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Abstract
Lately the Cosmic Background Radiation (CMB) data have resulted in anomalies or deviations with
respect to the standard model of cosmology, which has led several cosmologists to consider alternative
models to the standard model (homogeneous and isotropic), such as the Bianchi models, which are
homogeneous but anisotropic. Based on these motivations to consider alternative models, we propose
to study, in the present work, the algebraic classification of the Bianchi models and each of the Bianchi
space-times, applying the ADM formalism of general relativity in its Hamiltonian version and the groups
G3. The dynamic equations are shown with the help of the Hamiltonian density H and the Poisson
parentheses, in other words, the equation of motion are presented for each of the Bianchi space-times.
Some theoretical consequences of these equations are discussed when we take the limit Ω → −∞ and
the fixed parameters β+ and β−, consequently, we find that the dependent part of the gravitational
potential from the Hamiltonian Density tends to zero and from the equations of motion we find the
constant of motion, pΩ = pβ+ = pβ− = constant.
Keywords: Cosmology, Bianchi’s models, ADM formalism.

Formalismo Hamiltoniano de los modelos de Bianchi
Resumen
Últimamente los datos de la Radiación Cósmica de Fondo (CMB) han dado como resultado anomalías
o desviaciones con respecto al modelo estándar de la cosmología, lo cual ha llevado a varios cosmólogos
a considerar modelos alternativos al modelo estándar (homogeneo e isotrópico), como los modelos de
Bianchi, los cuales son homogéneos pero anisotrópicos. Basándonos en estas motivaciones para consid-
erar modelos alternativos, proponemos estudiar, en el presente trabajo, la clasificación algebraíca de
los modelos de Bianchi y cada uno de los espacio-tiempo de Bianchi, aplicando el formalismo ADM de
relatividad general en su versión Hamiltoniana y los grupos G3. Se muestran las ecuaciones dinámicas
con ayuda de la densidad Hamiltoniana H y los paréntesis de Poisson, en otras palabras, se presentan
las ecuaciones de movimiento para cada uno de los espacio-tiempo de Bianchi. Se discuten algunas con-
secuencias de carácter teórico en dichas ecuaciones cuando tomamos el límite Ω→ −∞ y los parámetros
β+ y β− fijos, en consecuencia, encontramos que la parte dependiente del potencial gravitacional de la
densidad Hamiltoniana tiende a cero y de las ecuaciones de movimiento encontramos la constante de
movimiento, pΩ = pβ+ = pβ− = constante.
Palabras clave: Cosmología, modelos de Bianchi, formalismo ADM.

∗mvalenzuelalumat@uaz.edu.mx
© Los autores. Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons
Atribución 4.0 Internacional (CC BY 4.0) que permite el uso, distribución y reproducción en cualquier medio, siem-
pre que la obra original sea debidamente citada de su fuente original.

26

http://www.unmsm.edu.pe/
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica
https://fisica.unmsm.edu.pe/
https://creativecommons.org/licenses/by/4.0/deed.es
https://doi.org/10.15381/rif.v25i1.21413
https://orcid.org/0000-0002-8532-229X


Rev. Inv. Fis. 25(1), (2022) 27

1 Introduction

Cosmology is the branch of physics that studies the ori-
gin of the Universe on its largest scale. At first, it was
known as mechanics of the celestial and it was the study
of the heavens; there were different philosophical cur-
rents in ancient Greece, promoted by Aristarchus, Aris-
totle and Ptolemy, proposing different theories of what
was observed. In particular, there was Ptolemy’s geocen-
tric theory in which the center of the entire known and
unknown universe was the Earth, until Copernicus and
many years later in the 16th century Kepler and Galileo
Galilei proposed a heliocentric model. Later, in 1687,
Newton extended the works of the latter, formulating
the 3 laws of motion and the universal law of gravita-
tion [1], with which was born modern cosmology, that is,
the analytical cosmology.

