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Abstract

As gravitation and electromagnetism are closely analogous long-range interactions, and the current
formulation of gravitation is given in terms of geometry, we expect the latter also to appear throug the
geometry. We look for the formally most simple expression for the law of gravitation in the absence
of an electromagnetic field, and then the most natural generalization of this law. This theory contain
Maxwell’s theory in first approximation. In the following we outline the scheme of the general theory
and then show in which sense this contains the law of the pure gravitational field and Maxwell’s theory.

Keywords: Curvature tensor, field equations, Maxwell’s equations.

Teoria relativista general de gravitaciéon y electrodinamica
Resumen

Como la gravitaciéon y el electromagnetismo son interacciones de largo alcance muy analogas, y la
formulacién actual de la gravitacion se da en términos de geometria, esperamos que esta tltima también
aparezca a través de la geometria. Buscamos la expresion formalmente mas simple para la ley de la
gravitacién en ausencia de un campo electromagnético, y luego la generalizacién mas natural de esta
ley. Esta teoria contiene la teoria de Maxwell en primera aproximacién. A continuacién, esbozamos el
esquema de la teoria general y luego mostramos en qué sentido contiene la ley del campo gravitacional
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puro y la teoria de Maxwell.

Palabras clave: Tensor de curvatura, ecuaciones de campo, ecuaciones de Maxwell.

Introduction

The first attempts of unification of Einstein [1] and
Kaluza [2],other types of interactions different from grav-
ity and electromagnetism, such as weak interaction and
strong interaction, have been the subject of various at-
tempts at unification, and by the end of the 1960s the
electroweak theory was formulated [3—6]. In fact, it is a
unified field theory of electromagnetism and weak inter-
action. Attempts to unify the theory of strong interac-
tion [7,8] with the electroweak model and with gravity
(see [9-12]) have since remained one of the still pending
challenges of physicists.

*mvalenzuelad@ipn.mx

Theoretical physicists working in the field of general
relativity [13-21] still do not have a consensus on the
unification of gravitation and electromagnetic. However,
so far we have not found a convincing formalism for this
connection [22-28]. Our task now is to find out if exist a
set of field equations for the non-symmetric fields. This
problem was solved by forming a variational principle in
close analogy to the symmetric case [29,30]. This way
we make sure that the resulting equations will be com-
patible. These variational principle make the derivation
more complex than in the gravitational theory.
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The general theory

We consider a 4-dimensional continuum with a field F;\W
which defines infinitesimal vector shifts according to the
relation

dA = T, A*dz". (1)

We start from the expression (1). By translation of a
real vector along the boundary of an infinitesimal surface-
element, we obtain a tensor of curvature as in general

relativity.
Therefore, we have the real curvature-tensor
oy, o)
A A « A a
R#,ﬂ] == 8 + F P 8;’” - Faurpn (2)

and contracting with respect to A and 1 one obtains the
contracted curvature tensor

or, or
axu)\ + F?’\‘AFE‘V - .

AT, (3)

_pr . _
Ry = Ryyx = py HA
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we introduce a contravari-
From both quantities we

Independently from this va
ant tensor density /—gg"”.
obtain the Lagrangian density

£ ==99"" Ry, (4)

and the variations of the integral
j = /Zdljdxzdl’gdl’;; (5)

with respect to the /—gg"” and I';}, are independent.
Next, we determine the field equations. From
vV—gg*” and Ry, construct a Lagrangian density-
function £ whose integral we vary independiently with
respect to /—gg"” and I'};,.
The variation of the integral of .#:

5[ Ldr =~ [ dr |52 (V=99"") + V=99 T, + V=9" Ti» -
(V=99"") + V=99 T2s] 610, + [ dr6 (vV=99"") R

+ [ dréy [
with respect to /—gg""yields

~ V=99 T 0T,

R, =0 (6)

and with respect to the I, , we obtain

7128}

oxP

ox°

0 —gg"¥ v v v v " g
0W=99") | =g T4, +V/=g9""Thx — V=gg""Tpx — 6, { (V=99") o =g, | =0 (7)

