

Revista de Investigación de Física 130, 172002101 (2017)

Estructura electrónica en sistemas cristalinos de Ge, GaP y SiC

César Cabrera *1,2 y Máximo Poma 1

¹Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima, Perú ²Universidad Nacional del Callao, Av. Juan Pablo II S/N, Bella-Vista, Callao, Perú

Recibido 07 diciembre 2017 - Aceptado 29 enero 2018

Se estudia la estructura electrónica de los cristales de Germanio y de los compuestos cristalinos de Galio-Fosforo y de Silicio-Carbón, usando un potencial funcional de la densidad local de spin (LDA) y el método LMTO se calculan las bandas de energía, la banda de energía prohibida, la densidad de estados DOS, la energía total del sistema cristalino. Las propiedades electrónicas se ajustan bien a los resultados experimentales.

Palabras claves: bandas de energía, densidad de estados, red cristalina.

Electronic Structure in crystalline system of Ge, GaP and SiC

Be study the electronic structure of Ge and of the compounds GaP and SiC, we utilized a local density potential (LDA) and the method (LMTO) we present the calculated energy band, band-gaps, the density occupied states DOS, the total energy of crystalline system. There is good agreement between the calculated electronic properties and experimental results.

Keywords: energy bands, Density of States, crystal lattice.

1. Introducción

Debido a sus propiedades electrónicas, mecánicas y químicas a los semiconductores como el Germanio, Galio-Fósforo y Silicio-Carbón, los han convertido en los materiales más prometedores para sus aplicaciones en dispositivos de alta temperatura y potencia. La gran energía de enlace de estos materiales los hace resistentes a los ataques químicos y a la exposición de radiación solar.

De cualquier modo, en muchos cálculos LDA para semiconductores o aislantes la brecha de la energía prohibida se desestima entre unos treinta a cincuenta por ciento. Este problema de la banda de energía prohibida esta relacionado a una baja energía de la banda de conducción en muchos cálculos LDA de computación y no se ajustan bien a los resultados experimentales. De esta manera en este artículo presentamos una alternativa para el cálculo de la estructura electrónica de sólidos cristalinos.

Figura 1: Bandas de energía del cristal de Germanio

^{*}ccabreraa@unmsm.edu.pe

2 Fundamento teórico

En este artículo, reportamos el cálculo ab-initio de la estructura electrónica (las bandas de energía, la densidad de estados DOS) y la energía total en el estado fundamental del Germanio y de los compuestos binarios de Galiofósforo GaP [1] y del Silicio-Carbón SiC [2], usando el método de los orbitales lineales muffin-tin en la aproximación de las esferas atómicas LMTO-ASA [3], modelo que usa la teoría del funcional densidad (DFT) [4] en su forma local.

Como potencial de interacción electrónica, que actúa sobre los electrones en la red cristalina, usamos un potencial efectivo de tipo Muffin-Tin. Este potencial, que formulamos utilizando el funcional densidad de spin local, usa como aproximación para el término de intercambio y correlación, el potencial de correlación para un gas homogéneo de electrones de Ceperley-Alder discutido excelentemente por MacLaren [5] en 1991. Este potencial de interacción ya contiene toda la información de la estructura cristalina, como la constante de la red cristalina, la posición de los átomos en la celda convencional y se calcula a partir de la densidad electrónica del átomo libre pero con una distribución diferente para la red cristalina del sólido [6].

Figura 2: Bandas de energía del cristal binario de Galio-Fosforo

Con este potencial, se resuelve la ecuación autoconsistente de Kohn-Sham [7], para un electrón que interacciona con el potencial efectivo de la red cristalina, usando el método LMTO de Hans L. Skriver [3,6] y se calculan los parámetros potenciales que nos permite formular la base LMTO ortogonal que se usa para calcular la estructura de las bandas de energía y calcular la densidad de estados DOS. Finalmente con la DOS ya conocida, se calcula la energía total del sólido cristalino.

Figura 3: Bandas de energía del cristal binario de Silicio-Carbón

3. Datos

Para calcular el potencial efectivo que usamos para resolver la ecuación de Kohn-Sham para el sólido, usamos la constante de red de 10.696 au para Ge, de 10.299 au para GaP y de 8.220 au para SiC [8]. La tabla [1] muestra el radio de las esferas atómicas que usamos para el cálculo del potencial efectivo. Para calcular el radio de la esfera atómica del Galio y del fósforo ambos de red cristalina ortorrombica, usamos las constantes de la red publicada N.W. Ashcroft [9].

Figura 4: Densidad de estados del cristal de Ge.

4. Resultados y discusión

Las propiedades electrónicas de Ge obtenidas para un cálculo LDA con un valor del parámetro de transferencia de carga electrónica a la red cristalina, de 0.47, resultan muy buenas, puesto que la estructura de las bandas de energía calculadas aquí, presenta un gap y el típico perfil de las bandas de energía por ejemplo, reportadas por Wang en 1993 [10]. Sin embargo, entre la banda de valencia y la banda de conducción calculadas para germanio aquí, presenta un pequeño gap indirecto de 0.312 eV. Este brecha de energía prohibida se aprecia en la Fig.[1] que muestra una gráfica de las bandas de energía en las direcciones de alta simetría para la red cristalina del Ge.