In 1915 Albert Einstein, aided by the equivalence
principle, the tensor calculus and Mach’s law, published
the field equationsRµν− 1

2
gµνR = −κTµν , which describe

the dynamics of the geometry of space-time [2]. Shortly
after, various solutions to this equation were published,
which are the structure of modern cosmology, where it
is found that the dominant force under this assumption
is the force of gravity. In addition to the above, modern
cosmology assumes that the Universe, on large scales, is
homogeneous and isotropic, which helped to more easily
solve the field equations proposed by Einstein, because
the metric is symmetric. This type of metric was de-
veloped by Alexander Friedmann and later worked by
Howard Percy Robertson and Arthur Geoffrey Walker
among others.

If we apply the general relativity [3–15] to cosmolog-
ical models, then is investigated the past, present and
future of the Universe. In addition, the modern the-
oretical cosmology, sticks to the so-called cosmological
principle. This principle establishes that at large scales
the Universe is homogeneous and isotropic, that is, there
are no privileged positions or directions in the Universe.
The assumption of isotropy and homogeneity of the uni-
verse helps to solve Einstein’s equations [16, 17] more
easily. The hypothesis of isotropy and homogeneity ap-
plied to general relativity opened the field of modern cos-
mology with the construction of models that accept ex-
act solutions, which are known as models of Friedmann-
Lemaître-Robertson-Walker (FLRW) [18–23].

This article is focused on Bianchi’s models type A
and B, which are especially homogeneous and anisotropic
[24]; that is, there are privileged positions, but not privi-
leged directions. The classification of this type of models
was made by Luigi Bianchi in 1897 [25].

In section 2, we present the Friedmann-Lemaitre-
Robertson-Walker model (FLRW). Starting from the
FLRW metric and considering the energy-moment ten-
sor for the Universe, when considering a perfect fluid,

we can use the field equations of gravitation to find the
Friedmann equations; which provide information on the
dynamics of the behavior of the Universe. In the present
work this section is presented the FLRW model, with the
aim of noting that the FLRW models are particular cases
of some of the Bianchi models. In section 3, we develop
the formalism of the different cases of Bianchi cosmolog-
ical models type A and B. These cosmological models
will be analyzed without matter, cosmological constant
and scalar potential. First, a general model for Bianchi’s
cosmological models will be described; where LG is the
Lagrangian geometric density. Once the geometric La-
grangian density LG is found, we can find the Hamil-
tonian density (see appendix A). We will use Hamilto-
nian density H to develop the dynamics of Bianchi’s cos-
mological models. Finally, we present a table with the
structure constants that give an algebraic classification
of each Bianchi’s models. Therefore, the structure con-
stants are of the utmost importance in this work since
they are the ones that provide an algebraic classification
of the Bianchi’s models in accordance with group theory.
From the Hamiltonian density, we study the dynamics of
each of the Bianchi’s models by calculating each of the
Poisson brackets of each canonical variable, and through
which it was possible to conclude that in the limit when
Ω → −∞ each Hamiltonian constraint could be inter-
preted with a time-dependent gravitational potential and
when considering the equations of motion where the tem-
poral derivatives of the canonical moments are found, we
can obtain the conservation equation, p2

Ω = p2
β+

+ p2
β− .

2 FLRW model

The Schwarzschil metric

We will start by studying the Schwarzschild’s line ele-
ment, since it will be useful in FLRW models. Let us
consider the Sun as a point mass and the gravitational
field around it, we assume it to be statically and spheri-
cally symmetric. Consequently, in the coordinate system
xµ =

(
x0, x1, x2, x3

)
= (t, r, θ, φ) the metric tensor will

only be a function of x1 = r, that is, gµν = gµν (r). Fur-
thermore, as the radial coordinate tends to infinity, that
is, when r → ∞ and the metric tensor reduces to the
metric Minkowski tensor ηµν , in other words, we obtain
the Minkowski line element in spherical polar coordinates

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2. (1)

In general, when spacetime is not flat; that is, when
space-time is curved, we consider the square of the line el-
ement ds2 = gµνdx

µdxν . Applying the temporal isotropy
in the line element for a curved space-time, in other
words, the line element in a curved space-time would not
change under the transformation x0 = t→ −t, therefore,
we can write the line element as:



28 Rev. Inv. Fis. 25(1), (2022)

ds2 = g00dt
2 − gikdxidxk, (2)

where g01 = g02 = g03 = 0 and i, k = 1, 2, 3.
Too, applying isotropy at x2 = θ y x3 = φ; that is,
the line element ds does not change under the trans-
formations x2 = θ → −θ y x3 = φ → −φ, implying
g12 = g13 = g23 = 0, therefore, equation (2) becomes the
scalar equation:

ds2 = g00dt
2 + g11dr

2 + g22dθ
2 + g33dφ

2. (3)

When r → ∞ equation (3) reduces to equation (1),
therefore we write equation (3) in the form

ds2 = A (r) dt2−B (r) dr2−C (r) r2dθ2−D (r) r2 sin2 θdφ2.
(4)

Let us consider an angular change of direction by an
angle α in two planes:

1. In a vertical plane, a change of direction by an an-
gle α = dθ of the z axis, is obtained, from equation
(4), the result

ds2
1 = −C (r) r2α2; (5)

1. In a horizontal plane (equatorial plane, θ = π/2) by
the same angle α = dφ to obtain from the equation

ds2
2 = −D (r) r2α2. (6)

The isotropy in three dimensions requires that the
condition ds1 = ds2 is fulfilled, therefore from equations
(5) and (6) we find that C = D. From the preceding
considerations, equation (4) is transformed to the result

ds2 = A (r) dt2 −B (r) dr2 − C (r) r2 (dθ2 + sin2 θdφ2) .
(7)

Introducing a new coordinate by r′ =
√
C (r)r. If we

differentiate this new coordinate, we obtain

dr′ =

(
1

2
√
C

dC

dr
+
√
C

)
dr,

of this ordinary differential the second term of equation
(7) takes the form

B (r) dr2 = B (r)

(
1

2
√
C

dC

dr
+
√
C

)−2

dr′2 = B′
(
r′
)
dr′2.

(8)
With the help of equations (7) and (9) we can rewrite

the infinitesimal line element as:

ds2 = A′
(
r′
)
dt2 −B′

(
r′
)
dr′2 − r′2

(
dθ2 + sin2 θdφ2) .

Since A′ (r′) , B′ (r′) > 0, we can write the above
equation as:

ds2 = exp [ν (r)] dt2−exp [λ (r)] dr2−r2 (dθ2 + sin2 θdφ2) .
(9)

By using equation (9) in the field equations of gravita-
tion in the vacuum and solving the system of differential
equations we can rewrite ds2 as follows

ds2 =

(
1− 2m

r

)
dt2−

(
1− 2m

r

)−1

dr2−r2 (dθ2 + sin2 θdφ2) ,
this is the famous Schwarzschild’s line element [26].

It can be analyzed that this line element is reduced to
the Minkowski’s line element, that is, equation (1), when
r →∞.

Deduction of the FLRW metric

Instead of the four coordinates for which the spatial
isotropy of the universe is most evident, we will now
choose different coordinates that are more convenient
from the point of view of physical interpretation.

Since the temporal lines with respect to the coordi-
nates x1, x2 and x3 are constant and x0 variable, we
choose the geodesics of the particle that in the form of
central symmetry are straight lines that pass through the
center, similarly to how the space-time decomposition is
done in ADM formalism. Also let x0 be the metric dis-
tance to the center. In such a coordinate system the
metric is of the form:

ds2 = (dx0)2 − dσ2 = (dx0)2 − gikdxidxk, (10)

where dσ2 is the metric on one of the hypersurfaces
and i, k = 1, 2, 3.