Now, if we contract of (7) by v and « or u and «, we obtain the equations

oxP

NI o a0, | + 2v=aa i =0, (®)

d(vV=99™)

~d(V=99")

oz

S =0. (9)

To the covariant tensor g,, we can associate a contravariant one g"" uniquely by the condition:

g/wgya = gaugow = 6;: (10)

and if we now multiply (7) by v/—ggu», we obtain:
2./— gg”p i
oxr

We write the equations (8) and (11) in the form:

3]
2 ﬁguﬂrp)\ /=gg"* {

or

{ln det (v/— guy)} +pr} + 24/~ g”pF + 65

9 (v—=g9"*)
ox™

+ \/—ggAUF’;J:| =0. (11)

[m det(FgW)}JrPM} (12)

—— + \/—799”’1%,] : (13)
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If we insert equation (13) into (7), we can write

O/=09™) | v

/7 M/\FM
oxP ot 99

v 2 v
V=99""Tpx + §5p\/—gg’wT3vx =0 (14)
in conjunction with (9). Equation (14), after multiplying by v/—ggus and \/—gga, and manipulating indices, can also
take the following form

Oguv o o In/— 2
ag;f’ = gual'py — garlyp + Guv ( P 9) + pr + ggﬂprivu =0. (15)
Therefore, we have the field equations
ary, or,
Ry = 550+ Toal, — 5% — T, =0, (16)
9(v=99") 9(V=99") _,,
oz oz o
Oguv o o In/—
6‘?729 - MOéFpV - gal/F,up + Guv ( P ) + Fp)\ + gUPFAV =0.

We interpret the symmetric part of \/—gg.. as metric tensor and the skew-symmetric part as electromagnetic field,

and we assume 51l
Olnv=g)  p _

oz

and

Iy =0. (17)

If there were no bracket in (7) would imply the vanishing of

d (v=gg"" y
(65/139 )+\/_—ggx
T

Iy +V=gg" ' Thx — V=g9" T, (18)

however, this would require the vanishing I'}. We can resolve this difficulty in the following manner. We can compute
\%

the equations of (7)

525 (V=99"%) + V—gg™T

52 (v=9¢" )+F9L”F“+FgVF“+Fg@P”A+Fg o
—v/=99" T\ —5”{ (\/ 99" )+\/ 99> TS, + V= gvfia]:

+ngr“+Fg“*F”A+ngF
HY A v | o uA Ao m
_\/jggvrpv/\_dp azj(\/?ggi)_i_\/jgg—r ""\/79\/F :Ov

/?gg&rzA
(19)

— /= ggHT )
A\

If we contract the equation (20) with respect to v and

g%(\ﬁg )+F9“AF” =0. (21

From this we can deduce that the necessary and suffi-

cient condition for I'V, = 0 is that d, (\/—gguvﬂ) =0. In
\2

order to satisfy this identically it suffices to asume

v=3d¥ = 2 (y=gg"") (22)

ozr
where \/—gguvu is a tensor density which is antisymmet-

ric in all three indices. That is, we require that \/fgguvy
be derived from a “vector potential”. We therefore sub-
stitute in the Lagrangian density

V=39 =g+ o (V=ag")  (29)

and vary independiently with respect to the I' then yields

Oguv
oxr

The variation respect to the /—ggt% and /—gg">™

— gaurzp - guargu =0. (24)



yields the equations

Ry =0, (25)
1o} 1o} 0
a v a5 1w a_, = U. 2
oz R“v + OxH R ? * oxv RAv“ 0 (26)

If we omit % (\/—gguvu) = 0, then the system of field
equations not weakened is therefore:

R, =0,
0 0 0
a0y T g T g iy =0
T =0,
\
ag v o «
a;p — Yo lup — gual’p, = 0.

The foregoing derivation shows how naturally we can
extend general relativity theory to a general relativistic
theory of the asymmetric field.

