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Abstract

As gravitation and electromagnetism are closely analogous long-range interactions, and the current
formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the
field by generalization of the general relativity. The derivation presented shows how naturally we can
extend general relativity theory to a non-symmetric field, and that the field-equations are really the
generalizations of the gravitational equations. With curvature tensor and the variational principle, we
will deduce the field equations and Bianchi’s identities. In consecuense, the field equations will find
from Bianchi’s identities.

Keywords: Infinitesimal parallel translation, Curvature Tensor, field equations, Maxwell’s equations..

Una teoria relativista del campo II: Principio de Hamilton e identidades de Bianchi

Resumen

Dado que la gravitaciéon y el electromagnetismo son interacciones de largo alcance muy anélogas, la
formulacién actual de la gravitacion se da en términos de geometria. Por lo tanto, surge una teoria
relativista del campo mediante la generalizacién de la relatividad general. La derivaciéon presentada
muestra cuan naturalmente podemos extender la teoria de la relatividad general al campo no simétrico,
v que las ecuaciones de campo son las generalizaciones de las ecuaciones gravitacionales. Con el tensor de
curvatura y el principio variacional, deduciremos las ecuaciones de campo y las identidades de Bianchi.
En consecuencia, las ecuaciones de campo se encontrarédn a partir de las identidades de Bianchi.

Palabras clave: Tranporte paralelo infinitesimal, tensor de curvatura, ecuaciones de campo, ecuaciones

de Maxwell..

Introduction

Einstein tried to treat gravity and electromagnetism uni-
fiedly by means of a unified field theory [1-15]. Previ-
ously Maxwell had published in 1873 [16, 17] what we
would call the first unified theory, when formulating a
field theory that integrated electricity and magnetism,
and currently there are attempts to unify gravitation
and electromagnetism [18-23]. Since the first attempts
of Einstein [24, 25], Kaluza [26] and Klein [27], other
types of interactions different from gravity and electro-
magnetism, such as weak interaction [28] and strong in-
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teraction [29,30], have been the subject of various at-
tempts at unification, and by the end of the 1960s the
electroweak theory was formulated [31-34]. In fact, it
is a unified field theory of electromagnetism and weak
interaction. Attempts to unify the theory of strong in-
teraction with the electroweak model and with gravity (a
treatise on quantum gravity [35-38]) have since remained
one of the still pending challenges of physicists, a theory
that would explain the nature and behavior of all matter.

In the beginning of 20th century, the mathematical
theories essential for the creation of the general relativ-
ity, they were based on the Riemann metric, which was
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considered as the fundamental concept of general relativ-
ity [39-48]. Although, it was later pointed out, correctly,
that the element of the theory that allows to avoid the
inertial system, it is rather the field of infinitesimal dis-
placement. It replaces the inertial system to the extent
that the comparison of vectors at infinitesimally close
points becomes possible.

The heuristic strength of the general principle of rel-
ativity lies in the fact that it considerably reduces the
number of imaginable sets of field equations; the field
equations must be covariant with respect to all contin-
uous transformations of the four coordinates. But the
problem becomes mathematically well-defined only if we
have postulated the dependent variables which are to
occur in the equations, and their transformation prop-
erties (field-structure). But even if we have chosen the
field-structure [49] (in such a way that there exist suf-
ficiently strong relativistic field-equations), the princi-
ple of relativity does not determine the field-equations
uniquely. The principle of "logical simplicity" must be
added (which, however, cannot be formulated in a non-
arbitrary way). Ounly then do we have a definite theory
whose physical validity can be tested a posteriori.

For the general theory of gravitation and electromag-
netism it is essential that we can associate with the co-
variant tensor g, a contravariant g", through the rela-
tion go»g”* = 82. This association can be carried over
to the non-symmetric case directly. So it is natural to
try to extend the theory of gravitation to non-symmetric
guv fields.

! The main difficulty in this attempt lies in the fact
that we can build many more covariant equations from a
non-symmetric tensor than from a symmetric one. This
is due to the fact that the symmetric part, g,., and the
antisymmetric part, g,., are tensors independently. Is

\2

there a formal point of view which makes one of the
many possibilities seem most natural? It seems to me
that there is. In the case of the gravitational theory it
is essential that besides the g,. tensor we also have the
symmetric infinitesimal displacement Fﬁy. This displace-
ment is connected with g, by the equation

9uv

oxr

But in the symmetric case the order of indices does

not matter. How shall we generalize (1) to our case? We

make use of the following postulate: there is a tensor g,

the "conjugate" of g,., and a "conjugate" I‘fw of I‘fw. It

seems reasonable that conjugates should play equivalent

roles in the field-equations. So we require that if in any

field-equation we replace g and I' by their conjugates,

we should get an equivalent equation. This requirement
replaces symmetry in our system.

