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Abstract

As gravitation and electromagnetism are closely analogous long-range interactions, and the current
formulation of gravitation is given in terms of geometry, we expect the latter also to appear through
the geometry. This unification has however, remained an unfulfilled goal. Thence emerges a relativistic
theory of the asymmetric field by generalization of the general relativity. It will demonstrate in a new
way that the field-equations chosen for the non-symmetric fields are really the natural ones.
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Una teoria relativista del campo
Resumen

Como la gravitacién y el electromagnetismo son interacciones de largo alcance muy analogas, y la
formulacién actual de la gravitacion se da en términos de geometria, esperamos que esta tltima también
aparezca a través de la geometria. Sin embargo, esta unificacion sigue siendo un objetivo incumplido.
De esto surge una teoria relativista del campo asimétrico mediante la generalizacion de la relatividad
general. Se mostrard que una nueva forma de las ecuaciones de campo elegidas para los campos no
simétricos son realmente las naturales.
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de Maxwell.

Introduction

Gravitation is currently explained through the theory
of general relativity (GR). As we know, there are at least
two major difficulties with GR [1] [2] [3] [4] [5] [6] [7]
[8].Firstly, it shows an intrinsic difficulty in its unifica-
tion with the rest of physics, as it is a nonrenormalizable
theory [9] [10] [11] [12]. Asumptions of dark matter and
dark energy in order to explain the observations [13] [14].
Let us note that these ‘dark entities’ could not have been
tested so far by any direct detection experiment, besides
lacking any convincing theoretical motivation. Anyway,

*mvalenzuelad@ipn.mx

if a theory requires more than 95 % of the content of the
Universe in the form of dark entities, it is an alarming
signal to turn back to the very foundations of the theory.

Quantum field theory, on the other hand, is plagued
with the divergence difficulties. Though the process of re-
normalization renders the theory in agreement with expe-
riments (but not solving the problem itself), nevertheless
this indicates that we cannot ignore contributions from
gravitation at very high energies. It has long been specu-
lated that if gravitation is included, certain infinite sets of
divergent Feynman diagrams can give finite results [15].

Thus, we see pressing reasons to have a theory of

© Los autores. Este es un articulo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons @
Atribuci6on 4.0 Internacional (CC BY 4.0) que permite el uso, distribucién y reproduccion en cualquier medio, siem-
BY

pre que la obra original sea debidamente citada de su fuente original.


http://www.unmsm.edu.pe/
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica
https://creativecommons.org/licenses/by/4.0/deed.es
https://doi.org/10.15381/rif.v24i2.14245
https://orcid.org/0000-0002-8532-229X

Rev. Inv. Fis. 24(2), (2021)

gravitation compatible with other interactions-perhaps
the electromagnetic. Expectedly, the properties of the
new theory may be beyond the conventional paradigms.
In the following, we sketch a geometric scenario whe-
rein gravitation and electrodynamics appear naturally
unified [16] [17] [18] [19]. However, it should be men-
tioned that there are two other interactions, the weak
(also electroweak [20] [21] [22] [23] and the strong nu-
clear [24] [25] [26].

Our main task now is to find out whether there is a
sufficiently convincing method of finding a unique set of
field-equations for the non-symmetric fields [27] [28] [29]
[30] [31] [32] [33]- The only reason why this derivation
may seem not completely satisfactory is that we subject
the field a priori to two conditions:

1
iy =5 (T —Th) =0, (1)
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To the convariant tensor g,, we can associate a con-
travariant one ¢g"” uniquely by the condition:
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where 5;‘ is the Kronecker tensor.

In this article we shall show that an analogous ar-
gument can be used for the justification of the field-
equations also in our case. It will demonstrate in a
new way that the field-equations chosen for the non-
symmetric fields are really the natural ones.

The infinitesimal parallel translation

We now introduce a quantity F;\w which transforms
like the corresponding quantities in Riemannian geom-
etry [34]. In analogy to the quantities of Riemannian
geometry, the Ffw shall be Hermitian simmetric with re-
spect to the lower indices

Doy =T (4)

By contraction of the tensor £ (I, —
vector

I},) we get the

r, = % (FfM - Fiu) —0. (5)

From the fundamental laws it follows that here the
parallel translation of a vector is not unique operation
for I'. We therefore introduce the following symbols:

(SAJ); = FinAadx",
SA\ =T Anda”, (6)

n

0Ay = % (T%, +T5) Aada”,

Corresponding symbols are introduced for the infini-
tesimal parallel translation of covariant tensors as well
as for covariant differentiation, e. g.:

A 9Ar
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3 aA)\ A n
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A 04 1
Vb = S5 4 2 (T, + T ) A% 9)
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aA}\ 1 « o
Vidy =55 (S, + T Aa. (12)

In the case of the gravitational theory it is essential
that besides the g,. tensor we also have the symmetric

infinitesimal displacement 1",);,,. This displacement is con-
nected with g, by the equation

Oguv

oxP gLy — gual'py = 0.

