the frequencies
associated to the chaos events depicted in Fig.5, the rela-
tion ω0/Ω does not show any regularity; their values, from
top to bottom, are the following:

ω0

Ω
= 1.39, 2.676, 2.49, 3.038, 2.7452. (2)

In these simulations when the system abandons chaos
the oscillation amplitude increases, if not immediately, af-
ter some short time, this is because in this simulation the
applied force is periodic and every time higher. The same
behavior is observed at the beginning of the simulation,
before the system begins to bifurcate its period to enter
chaos.
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Conclusions

Many chaotic happenings were detected in the nonlinear
damped and forced oscillator; these were later classified as
belonging to five different events. This means that there
is a multiplicity of chaotic events. If investigation is con-
tinued it is highly probable that more chaotic events will
be detected in this system.

It has been found that chaotic events are transitory,
they do not last forever, this is they have a beginning and

an end; additionally it has been observed that the system
leaves chaotic events with the same smoothness it started
them. When entering a chaotic event a bifurcation of the
period is observed, then each of these bifurcations bifur-
cates again and again, and then the system bursts into
chaos. When abandoning chaos the opposite effect is ob-
served, this is, the system collapses the period cascade
by pairs until finally it finishes with a single period. This
means that the transition towards chaos is as smooth as
the transition out of it.
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