Figura 5: Densidad de estados del cristal binario de Galio-Fosforo

Figura 6: Densidad de estados del cristal binario de Silicio-Carbón

Para el caso de compuestos binarios con estructura cristalina blenda de cinc el GaP y el SiC, en ambos sistemas cristalinos, los resultados del calculo LDA presentan excelentes propiedades electrónicas para el valor de 0.0,

del parámetro de transferencia de carga electrónica a la red cristalina. Las bandas de energía de los dos compuestos GaP y SiC ,se pueden apreciar en la Fig.[2] y la Fig.[3] respectivamente.

La estructura de las bandas de energía de ambos compuestos presentan una brecha indirecta de energía prohibida entre la banda de valencia y la banda de conducción, de 2.32 eV para el GaP y de 2.22 eV para el SiC, en ambos casos los cálculos LDA de la densidad de estados DOS, que se observa en la Fig.[4], Fig.[5] y Fig.[6], confirman la magnitud de la energía prohibida de estos sistemas cristalinos. Los valores están excelentemente de acuerdo a lo reportado por Y. Wang [1], C. S. Wang [10] para GaP y el reportado por L. Zhao [2] y a los resultados experimentales reportados en la literatura de especialidad.

Figura 7: Energía total cálculadas para los cristales de Ge, GaP y SiC

Los resultados del calculo LDA para la energía total, en función del parámetro de transferencia de carga a la red cristalina, de los sistemas de Ge, GaP y SiC se presenta en la Fig.[7]. Para la curva de energía del Ge existe un mínimo relativo con un valor de energía de -16.77 Ry, cuando al parámetro, de transferencia de carga a la red cristalina, le corresponde justo el valor de 0.47 y es que para este valor se obtiene una buena estructura de las bandas de energía y de la densidad de estados para el sólido cristalino de Ge.

Para el caso de los cristales con estructura cristalina de tipo blenda de cinc, l como la de GaP y SiC, resulta diferente a la del germanio, pues la energía total es mínima cuando el parámetro de transferencia de la carga a la red cristalina toma el valor 0.0, en este caso la energía total toma el valor de -18.67 Ry para sistema cristalino de GaP y toma el valor de -20.43 Ry para el sistema cristalino de SiC, tal como se aprecia en la Fig.[7].

Cristal	R(a.u.)
Ge	2.632
Ga	2.504
Р	2.484
Si	2.527
С	1.660

Tabla 1: Radio de las esferas atómicas en la red cristalina

Conclusiones

Los cálculos LDA hechos para las propiedades electrónicas usando la Density Functional Theory DFT y el método LMTO, dan excelentes resultados para el caso de los sistemas cristalinos con estructura cristalina de tipo zincblende, Gap y SiC. Para el caso de Ge los resultados muestran un excelente perfil de las bandas de energía y de la densidad de estados, pero con una banda de energía prohibida aproximadamente la mitad de 0.77 eV reportado por Wang [10] en la literatura.

Agradecimientos

Se agradece a la UPG-FCF UNMSM, Mi sincero agradecimiento a la FIQ-UNAC por su apoyo financiero a la presente investigación.

Referencias

- Yin Wang; Electronic structure of III-V zinc-blende semiconductors from first principles, Physical Review B.87, 235203 (2013).
- [2] G.L. Zhao y D. Bagayoko; Electronic Structure and charge transfer in 3C and 4H-SiC, New Journal of Physics.2, 16.1 (2000).
- [3] H.L. Skriver; The Linear Muffin-Tin Orbitals method,

Danish natural science foundation, unpublished, Roskilde, july (1983).

- J.P. Perdew and S. Kurth; Density functionals nonrelativistic coulomb system in the new century, C. Fiolhais, F. Nogueira, M. Marques (Eds.):LNP,620, pp. 1-55, (2003).
- [5] J.M. MacLaren; Parameterised local spin density exchange-correlation energies and potentials for electronic structure calculations, Computer Physics Communications.66, 383-391 (1991).
- [6] C. Cabrera; Uso de la corrección de auto energía en el calculo de las propiedades electrónicas de sólidos cristalinos, tesis, Facultad de Ciencias Física, unmsm (1996).
- [7] W. Kohn; Electronic structure of matter-wave functions and density functionals, Reviews of Modern Physics. vol.715, 1253 (1998).
- [8] M.L. Cohen; Electronic structure and optical properties of semiconductors, Springer series in solid state sciences.75, 80 (1988).
- [9] N.W. Ashcroft; Solid State Physics, Holt Rinehart and Winston, USA, 129 (1976).
- [10] C.S.Wang; First principles electronic structure of Si, Ge, GaP, GaAs, ZnS and ZnSe., Physical Review B.24 6,3393 (1981).