If the differentiation index p is to be on the right
in a certain term, we put + under the corresponding
tensor-index; if on the left, put — under the index. As an
illustration we give a new form to the preceding equa-
tion [35] [36]:

— 8g v @ @
(Vngiz :) 8:;71 - gaul—‘un - g‘uarny = 0 (13)
For the following it is esencial to realize that the right
side of equation (13) has tensor character even if Eq. (13)
is not satisfied. For the Kronecker tensor we get
¥ - 5
V,,éi =0, Th, —0iT,, =0= Vo, = VT,&[;.

On the other hand:

1
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"
V,,é; =T, -y, + 2Fang Jun-

Therefore, in constructing tensors under the symbol
of differentiation one has to watch the character of the
indices carefully. Only for indices of the same character
are the operations of contraction and of absolute diffe-
rentiation interchangeable.

In the equation (13), if we multiply by 1¢"” we get
[36]

1 8\/ —g 1 A by
Z gt . _ =
29 v'f]gMV \/jg axn 2 (F”M + F)\W) 3 (14)
and by 1/—g we compute the vector density
vy ov/— 1
*\/ 99"’V nguv 8m’7 — 3V -9 (FQA + Fin) .

Thus we define the absolute derivative in terms of
scalar density [30]

(Vav=9 =) aﬁ - %F (Fx + FM) =0. (15)

If we multiply Eq. (6) by —g"?¢°" and sum with res-

pect to p and v, then, because of (3):

8uy  OGH*
Mpglt_’_g

Oxn dzn I = 0

we get

Vogtt =) 297 L gevpn o grepr 16
( ng —) 5gr 79 Tan+9¢" Iy =0 (16)

The main difference of the theory of the field as com-
pared to the pure theory of gravitation, with regard to
the equations determining IT', lies in the fact that the
equations which determine I' in terms of the g—field can-
not be solved in a simple manner.

If we multiply (7) by /—g we get that

9 (vV=94%)

A
Vy (\/—gA+) =g TV~ gA T, —
1 Ov/—9 — A
AT 83&’1 —94%,
or according to (15)
A 0 (v/—gA
v, (v=94%) _0(V/e) — )+FAMF

_5 \4 —gA’\ (an + Ff]ﬂ) : (17)

In an analogous manner, if we multiplied the right si-
de of (8) by a scalar density v/—g, then we get the tensor
density

2 (vV=947) =

- 1 \/7\/7*4)\3
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or according to (15)

(FA)

v, (\/TgAi) 4V TgARTY, —

_5‘ [—gAN (T4, +T%,)  (18)
and for the divergence

FA)
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also

(V=94
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We can now calculate the covariant derivative of a

tensor density from the rule for differentiating a product.
For example:

VTIQWJ =V, (\/ _gg;w) = ( nvV = ) V= Vng
This vanishes, if (16) is satisfied. More explicitly:

0 (V=99") = ( F

\/71—‘)\ )gpu +
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Therefore we have:

2% 3%
Vagt™ =V, (x/*gg*’) =0
or
pv
Vi (Vfgg+‘) = (Fg“”) +V—g99™Th, +
+\/—gg“"Fm —V/=gg"'Tyx = 0. (21)

On the other hand:
Vg = Vs (V gw) = (Vn\/ —g) Juv +V—=9Vnguv.