Our main task now is to find out whether there is

a sufficiently convincing method of finding a unique set

- gfwrﬁp - g#&F;D)LV = 0. (1)
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of field-equations for the non-symmetric fields with the
above structure. This problem in a previous publica-
tion [50] was solved by forming a variational principle in
close analogy to the symmetric case. This way we make
sure that the resulting equations will be compatible. The
only reason why this derivation may seem not completely
satisfactory is that we subject the field a priori to two
conditions:

D=3 (Th-1d) =0, 2)

\%

J75.N
— Vv
9s) _ 100 (g - vae™) =0 @)

These side-conditions make the derivation more com-
plex than in the gravitational theory.

In the theory of symmetric fields there is a sec-
ond method of ensuring the compatibility of the field-
equations (R, = 0). We must have four identities con-
necting the equations. These can be derived by contract-
ing the Bianchi- identities which hold for the curvature
tensor:

VgRuu%p = vaRuu)\p + v/\R,uupo' + va;},UU}x =0.

In this article we have shown that an analogous ar-
gument can be used for the justification of the field-
equations also in our case. This will give a deeper in-
sight into the structure of non-symmetric fields, and it
will demonstrate in a new way that the field-equations
chosen for the non-symmetric fields are really the natural
ones.

Asymmetric tensors

Given any tensor A,,, it can be written as the sum of a
symmetric tensor A,, and an antisymmetric A,,. These
— \2

are uniquely determined by the relations:

1

Aﬂ = 5 (A;U/ + Al/,u) ) (4)
1

Au\/y = 5 (Ap,u - AV[,L) . (5)

A complication is introduced into this theory by the
fact that besides the fundamental tensor g,, we also have
its conjugate

gml = Gvu, (6)

The other tensors of our theory are defined in terms
of gu. Given a tensor A, by its conjugate A,, we
mean the tensor we get by replacing g,. in the definition
of A, by gu. We shall be particularly interested in
tensors in whose definition g and g play analogous roles;
more precisely those tensors for which replacing g,. by
gvp merely changes A, into A,,, or for which

Ay = Ay (7)
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A tensor having the property (7) is called Hermitian.
In analogy to (4) and (5), we can decompose any tensor
uniquely into

A= 5 (A + )+ 3 (A = ). ®)

The first term is the Hermitian, the second the anti-
Hermitian part of A,,. If the differentiation index p is
to be on the right in a certain term, we put + under the
corresponding tensor-index; if on the left, put — under
the index. As an illustration we give a new form of (1):

Ogpuv
oxP

Vpgig = — gy — Gual'py = 0. 9)
The theorems about covariant differentiation can be

taken over from the symmetric theory, if we are careful

to distinguish the two kinds of derivatives. By raising
the indices p and v in (9) we have:
Hz 8gM av « v
Vogt T = 5o 97 Th, + 9" T = 0. (10)

If we let \/—g stand for the square-root of the neg-
ative determinant of g,,, then \/—g is a scalar density.
We can describe a tensor density as a product of /—g
and a tensor. Let us study these densities. Multiply (1)
by ¢"* and sum:

1 9g Py
gamp—F p—1Ipoa=0

or

ar

— VT = (11)

It is, therefore, natural to define V, (v/—g) = aﬁ —

\/—gFé,\. If (9) is satisfied, then V, (v/—g) = 0. If we do

nv
not assume (1), then V,g,, and V,¢g*~ do not vanish
o

but they have tensorial character. Also V,(y/—g) has
the character of a vector density. This permits us to in-
troduce absolute differentiation of tensor densities. For
example: if we multiplied the right side of the equation

vyt = A

Oxn Hn

by a scalar density /—g, then we get the tensor den-

sity
8(V gA ) ST AR a\/79 A
oxn +V=gA T, oxn A%
or according to (11)
Ay 0(vV=gAY) .
Vi (\/—79144’) =~ om T V=gA' Ty —

