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Structure of the Velocity during a Chaotic Episode
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An investigation on the structure of the velocity in the nonlinear damped and forced oscillator,
during a chaotic episode has been carried out. It has been found that the extreme values of the
velocity show a bifurcating cascade as time elapses, just like the cascade detected in the extremes
of oscillation amplitudes versus time, which leads to the very well-known bifurcation cascade of the
periods during a chaotic event. It has been encountered that displacement and velocity during a
chaotic episode in the investigated system, keep both the same structure. This similar structure
detected in displacement and velocity suggests the possibility that these two magnitudes share the
same pattern in other chaotic systems.
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Estructura de la velocidad durante un episodio caético

Se ha realizado una investigacion sobre la estructura de la velocidad en el oscilador no-lineal forzado
y amortiguado durante un episodio caético. Se ha encontrado que los valores extremos de la
velocidad muestran una cascada de bifurcacién a medida que transcurre el tiempo, tal como la
que se observa en los valores extremos de la amplitud de oscilacién versus tiempo, lo cual conduce
a la muy bien conocida cascada de bifurcacién del periodo de la oscilacién durante un episodio
cadtico. Se ha encontrado que el desplazamiento y la velocidad durante un evento caético en el
sistema investigado, mantienen ambos la misma estructura. La estructura similar detectada en el
desplazamiento y la velocidad sugiere la posibilidad de que estas dos magnitudes manifiesten el
mismo esquema en otros sistemas cadticos.

Palabras claves: Oscilaciones no-lineales, caos, desplazamiento, velocidad, Mapas de Poincaré.

From elementary oscillations theory, specifically
from the simple harmonic motion (SHM), it is known
that the velocity and acceleration of an oscillator also
oscillate as time elapses. The SHM is a smooth os-
cillatory motion with smooth velocity and acceleration,
where the displacement, the velocity and the accelera-
tion have all the same structure, the three are harmonic
functions of time.

Obviously it is intuitively expected that a chaotic
oscillator must have both, disordered velocity and dis-
ordered acceleration, even more, from the experience
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with the SHM it is expected that displacement, veloc-
ity and acceleration must share the same pattern. When
watching with the naked eye and in slow motion [1]] the
(z,v,t) evolution in State Space, it results evident that
the velocity of a chaotic oscillator is rather messy; this
may also be appreciated in Fig. 1, which shows a frag-
ment of a chaotic event, in this figure the displacement
and velocity are quite disordered, however, the question
of the question is whether the velocity during a chaotic
event, is simply messy or it has some structure and, if
so, what is that structure.
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A plotting of acceleration versus time shows a sim-
ilar behavior. The investigation reported in this paper
deals with the structure of the velocity of an oscillator
while it undergoes a chaotic episode. The study of the
acceleration is left for a future work yet to come.

Velocity of the system

With the aim on visualizing the to-and-from motion
of an oscillator, a virtual simulator [I] which shows on
computer-screen the motion of a little ball, while motion
graphs are also sketched on screen, has been developed
by this researcher. As the little ball oscillates this sim-
ulator simultaneously depicts curves of displacement,
velocity, acceleration and space state.

Displacement vs time

Welocity vs time.

Figure 1: Fragment of a very simple chaotic event. Top:
Displacement (Amplitude) vs time. Bottom: Velocity vs
time. Obviously not only the amplitudes of oscillation are
messy, the velocities are too.

When this simulator showed the evolution of a
chaotic oscillator, it was observed that the velocity be-
haves in an unpredictable way. When the little ball
forms part of a pendulum, it was also observed that the
chaotic pendulum eventually completes several turns in
a given direction around its central point, and not nec-
essarily goes back completing the same number of turns
in the opposite direction.

In a few words, it was observed that the speed of
a chaotic oscillator has an irregular behavior, impossi-
ble to foresee and which deserves further study. In this
research and with the aim on detecting any structure
-if there is one- in the velocity of a chaotic oscillator,
a computer program that generates plottings of the ve-
locity as the simulation takes place, was developed.
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The Poincare Map

A methodology to study the evolution of a dynamical
system is to analyze -its tridimensional- State Space
[2,3] (Figure 2) and, one way of achieving this is by
means of bi-dimensional Poincare Maps [2H4].
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Figure 2: The State Space is the 3D plotting of displace-
ment and velocity versus time (time along the vertical axis).
In this case the depicted curve is that of a damped oscillator,
for this reason the curve shrinks with time until the oscilla-
tor eventually stops. The sketched plane P is the Poincaré
section (or plane) at an angle 0 with the z-axis. The curve
intersects the Poincaré plane at some points which consti-
tute the Poincaré Map at angle 0. Notice that theoretically
there are infinite Poincaré Maps. The sequence of (z,v,t)
points on State Space is known as “The Flow” of the system.

The Poincare Plane P, may be seen as a tomo-
graphic cut along time of the State Space, see Figure
2. This plane P, is defined at some angle with the a-
axis. The Poincare Map is the set of all the intersections
of the (x,v,t) curve -the flow of the system- with the
plane P, at a predefined angle.

In this way the Poincare Map contains the structure
of the State Space at the angle it is extracted. Obuvi-
ously, (see Figure 3) the structure of displacement is
obtained at angle # = 0, the structure of velocity is
obtained at 8 = /2, and so on.

From the experience of this researcher, the Poincaré
approach works very well as long of the oscillator main-
tains constant or almost constant its center of oscilla-
tion, like the case of the damped oscillator shown in
figures 2 and 3.
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Figure 3: Projection of tridimensional State Space (z, v, t)
points over the XV plane for a damped oscillator which main-
tains constant its oscillation center. Extreme values of am-
plitude (dislacement) are on positive and negative sides of
x-axis, while extremes velocities are on extremes of v-axis.
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Figure 4: Projection of State Space (z,v,t) points over
XV-plane. The sketch shows the connection of X-V axes
with different angles for Poincaré Maps. Planes at 6 = 0

and 0 = 7 collect the extreme values (positive and negative)
of the oscillation amplitude, while planes at 6 = 7/2 and
= 37/2, capture the extreme values of oscillation velocity.