The Bianchi’s identities

In the case of the gravitational theory it is essential that
besides the g, tensor we also have the symmetric in-
finitesimal displacement Ff;l,. This displacement is con-
nected with g,, by the equation

v
Oxr
where we have defined the covariant derivate V,g,,. If
the differentiation index p is to be on the right in a certain
term, we put 4+ under the corresponding tensor-index; if
on the left, put — under the index. As an illustration we
give a new form of (27):

Vpgp.u = - gaul—‘ﬁp - guarzty = 03 (27)

99
Vﬂgig = (9;;” - ga»Fffp - guafffu =0. (28)

In the theory of symmetric fields there is a sec-
ond method of ensuring the compatibility of the field-
equations (R, = 0). We must have four identities con-
necting the equations. These can be derived by contract-
ing the Bianchi-identities which hold for the curvature
tensor:
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VZR‘U,V%/) - VUR;LV)\p + v)\RMupa + va/,qu)\ =0.

In this article, we have shown that an analogous ar-
gument can be used for the justification of the field-
equations also in our case.

A direct computation shows that the covariant
derivate of curvature tensor

p p p p
v/\RZucr = v/\RZua‘ + VVR+C,)\ + VO'R+AV
o oo ¥ i ﬁ

satisfies the identities:

9
vg = 53 g T Rugylay — I

VyR -
¢ ore @

I, =0. (29)

+T+
.

From (2) we can form the covariant curvature tensor
in analogy to the symmetric case,

Ruu)\'r] = gauRSA'm (30)

The choice of ga, instead of g, may seem arbitrary,
but this is not really so. We have to lower the index p
in the identities (29). The contravariant index g has the
+ differentiation character, so it must be summed with
a similar index, i.e. the first index of g. Only this way
can we lower the index g in (29) without introducing
additional terms. Thus we get the covariant identities

p p
gpav)\RZuo' = v)\ (gpaR;Vo') = V)\Rap,ua =0. (31)
L] +.. L] +— +.. L] —+..

For what follows we must also find the symmetry prop-
erties of Rauve. From (2) it is clear that Rﬁw is anti-
symmetric in (vo). From (30) we see that Ra,.o has the
same property:

R)\,u,uo' - _Rk,u,o'u- (32)

If we differentiate (24) with respect to o and antisym-
metrize with respect to p and o, we have:

agua
oxP

agau
oxr

agua
ox°

_ 89041/
ox®

Thp = Ggo Lov + gpp Lo T

o ore, org ore,
Fau+9aV( £2 — Mp)"'g;wz( -

argy) __0

oxP o0x° oxP ox°

Using (24) again on the first four terms and then collecting terms

ox° oxP ox° oxP

ory, org, ory, org, o o o a
~YGav ( £ — £ ) — Gua ( - ) - gavrnaFZp - gHQFanFZU + thVanFZJ + guarpnFZu =0

or using (2) and (30), we have

Rul/pa = _Ruupd- (33)
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This expresses that R,.,s is anti-symmetric in (pv); this is the manner in which the antisymmetry of R0 (in the
gravitational theory) generalizes to our case.
In (31) it is not immediately clear that VyRapve is a tensor. We are now in a position to give a more useful form

for (31) in which this is obvious, i. e.:

j— (e (% o
VaRuypg + VoRuyor + VoRuyap = VyRuyps = RuvaoTSy = Ruvpal5x = Ruvarl's,

_R}LUG'(!FXP - R;ujaprg,\ - Ruuz\ar‘ap-
The first term on the right side of the equation vanishes by (31), the last six cancel out due to (32). Therefore,
VaBuyoq + VoRuygr + VoRuyrp =0, (35)

where this equation is called “Bianchi’s identities”. We are now in a position to carry out the derivation of the identities
for the field equations. In analogy to the gravitational theory, we contract (35) by ¢g*”¢””. Making use of (32), we get

g*’g"" [VARﬁifi + v"R&iii + VURHM} =0

or using Vpgiz = %guu — gl — gual'py, =0

v op . op - vp

g’V (g**RgiEi> -9V, (g**Rﬁiii) -9’V (ng*Rﬁigi) =0. (36)