1
5\/ _QAA (FZW + FZP) : (12)
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In an analogous manner, if we multiplied the right
side of the equation

oA
xn

by a scalar density \/—g, then we get the tensor density

9 (V _9A>\) 0v/—g A
oxn ’

oxn

A
V, A= = + I, A"

+V/—gA'T,, —

or according to (11)

8(”14) HA
g TV

ix/i—gAA (T4, +T%,)  (13)

and for the divergence; by a contraction with respect to
the indices X and 7 in the equations (12) and (13):

(FA)

v, (V=947) =

Vi (\/TgAi) = +VEgATL, (19)

also

(V=94

A A
o () = e, o

We can now calculate the covariant derivative of a

tensor density from the rule for differentiating a prod-
uct. For example:

Vg =V, (V=99"") = (Vov/=9) " +V=9V,9""

This vanishes, if (1) is satisfied. More explicitly:

v, (Vi) = (550 -

/_gr;i\) "+

agu oa/rp, ,ual—w
V=g G T9 Tap +9" T ).

Therefore we have:
2% nv
Vegt™ =V, (x/*gg*’) =0
or
Ky av ,u
Vp(x/fgg+ )—axp (V=99"") +V/~g9™T%
V=99""Tpa — \/—QQWF@ =0. (16)

In an analogous manner we may calculate the equation
% (V) = o2 (V) VR -

V=99ual, — V=gg" ' Tps = 0. (17)

For completeness we include the following abbrevia-

tion
A;u:/.\ = A;uz/\ + Au)\p, + AA;1V~
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Curvature

Although the G-field does not itself have tensor charac-
ter, it implies the existence of a tensor [51,52]. The latter
is most easily obtained by displacing a vector A* accord-
ing to 0A* = —T'), A?dz” along the circumference of an
infinitesimal two-dimensional surface element and com-
puting its change in one circuit. This change has vector
character.

Let :EO” be the co-ordinates of a fixed point and x”

those of another point on the circumference. Then
& =a2" — mOT is small for all points of the circumference

and can be used as a basis for the definition of orders of
magnitude. The integral j;éAA to be computed is then
in more explicit notation

- ana
or
- anac

Underlining of the quantities in the integrand indi-
cates that they are to be taken for successive points of
the circumference (and not for the initial point, {7 = 0).

We first compute in the lowest approximation the
value of A* for an arbitrary point £ of the circumfer-
ence. This lowest approximation is obtained by replacing
in the integral, extended now over an open path, ') _ and
A° by the values I'y, and A° for the initial point of in-
tegration (§7 = 0). The integration gives then

AN = A — rﬁTAf’/dgT =AM T} A°¢.

What are neglected here, are terms of second or higher
order in £&. With the same approximation one obtains
immediately
or;
[ =T} + =97 ¢m,

Inserting these expressions in the integral above one ob-
tains first, with an appropriate choice of the summation
indices,

8]:1()\77‘ o v T
- f (r; + 5 s”) (4> -7, Ae") de

where all quantities, with the exception of £, have to be
taken for the initial point of integration. We then find

o T aFéT o T {eg v T
A7 g - e g rh g, A § et
where the integrals are extended over the closed circum-
ference. (The first term vanishes because its integral van-
ishes.) The term proportional to (£)® is omitted since it

15

is of higher order. The two other terms may be combined

into
An f £ de”

This is the change AA* of the vector A after displace-
ment along the circumference. We have

fera = faere - ferar — - feaen

This integral is thus antisymmetric in ¢ and v, and in
addition it has tensor character. We denote it by fuvy. It
f Y were an arbitrary tensor, then the vector character of
AA* would imply the tensor character of the bracketed
expression in the last but one formula. As it is, we can
only infer the tensor character of the bracketed expres-
sion if antisymmetrized with respect to p and v. This is
the curvature tensor

A

R>\ _ 31—‘;“,

Hen oxn

The position of all indices is fixed. There also exist a
non-vanishing contraction with respect to A and u

o ., 0

ar?]u A @
[_axu ol

A
+T0, %, — OLun

A
ant pv al'y _Favr;al,n‘ (18)

o
Fpun = dxn Y Oz
which in general does not vanish even if (9) is satisfied.
Namely, if we transform the right-hand side using the
equation following from (11)

e (19)

0 A A 0 A A =
gor (Do T0) = g (B 4T ) =0 (20)
we get
1o} 0
o _ p p
Rovn = oxn Fl’vp + oxv F"vp'

This will not vanish in general, but, it will vanish when
the field satisfies equation (2).