In the case of an irregular oscillator, which con-

stantly displaces its rotation (equilibrium) center, so-
phisticated computer programming must be made to ex-
tract not-so-obvious information from the State Space.
An example of this situation is depicted in Fig. 5,
which displays the projection of the tri-dimensional
State Space on the VX plane. In this case the oscil-
lator initiates its motion oscillating on the negative side
of its resting position and, little by little displaces its ro-
tation center towards the positive side of its equilibrium
position. As it results evident in Fig. 5, the Poincare
map at 180° will be rather rich in this case, while that
at 0° will result very poor.

X(t)

Figure 5: Top: Amplitude vs time. Bottom: Projection of
State Space on the X-V plane. The oscillator starts oscillat-
ing at the negative side of its equilibrium position and then
continuously changes the center of its oscillations, eventu-
ally the amplitudes reach the positive side of the equilibrium
position, but not for too long. Obviously, in this case the
Poincaré Map at angle 0 is rather poor.

State Space of a Chaotic Oscillator

In the case a regular non-chaotic oscillator, the State
Space is neat and understandable, to the point that the
motion of the oscillator is immediately understood. In
the case of a chaotic oscillator (see Fig. 6) the State
Space has a highly disordered appearance; it looks lit-
erally chaotic in the common sense of the word.
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Figure 6: Projection of the tridimensional State Space of
a chaotic oscillator on the XV plane. As it can be seen
the plotting has a very messy appearance, it looks literally

chaotic.

The mathematical model used in this re-
search

The model used in this investigation is that of the non-
linear, damped and forced oscillator, whose differential
equation of motion is

d*6 b\ df F

Iz + <m) xu + wising = (m—(2> sinQt (1)
and where the author of this report has previously de-
tected several chaotic events [5Hg].

This second-order differential equation is numeri-
cally solved by means of the Runge-Kutta method in
a VirtualLab [9] completely developed from scratch by
the author. In the Runge-Kutta solution process values
of displacement and velocity are generated for every
time step, these values are used to depict a virtual and
tridimensional State Space in computer memory.

Results of the investigation

The results of this investigation are condensed on fig-
ures 7 and 8, which show the extreme values of oscil-
lation amplitude (Fig. 7) and those of velocity (Fig.
8).

In a previous research with the mathematical model
used in this investigation, this researcher found that
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chaotic events in this system were finite -they have a
beginning and an end- and it was also encountered that
multiple chaotic events are also possible [7,[8]. In this
research it has been discovered (see figures 7 and 8)
that the velocity has in general a structure similar to
that of the corresponding oscillation amplitudes.

Figures 7 and 8, display a common panorama ob-
served in the multiple [7.18] chaotic events detected in
the system under investigation. In all cases the oscilla-
tion amplitudes and corresponding maximum velocities
have similar structures. Amplitudes and velocities show
similar bifurcation cascades, at the same time.

In figure 7, the plottings of the extreme values of
amplitude indicate that at first there is a single ampli-
tude of oscillation, which implies a unique oscillation
period, then there are two interchanging extreme val-
ues of oscillation, which means that the system oscil-
lates switching between two periods, this is, the initial
period has bifurcated. Next each of these two periods
splits in other two each. The period-bifurcation process
continues until it becomes impossible to foresee what
will be the following value of the maximum amplitude,
this means that the period has become impossible to
predict and, that chaos has set in.

In figure 8, the plotting of the extreme values of
velocity versus time indicates that initially the system
oscillates smoothly accelerating until it reaches a maxi-
mum and almost constant value of velocity. After some-
time, the system keeps oscillating and accelerating un-
til two maximum and alternating values of velocity are
reached, the velocity has undergone bifurcation. Af-
terwards each maximum velocity splits again, and the
process continues, until it becomes impossible to foresee
what will be the next extreme value of velocity.

Though impossible to foresee before the investiga-
tion, the similitude in structure (similar bifurcation cas-
cades) detected between displacement and velocity for
the chaotic oscillator is not so surprising after all, be-
cause amplitudes and velocities are 90° apart in State
Space, and the flow of the system cannot vary too much
through such a short distance.

In figures 7 and 8, it results evident that during a
chaotic event, the extreme values of amplitudes as well
as those of velocities are not necessarily symmetrical
at both sides of the (main) equilibrium position of the
oscillator.

Once the system abandons chaos the oscillation am-
plitudes as well as the corresponding velocities, if not
maintained constant, they vary slowly and gradually,
with no additional bifurcations.
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Figure 8: Shown the extreme values of oscillation velocity versus time.

Conclusions

An investigation to detect structure in the velocity dur-
ing a chaotic event has been carried out for the nonlinear
damped and forced oscillator. It has been detected that
indeed, there is a structure in the velocity while the sys-
tem undergoes a chaotic event. Many chaotic events
were studied in the above mentioned system and, as in
the case of oscillation amplitudes, there are bifurcation
cascades in the velocity. In general, it has been found
that the velocity structure during a chaotic event in the

nonlinear damped and forced oscillator is very similar to
the structure of the corresponding amplitudes. This be-
havior suggests what to expect concerning displacement
and velocity in other chaotic systems.

It has been encountered that the extreme values of
oscillation amplitudes as well as those of velocity are not
symmetrical with respect to the equilibrium position of
a chaotic oscillator.

As soon as the system terminates its chaotic stage
there are no further bifurcations, neither in amplitude
nor in velocity.
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