Let us define
R/J,V = goAR/\puo (37)
So/\ - QWR/\WU (38)

where
_ oA o _ 0 pQa _ 0 o n o 0 o n o

Rl“’ =g ga)\R,ul/o' - 6aR,u,l/0' - a?r,uu + F,uurr]o' - %Fpa - P,u,a'rnz/' (39)

Then we have

vp _ o — 4

9" |VaRyp = VpRyy = ViSx, | =0. (40)

We need some connection between R and S. From (32) and we see that

R/,,ypg = _Rup.pa-
Multiply by ¢"° and sum:
Spv = Ry (41)
It then follows from (41) that
"PIVARy, —V,Rux — VR =0. 42
g A yp p +i Ap ( )

These identities hold for all fields where I' is defined by (24) and is subject to (17). We might jump to the
conclusion that the field equations should stipulate the vanishing of all R,,. This set, together with (24) and (17)
would, however, be overdetermined. We can get a weaker set of equations by observing how R, enters (42). The

\2

contribution of R, to the equations is:
Y

9"" (VaRup — VoRyr — VuRy,) +g°° VaRyp = V,Ryx = VuRa, | =0

\Y Vv Vv
which can be written as

0

Vi (QUPRQ) -V, (QVPRQ) -Vu (QVPRM) + g 9z

(e} [e3
Rup - Rapru)\ - Ruar)\p
\Y Y Vv
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vp 0 [e% @ 0 @ [e%
+g _@Ruv)\ + RavAPyp + RV\})LF)\p - @va)\ + R)\va]-—‘up + Ravp vA| — 0
this equation is equivalent to
0 19} 0
_ P _ v vp | 9 _ 9 _ 9 _
VAR—-V,R} —V,R; +g [33% R,,Vp 27 RVVA 9z va)\} =0
o 8 0 0
1
P _ *6’) P _= =
that is where the F;\W are defined by:
1 0
—g*tv (RLU - *Q&R) +9""—<Ry, =0.
’ 2 ox* .vf Vpgiz =0.

Since we see that R,., enters the equations only in

the combination%Rl,p it is natural to choose the field
oxe® ®e
\4

equations for R, as
\2

0
oz
instead of R, = 0. Therefore, we get the field equations:

R,,=0

A
.

[ A
<ed

o

A
Flﬂ)\ =
v

)

Ry =0,

Q

The foregoing derivation shows how naturally we can ex-
tend general relativity theory to a non-symmetric field.

Gravitational theory

Let the g, be symmetric. In the case of the symmetric
field we obtain the fields equations most simply in the
following manner. We use as Lagrangian function the
scalar density

Lo =v/—99"" R (43)

where R,,,is the curvature tensor in the relativistic the-
ory of gravitation.

If we vary the volume integral of %, i. e.

0 Led'z =~ [ d‘*w[aw (V=99"") + V=99 T%, + V99" T} -
s (V=99"") + V=997, ] 6T%, —

+fd4m5" [

V=99 T o1t
[ d*ey/=g (R — g R) 59"

independiently with respect to I' and g, then variation with respect to I' yields

[azu (V=99"") + V=99""T%,, + V=99" T\ —
(vV=99"") +/=99™Tx,] =0

+0 [ 55

\/—gg"”FSA]

or 5
Guv a
P - gaur g,ua =0 (44)
and variation with respect to g ylelds the equations
1
R,u,u - iguuR - 0, (45)
or
R, =0. (46)

The variation of the gravitational action, [ d'z.%g,
with respect to gu. leads to the Einstein’s field equa-
tions of general relativity, and the variation with respect

to the affine connection, Ff“,, reveals that the connection

is necessarily the metric connection.