Contracting with respect to A and 7 we obtain the
contracted curvature tensor

A A
ary,, o
oz? oxv

The tensor R, is not Hermitian. We form the Her-
mitian tensor R;U = % (RW + EW). We thus get

Ruy = Ry = +TATE, — —Ta T (21)

[ OzxP 2

B are, 1 ore, ~ore,
ox” oxH

A A
) —T,T%, + Thu TS,

(22)
For the anti-Hermitian part, we get:

1 =\ _ 1 ory, org, A o
(23)
considering (20) this becomes
1
Pu =5 [ VT4, + V%, (24)
+ +

V] \2
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hence the anti-Hermitian part of P,, vanishes when (2)
and (9) are satisfied. It is now our task to find compatible
field equations (on the basis of a variational principle) so
that equations (2) and (9) are part of the field equations.

First we want to make another formal remark, which
serves to prepare the derivation of the field equations. If

2%
in equation (16) we contract to form V, (\/fgg+_) and
2%
u (\/fgg+_) then by subtraction we get
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The equations (2) satisfy, therefore, a scalar identity
as a result of (9). From equation (25) we see that equa-
tions (2) and (9) imply

Vs (v=99) =0. (27)

Hamiltonian principle. Field equations

In the case of the real symmetric field we obtain the fields

1 v v eqations most simply in the following manner. We use
5 [Vu (\/ fgg+7) -Vu (v *QQJP)] = as Lagrangian function the scalar density
oo (V=ae) - vEagery, @) Lo = 59"y (28)
. . pv | . where
where /—gg*” is the symmetric, /—gg Vv is the anti- 5 5

symmetric part of the /—gg"”. Hence, if (9) is satisfied Ry = —T0, + e — 9% e e

we have identically g OxP HOTAR S Gy 1P He A
9 \ is the curvature tensor in the relativistic theory of grav-

I (\/ —ggfoI‘ZvV) =0 (26) itation. If we vary the volume integral of .7, i. e.

5].,2”ch = — de [3% (v/=gg9"") + \/—ggM’F;LP + \/—gg’MFZ — /= g”‘T/\A] ore,
+ [ dry [525 (V=99") + V=99 T3, ) 6%, — [ d7/=g (R — L¢" R) g™
independiently with respect to I' and g, then variation with respect to I' yields

- [3% (V=99"") + V=99 T, + V=99" T\ — \/—gg“”Fﬁx] +65 3% (V=99"") + vV=99"T,] =0

or Eq. (1), and variation with respect to g yields the equations R, —
method in the relativistic theory of the field

0 ZLdr =~ [dr [a% (V=99"") + V=99""T6y + V=99"Tja — 3v/=99" (Fpx +T3,)] 017,
+4 [ dr [ 25 (V=99") + V=9™ Ty = v/=99°" TS, ] 50T
b3 dr [ (VT30) + V80T VTS, | 2561
+3 [ dr (V=99" T2, 0} — V=99" T2, 8} ) T4, + [ d76 (v =g9") R

%gWR =0, or R,, = 0. If we apply the same

with . = \/—g¢"” R,.. Then we see a complication, since the variation with respect to I" does not inmediately
yield the equation (9), which we wish to keep in any case. The variation with respect to I" yields

— [3% (V=99"") + V=99" T} + V=99 Thy — 3v/=99"" (Tpx +T3,)]
187 [ (vV=9") + Vmag™ Ty — Vgt TS (29)
+585 [9% (V=99™) + v=99""T%qa + \/jgg“”l“iivo] (Fg“al“i’w&f Wg&”l“ifﬁﬁ) =0.
The first bracket is V,, (w/fggiz); the second and third brackets are contractions of this quantity, i. e.

v, (v=99"") + 15V (F g+*>+ L059s (V=097 ) + £ (V09" TE, 07 — V=g TS, 08) = 0. (30)

If there were no fourth bracket in (29) would imply the vanishing of V, that is, (10). However, this would

(ngz)

require the vanishing of F - to which demand we have no right for the time being.
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We can resolve this difficulty in the following manner. We can compute the equations of (29)

- {% (V=99"%) — /=99"“T 50 + v/ —gg“T e + v/—g9 ™V T ] + 16y
v o v o ap v av
(V=99*) + vV=99*T50 + V=99 " vaa] — (V=997 T%, + V=99