This vanishes, if (13) is satisfied. More explicitly:
7 (\/*QQAW) = ( -V F ) uv +
e ( '

gaur glmf‘gl,> .
Therefore we have:
Va8uv = Vy (V —gguu> =0
+- +=
or
Vi (\/ *ggig> Dzn (\/ g;w)
V=991l —

— V=990 T —
V=99 Ty = 0. (22)
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Curvature

We start from the expression for parallel translation,
e. g. according to the first of the equations (6). By trans-
lation of a vector along the boundary of an infinitesimal
surface-element, it is obtained a tensor of curvature just
as in the relativistic theory of gravitational field.
Thus, it is obtained the curvature tensor
[ ary, ary,
pvn oxn ozv
Contracting with respect to A and 7 it is obtained the
contracted curvature tensor
ary, s
oz oxV
The tensor R, is not Hermitian. We form the Her-
mitian tensor R}, = 1 (RW + EW). We thus get

8FZV 1 OFZP arzu A e
"3 ( FrR T B

Lo
+5T (F5, +17,) - (25)

A a A fe"
+ I, — —To Ty, (23)

Ry, = R\ = + a5, — —T) T8 (24)
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There also exist a non-vanishing contraction with res-
pect to A and p

0 0
R, = %Fﬁu - @an
or
1 0 10
szn = 2 9z (ng + sz) T 99z (an + FZ/J) -
9 0
Er F"vp + oxv anp

which in general does not vanish even if (13) is satis-
fied. Namely, if we transform the right-hand side using
the equation following from (14)

0 X A 0 by A\ —
s (1) =5 (e =0 e
we get
0 0
e ___ Y e P
Ropun = Oxn F"vp * o (A

This will not vanish in general, but, it will vanish
when the field satisfies equation (1).
For the anti-Hermitian part, we get:

1 ~ 1 ore, ore,
P =~ (RW - Rw) == (— BP 4 22 >+Fﬁuf’§p;
\

2 2 Oxv Ox#
(27)
considering (26) this becomes
P, = ! V.4, + VI 28
;w—_§ VMJ"" ptvp ( )
+ +

V2 \2
Hence the anti-Hermitian part of P,, vanishes when
(1) and (13) are satisfied.
First we want to make another formal remark, which
serves to prepare the derivation of the field equations.

75
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If in (21) we contract to form V, (\/fgg+’) and
nv

Vu (\/fgg+_)7 then by subtraction we get

3 [V (v=as) - v (v=a™)] =
O (v=ad¥) ~vTagtry,  (29)

= 9zv

where \/—gg”~ is the symmetric, \/—ggﬂvu is the part
anti-symmetric of the v/—gg"”. Hence, if (13) is satisfied
we have identically

ox (V=9gTy, ) = 0. (30)

From equation (29) we see that equations (1) and (13)
imply

Vs (v=g) =o0. (31)

Field equations

It is now our aim to determine field equations which
are compatible with our definitions (13). This we achieve
through the application of a method which is already
known from the theory of gravitation [38, 39]. From
guv and Ff;l, and their derivates we construct a Lagran-
gian density-function £ whose integral we vary indepen-
diently with respect to g and I'. .Z is to be chosen so that
the variation with respect to the I' yields the equation
(13) and with respect to g will then yield the proper field
equations.

We first construct a new tensor by substracting a cer-
tain tensor Sy, from R}, . According to (14) we have that

5, 0Uory=g) 1

o7 12 (m + Fin) (32)

is a vector. From it, we construct the tensor
V.Su (= Su) getting
+

6, = P08v=3)  9oav=g)p

S S oz~

1[0 o
-3 {% (Ff\\ﬂ + F:)\) - (Fia JFF?M) Fw] - (33)
We get
* / 0 o A o
R, =Ry —Sw = B?F“” — Il —
_9*(logv=g) , 9(logv=9) 1 (34)
Oxrox? o> .

From this we construct with the help of the tensor-
density /—gg"” the Lagrangian density-function

L ==gg" R}, (35)

The variation of the integral of .Z with respect to I‘fw
and /—gg"” yields:
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§ [ ZLdr = [drs(v/—g9"") Rh — fdf[axuw (vV—99"") +
—[adr [r?TU (V=99"") + V=99 T, + V= QMFUA —V=99"" 35 az"} Ol
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o2 (V=99""T},)] 6 (inv=g) 36)

From (36) we get, because of (14) and (21):

nv ya—
\& (\/jgg“) =& 79 Dy V=99""T4, +
oxn
v Vl 8
+v=99""Ta = 5\/799“ =

PRI

The variation with respect to /—gg"" yields

b (V=a™) = (Vi) B — |58

+87)‘ (\/ —gg“"Fz\w)(S (log \/—g)
where

6 (logv—g) = V=99"") .

2\/—9;“/ (

Substituting this expression, we get as the result of
variation with respect to /—gg"”

L [P (/=g9") |
2v/—g OxrOx°
+ﬁ (v _ggpo‘F;\U)guy.