Relations to Maxwell’s electromagnetic
theory

If there is an electromagnetic field, that means the g,.
or the /—gg"” do contain a skew-symmetric part, we
cannot solve the equations (24) any more with respect to
the I'};,, which significantly complicates the clearness of
the whole system. We succeed in resolving the problem
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however, if we restrict ourselves to the first approxima-

tion [29, 30]. We have conducted this and once again

postulate the vanishing of Fﬁ »- Equation (17) then gives
Vv

(Gr =) =2 =0. (47)

The equation (47) can be replaced considering Gy = 0
by

82’YW
— Vv —
(G“f :) Frry 0. (48)
We now have the identity
0G PV
drv  Oxvdzedze 0
or
8G#vu _ PGy =0 (49)
ox” Ox*dz> —

The identity (48) implies the density of the electric
current J, = %'ﬁw- After differenciate equation (48)
Vv

with to respect to p, we found the next expression
aGM\/IJ 82 87;1\,/1/
— =0. 50
oxP Ox*0x> \ Oxr (50)
After applying two cyclic permutations of the indices

u, v and p two further equations appear. Then, we ob-
tain

BG“,/ GGW aGup 82 G’yuu arYPH afyup

\4 + \ + \ _ \4 + \ + \2

oxP oxv ox+  OJx*dx> \ OxP oxv oxt
(51)

Therefore, the equations which according to field
equations hold for an antisymmetric (electromagnetic)
field are

(Q)’y)\va
= 2
=0, (52)

9?2 Vv o Ovup
L+ 2+ —]=0. (53)

0x*0x> \ OxP ox” oxH

If, in the equation (53), the expression inside the
parentheses would itself vanish, then we would have
Maxwell’s equations for empty space, whose solutions
therefore satisfy our equations.

Let ¢, be the components of the electromagnetic po-
tential vector. From them we form the components Vv

of the electromagnetic field, in acordance with the system
of equations
_ O¢u _ ¢y

Ty = Hpv T fzr

From equation (54), we have the systems of equations

(54)

87#\/1/ a’YP\ft 87103
oxr + oxv * ozt =0 (55)

The system (55) thus contains essentially four equations
which are written out as follows:

Ov23  Ovzo  Ovo2

M V M — 07 (56)
oxO Ox? ox3
37353 3’Y0V1 8’Y1v3
ozt + 0x3 + Ox0 =0 (57)
870& 8v1v2 872v0
Ox2 + 0x° + dxl 0, (58)
871v2 8’Y2v3 873v1
ox3 + ozt + Ox? =0 (59)

This system correspond to the second of Maxwell’s
system of equations. We recognize this at once by set-
ting
Y23 = Hy, Y31 = Hy, m
Mo = Ezy 20 = By, 7
Then in place of (56), (57), (58) and (59) we may set, in
the usual notation of the three-dimensional vector anal-
ysis

<o
Il

(60)

H:,
E.

W
<&

10H
v.H=0. (62)
Now, we take 0 = %’ywwe obtain in place of (52)
A\

V.- E=o, (63)

10E
H=-%" 64
0. VX c Ot (64)
Therefore, we deduce the Maxwel’s first system. Thus

(52) and (53) are substantially the Maxwell’s equations
[31-34] of empty space.

Concluding remarks

A theory of non-symmetric fields has been presented,
based on the infinitesimal displacement field. Subse-
quently, the actual curvature tensor was deduced and we
defined the contracted curvature tensor. With this cur-
vature tensor and the variational principle, we derive the
field equations and Bianchi’s identities. In consecuense,
the field equations have been found from Bianchi’s identi-
ties. Nevertheless, the unification of gravitation and elec-
trodynamics has however remained an unfulfilled goal.

In addition, we have assumed the symmetry of g..
and Fﬁl, to obtain the law of the pure gravitational field
and y/—ggu, do contain a skew-symmetric part if and
only if there is an electromagnetic field. Thus (52) and
(53) are substantially the Maxwell’s equations.
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