+39¢ [

and

s (V=99"2) + vV=99**Th, + x/—iggaVAFZVA}

) -0

*{%(v*gguvy)f\/ 99" Do + V=99 T + /= gVF”]+%5Z 52 (v=99" )+\/ g9 Tl + /= 9“1““}

+104 [ (V=99") + V=09 Tha + V=09

Therefore, we form of the second equation

axp (Fg ) V—99%
V=99V I‘

— =99V T4,
an (Fg )6V+EW

]— V—99* +\/79VF”>:0'

— V=g,
(v=a¥) =0

V=99V Tha

If we contract this equation with respect to v and p

o (vad™) +vEagerr, =0, @)

From this we can deduce that the necessary and suf-
ficient condition for Fg =0 is that 5 5 (\/ qg Vv )

i. e. Egs. (2) and (3). In order to satlsfy this 1dent1cally
it suffices to asume

v=ad = 20 (Vae) (32)

oxT

where /—gg"" is a tensor density which is antisymmet-

A
ric in all three indices. That is, we require that \/—gguv
be derived from a “vector potential”. Therefore, we sub-
stitute in the Lagrange function

V=99" = V=99 + 5 - (\/—gg“”) (33)
and vary independiently with respect to the I' then yields
(9), as we have shown. The variation respect to the

V—9g™ and /—gg"*" yields the equations

Ruw =0, (34)
0] 7] 7]
a )\Rp,u + a I‘RVVA + a R/\I,L =0. (35)
Considering (16), each of the systems I',, = 0 and
\2

az,, (\/ qg v ) = 0 implies the other; this is proven by
showing that (9) implies the equation

up a
o (\/TQQ v ) —V/—gg*°T?,

The second line of (30) vanishes because of I'g, = 0. If

we contract (30) first according to p and v, then accord-
ing to u and p we get the two equations

v, (Fg+ )+ 19, (Fg+—) =

v, (vt v, (vat) 0.
Adding these two equations we get
Vo (v=9977) + Vo (v=a9™) =0 (1)

Equation (25) which was based on the definition of ab-
solute differentiation yields considering I';,, = 0 and
\

Fav (\/jgguvy) =0
o (V=99+") =V, (V=ag ) =0, (38)
Hence V, (\/ngiﬁ) = 0 and V, (V—iggiﬁ) =0

Equation (30) reduces therefore to
v, (V=99 =o0. (39)
nv
o2 (v=g5")

field equations not weakened is therefore:

If we omit = 0, then he system of

Oguv

v = aur arau =y,
vaﬁf DP -9 — Gual, 0
Iy =0,

\2
Ru, =0,
0 1o} 0
— R RV —Ry, =0.
acn Tt e T g e T
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On the other hand, we choose the Lagrangian func-
tion

£ =V=99""Ruv = 05v/—99"" Rjivs

in the Hamilton’s principle

(40)

(5/d7'$ = /dT5 (V=99"") 6aRpvo +
/deZ\/fgg“"éRZ‘,w =0 (41)
We vary (40) relative to the I's:

/dT& (V—=g9" )Ruy+/d76§x/jgg“”

{vg (5rzy) -V, (5rfw)} .
+- ++

Then we can write (42) as

(42)

/dT& (vV=99"") Ruv +/dTVJ (\/ —ggizéfzu) -
wy

/ v, (\/jggizég> are,

f/dfvy (\/fggiz(sr;ﬁ +/d7vy
++

pwv @
(v —99+‘5§) 0T o (43)
wy g
Let us see what V, (\/fgg+’51"§z) contributes to
the integral. That is,

3 (vV=g9""or7.) N

oz

A (rg+ or’ )

(V=99""o1%,) T (44)
The first term is an ordinary divergence, and
hence contributes nothing to the integral. @We see

that we need (2) to make the second term van-
ish. By subjecting the field to equation (2) we

make sure that V., <\/fggizéfﬁy) (and similarly
R

wv @
V. (\/—gg+’5f‘zg)) contributes nothing to the inte-
++

gral. So we may omit these from (43) and write:

/ d7'5

[ [-92 (v=astsf) + v <\/ng+*6§>] S5, (45)

9"") Ry +
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v

Or since V, <6§) vanishes:

/ dr8 (v=99"") Ry +
/ dr {—va (v=99"") + Vo (V=g5*") 5,?_} 6T, (46)