Guw =R}, —

(38)

The field equations following from our variational
principle are then

Vo (V=g9*") =0 (39)

G = 0. (40)

The first system is equivalent to (13). The second sys-
tem can be transformed, using the first. Namely from
(21)7 because of (14):

(\/79‘”’) + Fgoﬂll-*gn - \/fgg}mrj\p\ =Uu.
c‘%c" v

In the same way, from (21) and (14) follows:

(V g )+ Vv g"l FMA + vV g"l’/l"n/\ -

830"
We have therefore,

9% (V=99™) — A

Oxv Oz dxv ( 99" FM) -

0 v v
—@ <\/ —99" F%A) = W (\/ —g99 nrivn) . (41)

We can therefore write

* 1 g A
Guw =R, — ﬁ@ <v —99 nP%}) Guv (42)
1 0 nA p
GNV R,ul/ + 5= 2\/7 8:10* vV —99 F Guv- (43)

The last term of G, vanishes if we consider the equa-
tions (1), (29) and (31). The remainder is then identical
with the once contracted curvature tensor. Therefore, the
field equations are therefore written explicity

Oguv
ox"

V,,giz = gowr guargu =0 (44)

Thy=0 (45)

\%

8 fed A o 82 (IOg vV )
@FW ~Fuolw = oxHoxv
9(log v= )r* =0.  (46)

oz

Gu =

The foregoing derivation shows how naturally we can
extend general relativity theory to a non-symmetric field,
and that the field-equations are really the natural gene-
ralizations of the gravitational equations.

The relativistic theory of gravitation

First, we consider g,, symmetric. By changing p to
v in (13) and subtraction we obtain:

Vpgﬁgfvﬂgig = gaw (Tp = Tpu) +9ua (U5, —T7,) = 0.
(47)
Therefore, the I' are symmetric in the last two indices
Pzp = Pgu
ry, =T7,.

The equations (13) can be resolved and we obtains

A l xo [ OGou | Ogup _ oy
L = 29 (81:” + Oz dzr )’ (48)

Equation (48), together with G,,,, = 0 are the gravita-
tional equations in the relativistic theory of gravitation.
This equations seems to be the most simple and coherent
derivation of the gravitational equations for the vacuum
to me.
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Maxwell’s equations

If there is an electromagnetic field, then g,, or
vV—gg"” do contain a anti-symmetric part and cannot
solve the system (13) to the I'j;,. We succeed in resol-
ving the problem however, if we restrict ourselves to the
first approximation. We shall do this and once again pos-
tulate FﬁA = 0. Thus we have

\2

Guv = 75/,1& + Yuv (49)

where 7,, should be infinitely small in first order. We
neglect quantities of second and higher orders. Then the
I';, are infinitely small in first order as well.

Therefore the system (44) takes the form

8 v v
87; —TY, —T%, =0. (50)

After applying two cyclic permutations of the indices
u, v and p two further equations appear. Then, out of
the three equations we may calculate the I':

1 /0y Ovp O
P _ = P P u
Lo = 2 ((993” t oo T Oar ) (51)

From equation (51) we deduce that the equation (46)
is reduced to the first and third term. If we put the ex-
pression (51) into (46), then we obtains

_ 62’71/# 827;21/ aQ’YPM _ 62700 =0. (52)
OxPOxr ~ OxPOxt = OxvOxP  Ox¥OxH '
Equation (45) then gives
87>\va
prea 0. (53)

Now we put the expressions given by vuv = Vv +Yur
- A\
into (52) and obtain with respect to (53)

7

The equations (53) and (55) for the electromagnetic
field do not contain the quantities .., which refer to the
gravitational field. Thus both fields are independent in
first approximation. The equation (53) is one Maxwellian
system [40-42].

Concluding remarks

We have constructed a theory of the field, starting
from the field of infinitesimal displacement. Also, we cal-
culate the curvature tensor and define the contracted cur-
vature tensor. With this contracted curvature tensor and
the variational principle, we deduce the field equations. If
we were sure that a non-symmetric tensor g, is the right
means for describing the structure of the field, then we
could hardly doubt that the above field equations are the
correct ones. In addition, we have assumed the symmetry
of gu, and F;\w to obtain the law of the pure gravitational
field.

Finally, the expressions

a’Vuvv a’vau a’Vva
OxP + Ox” + Oxr’

do not vanish necessarily due to (53) and (55), but
their divergences of the form

Pl MM 0o Oup
\2 + \ \ — 0

dzr \ Oxr oxv * Ozt

however do. Thus (53) and (55) are Maxwell’s equa-
tions of empty space.
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