We cannot conclude yet that the quantity in brackets
vanishes, because the Ffw are not independent but satisfy
(2). But we could conclude the vanishing of these quan-
tities if they dependyed on only 60 parameters instead of

the 64 V<i (\/—ggi’> . This is actually so, for the fol-

lowing reason: we have the equation (25). By subjecting

the field to (2) and (3), we make sure that these four
173%

quantities vanish. Hence only 60 of the V, (w/—gg+_)

are independent. The same must be true of the square
bracketed quantities in (46). Thus we can conclude from
(46) that all these vanish:

Vo (VE99") + Vo (VEagt ) sl =0 (an)

Contracting with

Vo (\/fggig) = 0. Hence all the V, (\/fggig
ish. Therefore also the Vag,o-
ne

that

respect to v and « we have
) van-
Thus we have derived

Vg = 0. (48)
h

But we must remember that the \/—gg"” satisfy (3).
This can be done most easily by setting equation (33) and
varying with respect to v/—gg~Z and \/—gg"*", which are
independent. We get the equations

This completes the derivation of the field-equations:

Iy =0,
\
Voguv =0,
wv
Ry =0,
) ) ) )
aax Ty T g Tt gt = P =0

We can further justify the a priori assumption of (2)
by the fact that this equation is necessary and sufficient
to make R,, a Hermitian tensor.
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The Bianchi’s identities

A direct computation shows that the covariant derivate
of curvature tensor

nAV
i

P P p P
VaRisg = VaRiwo + VVRE(,A + Vo R,
satisfies the identities:

p
ViR = =

¢+ ox

RZVO‘ + de)\rgu - Rp

o\
LX ]

X Fﬁl., =0. (49)
From (18) we can form the covariant curvature tensor
in analogy to the symmetric case,

R,uu)\n = ga,uRSAn' (50)

The choice of ga, instead of g, may seem arbitrary,
but this is not really so. We have to lower the index p
in the identities (49). The contravariant index yp has the
+ differentiation character, so it must be summed with
a similar index, i.e. the first index of g. Only this way
can we lower the index p in (49) without introducing
additional terms. Thus we get the covariant identities

P

P
gpav)\R:Vo' - V)\ <gpaR:;yo') = V)\Ra;“,g =0. (51)
o Lee 0 L— fee [

For what follows we must also find the symmetry
properties of Rayvo. From (18) it is clear that Ry,
is antisymmetric in (vo). From (50) we see that Rauve
has the same property:

Rkuua = 7Rkum/- (52)

If we differentiate (1) with respect to o and antisym-
metrize with respect to p and o, we have

o 0gav ozms 0gav 9gua

Ox° Lo = Ox° Lov + Oxr Lo + Oxr Lout
ory,,  oTy, ory, or'g,\
Jo ( dxr  dx° + e dxr  Bxe ) 0

Using (1) again on the first four terms and then collecting
terms

B ory, B % B ory, _org,\
o ox° oxP uex ox° oxP

gOéVF;;‘o'PZp - guaF:nFZu + gaVF'(rl]pPZo' + gll«arznrg‘u =0

or using (18) and (50), we have

~Rupupo- (53)

R,u,upo' =

This expresses that R, o is anti-Hermitian in (pv); this
is the manner in which the antisymmetry of R, - (in the
gravitational theory) generalizes to our case.
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In (51) it is not immediately clear that ViRapve is
] —+"

a tensor. We are now in a position to give a more useful
form for (51) in which this is obvious, i. e.:

VaBlugog 4+ Volluger + Volluyap = VaRuyee =
Ruuaorip - Ruuparg)\ - Ruua)\rgp -
R/JVUC!F(;p - Ruuaprg)\ - R}l«l/)\(lrgp' (54)

The first term on the right side of the equation vanishes
by (51), the last six cancel out due to (52). Therefore,

VaBuyog +VoRuygy +Voluy, =0 (55)

where this equation is called “Bianchi’s identities”. We
are now in a position to carry out the derivation of the
identities for the field equations. In analogy to the grav-
itational theory, we contract (55) by g"”g”?. Making use
of (52), we get

99" {V*R’iifi TVeRuygr F V“Rﬁiif] =0
or using (9)

vog, (o7 e, (o _
g7V (9 Rugeq | =97Vo (87 Rurag

Let us define

Ry = g7 Rauwo (57)
Sox = g”"RMW (58)
where
oA o o po 0 o
R =39 garR e = 0o Rve = @FW +
7,00, - aiv 7, TN, (59)

Then we have
vp _ _ _
g CARif VpRii VVS,_\f =0. (60)

We need some connection between R and S. From (52)
and (53) we see that

Ruupa - _Ru,upa - _Ruupo-
Multiply by ¢*? (= g°*) and sum:
Sy = Rup. (61)

If R were Hermitian, R and S would be identical.
Hence we have a new reason for requiring that R, should
be Hermitian. But from (59) we see that R,, has an
anti-Hermitian part (compare with (8)):

1 ~ \ 1 ( ore, or,
3 (R =) = 5 (— o " aun ) T

1 o o
ir;\l,u ( o\ T F)\o') . (62)
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If we use (11), then we have
oy, org
1 > 1 K7 X7 A
2 (Ao = Fn) = =5 | G+ ~T0eT

(63)
From this we see that R, is Hermitian if we subject
the field to the four conditions

Ty = 0.

\%

It then follows from (61) that
Spy == Rpl/7 (64)

and (60) becomes
“PIVARy, —V,R,x — VR =0. 65
97" |VaRy, = Vo Ryx Ap (65)

These identities hold for all fields where I' is defined
by (1) and is subject to (2). We might jump to the
conclusion that the field equations should stipulate the
vanishing of all R,,. This set, together with (1) and (2)
would, however, be overdetermined. We can get a weaker
set of equations by observing how R“v” enters (65). The

contribution of R, to the equations is:
\%

gup (V)\RQ — VpRﬂ — VVRM) +

vp _ _ —
g VARJL;E VPRK—-)F VVREE 0
v v v

which can be written as

V(9" Rup) = Vo (9" Rur) = Vo (67" Rap) +

v a (a3 «
g”r |:8?Rl</p - R%pPuA - RV\/DéF)\p:| +

v 8 (e (a3
g i {7%}%”\% + Rav)\ryp + Ruvar)\p:| -

v 8 « «@
4 {%R@ + RyaT'2, + Ravprm} —0

this equation is equivalent to

VAR - V,Rf — V, R+

wRva RV)\ - 7Rp/\

vo | O B i 0 -0
oxr v oxr N

or
v, <R§ - %5§R> +
" [ 9 d 9

o Tir + gy + gy =0
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that is

v 1 vy O
—g“2v, (RLV— 5gLVR) +4"°

P Rx./,: =0.

Since we see that R,., enters the equations only in
the combinationi,\Rup it is natural to choose the field
15} Ce

xz®

equations for R, as
\2

LI
ore %

instead of R,, = 0. So we get the field equations:

Ffl/\ - 0,
v
Ry =0,
%RW =0,
ore <

where the F:\W are defined by:

Vguv =0.
uy

The foregoing derivation shows how naturally we can
extend general relativity theory to a non-symmetric field,
and that the field-equations are really the natural gener-
alizations of the gravitational equations.

The theory of gravitational field as special
case

Let the g, be symmetric. By changing p to v in (9) and
subtraction we obtain in understandable notation:

Vpgig_vpgig = Yav (Fﬁﬂ - P?u)"‘gw (ng - FSP) =0.
(66)
Therefore, the I" are symmetric in the last two indices
as in Riemannian geometry and the theory of general
relativity, that is
Lhp =Thu (67)
ry,, =TI7,. (68)
The equations (9) can be resolved in a well-known man-
ner, and we obtain

A 1 o (99 99vp  Oguv
oo (B -G ) ©
Equation (69), together with (34) is the well-known law
of gravitation. If we have presumed the symmetry of
the g, at the beginning, we would have arrived at (69)
and (34) directly. This seems to be the most simple and
coherent derivation of the gravitational equations for the
vacuum. Therefore it should be seen as a natural attempt
to encompass the law of electromagnetism by generaliz-
ing these considerations rightly.
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Relations to Maxwell’s electromagnetic
theory

If there is an electromagnetic field, that means the g, or
the /—gg"” do contain a skew-symmetric part, we can-
not solve the equations (9) any more with respect to the
I';,, which significantly complicates the clearness of the
whole system. We succeed in resolving the problem how-
ever, if we restrict ourselves to the first approximation.
We shall do this and once again postulate the vanishing
of F;\M. Thus we start with the ansatz
\%

Guv = —Ouw + Vv + 7qu (70)

where by the 7,, should be symmetric, and y,, the
- \%

skew-symmetric, both should be infinitely small in first
order. We neglect quantities of second and higher orders.
Then the I';, are infinitely small in first order as well.

Under these circumstances the systems (9) and (10)
takes the more simple form

Oguv

5ar ~ Tie — Loy =0 (71)
99" v
oor T ry, +T,,=0. (72)

After applying two cyclic permutations of the indices p,
v and p two further equations appear. Then, out of the
three equations we may calculate the I' in a similar man-
ner as in the symmetric case. One obtains

Fﬁu — 1 (89PH + 89’/P _ ag/’v”) . (73)

2 \ 9z oxH oxP

Equation (21) is reduced to the first and third term. If
we put the expression I'),, from (73) therein, we obtain

o azgvu 6291)1/ GQQW _ 62gpp
OxPOxP  OxPOx*  OxvOxP  Ox¥Oxt

Before further consideration of (74), we develop the series
from equation (2). Equation (2) then gives

=0. (74)

G (9’Y>\Va

(Gr =) B 0. (75)
Now we put the expressions given by (70) into (74) and
obtain with respect to (75)

_ 0*You 0 Yo 0 You _ 9”Y0p —0 (76)
dxPdxr = OxPdxt  OxvdxP  Oxvoxt
82’Yw
Swrder (77)

The expressions (76), which may be simplified as usual
by proper choice of coordinates, are the same as in the
absence of an electromagnetic field. In the same man-
ner, the equations (75) and (77) for the electromagnetic
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field do not contain the quantities 7,, which refer to the
gravitational field. Thus both fields are (in accordance
with experience) independent in first approximation.

The equations (75), (77) are nearly equivalent to
Maxwell’s equations of empty space. Equation (75) is
one Maxwellian system. The equation (75) can be re-
placed considering Gy = 0 by

62’YW
_ v
<G”v” :) oo 0. (78)
We now have the identity
G ., PV
oY Ox¥dr* oz~ =0
or
aGp(/y B aQGM —0 (79)
oxv Ox*dx> —

After differenciate equation (78) with to respect to p,
we found the next expression

8GHVV o 8%@/ 0 80
9z O0z®0z> \ Oz | (80)

After applying two cyclic permutations of the indices
u, v and p two further equations appear. Then, we ob-
tain
0G v 0G., o2
Vv
_l’_

oxP ox? dzr  Oz*dxe

O 0o Oup
L+ ——+_—|=0. (81)

oxP oxv oxH

Therefore, the equations which according to field
equations hold for an antisymmetric (electromagnetic)
field are

(97>\Va
ox™

92 a’Y;f/v 879# a’YVVP
+ + =0. (83)

=0 (82)

0x*0x> \ Oxr lokd oxH

If, in the equation (83), the expression inside the paren-
theses would itself vanish, then we would have Maxwell’s
equations for empty space [53,54].
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Concluding remarks

A relativistic theory of the field has been presented, start-
ing from the field of infinitesimal displacement. Also,
we calculated the curvature tensor and define the con-
tracted curvature tensor. With this curvature tensor and
the variational principle, we deduced the field equations,
and Bianchi’s identities. In consecuense, the field equa-
tions have been found from Bianchi’s identities. In addi-
tion, if we were sure that a non-symmetric tensor g,. is
the right means for describing the structure of the field,
then we could hardly doubt that the above equations are
the correct ones. The foregoing derivation shows how
naturally we can extend general relativity theory to a
non-symmetric field, and that the field-equations are re-
ally the generalizations of the gravitational equations.
If there is an electromagnetic field, that means the g,.
or the \/—gg"” do contain a skew-symmetric part, we
cannot solve the equations (9) any more with respect to
the I'f;,, which significantly complicates the clearness of

2]
the whole system. We succeed in resolving the problem
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however, if we restrict ourselves to the first approxima-
tion. Therefore, we obtain equation (75), the first sys-
tem of Maxwell’s equations. If, in the equation (83),
the expression inside the parentheses would itself van-
ish, then we would have Maxwell’s equations for empty
space, whose solutions therefore satisfy our equations.
Maxwell’s equations of empty space seem to be too weak,
however, is not a (justified) objection to the theory since
we do not know to which solutions of the linearized equa-
tions there correspond rigorous solutions which are reg-
ular in the entire space. It is clear from the start that
in a consistent field theory which claims to be complete
(in contrast e.g. to the pure theory of gravitation) only
those solutions are to be considered which are regular
in the entire space. Whether such (non-trivial) solutions
exist is as yet unknown.
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