The elements of the spatial metric tensor gik that be-
long to different hypersurfaces will then be in the same
way on all hypersurfaces with the only difference that
there will be a positive factor; called scale factor, which
depends on x0:

gik = γika
2, (11)

where the components of γik depend on x1, x2 and
x3 only, and a is a function of x0. Therefore, introduc-
ing equation (11) on the right hand side of equation (10)
gives

dσ2 = a2γikdx
idxk = a2 (dσ′)2 . (12)

Using the Schwarzschild line element; that is, equa-
tion (9), it follows that the line element in parentheses
on the right side of equation (12) takes the form:

dσ′2 = γikdx
idxk = eλdr2 + r2 (dθ2 + sin2 θdφ2) . (13)
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On the other hand, the first non-zero component of
the Ricci tensor for the metric of equation (13) is

R11 =
1

r

dλ

dr
, (14)

furthermore R22 and R33 are given by

R22 = csc2 θR33 = 1 +
1

2
re−λ

dλ

dr
− e−λ. (15)

Regarding Gaussian curvature [27], mathematically a
space of constant curvature is characterized by the equa-
tion

Rλµνκ = k (gλνgµκ − gλκgµν) . (16)

The spaces with constant curvature are qualitatively
different depending on whether the curvature is positive,
negative, or zero. In the case of a three-dimensional
space, equation (16) is written as

Rijkl = k (gikgjl − gilgjk) .

Contracting the previous equation with gik, we ob-
tain

Rjl = gikRijkl = 2kgjl. (17)

Using the components of the Ricci tensor; that is,
using equations (14) and (15) and the line element of
equation (13), from equation (17) we obtain the ordinary
differential equations

1

r

dλ

dr
= 2k exp (−λ) ,

1 +
1

2
r exp (−λ)

dλ

dr
− exp (−λ) = 2kr2.

The solution of the system of ordinary differential
equations above is given by the analytical equation

exp (−λ) = 1− kr. (18)

The homogeneity and isotropy imposed on space-time
make admissible the three types of geometries for space
described in the FLRW model metric and are classified
as open universe if k = −1 (ie, hyperbolic space), flat if
k = 0 (ie, Euclidean space) or closed if k = 1 (ie, spher-
ical space). After insert the solution of equation (18) in
equation (13), then the resulting equation is introduced
in equation (12) and with this result finally substituting
it in equation (10), we obtain the FLRW metric:

ds2 = (dt)2 − [a (t)]2
[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
,

(19)
where k describes the curvature and is constant in

time and a (t) is the scale factor; which is time depen-
dent and can be interpreted as the radius or size of the

universe. Obviously, once k and a (t) are specified the
spacetime metric is completely determined.

Geometrically, as shown below, a (t) can be seen as
the radius of the universe, since the hypersurfaces con-
sidered below represent the three types of possible Uni-
verses according to the FLRW metric, consequently, this
describes the dynamical properties of the different ho-
mogeneous and isotropic universes. Physically, a very
useful quantity to define the scale factor is the Hubble
parameter (sometimes called the Hubble constant), given
by

H (t) =
1

a

da

dt
.

The Hubble parameter refers to how fast most distant
galaxies are receding from us via Hubble’s law [28],v =
Hd. This is the relationship that was discovered by Ed-
win Hubble, and has been verified with great accuracy
by modern methods of observation.

The FLRW metric can also be determined from the
geometry of three-dimensional spaces of constant curva-
ture. Therefore, consider the Cartesian equation of a
spherical hypersurface

x2 + y2 + z2 + w2 = a2.

The infinitesimal distance (line element) in this case
would be:

dσ2 = dx2 + dy2 + dz2 + dw2. (20)

Let us consider the following transformations in a
four-dimensional Euclidean space with the coordinates
(x, y, z, w):

w = a cosψ,
x = a sinψ cos θ,

y = a sinψ sin θ cosφ,
z = a sinψ sin θ sinφ.

(21)

Differentiating equations (21), substituting the total
differentials in equation (20) and after making the nec-
essary simplifications we obtain:

dσ2 = a2 [dψ2 + sin2 ψ
(
dθ2 + sin2 θdφ2)] . (22)

Taking the radial transformation sinψ = r; there-
fore, the total differential is dr = cosψdψ, from which
the mathematical expression dψ2 =

(
1− r2

)−1
dr2, is

obtained, and consequently the line element of equation
(22) is determined by the equation:

dσ2 = a2

[
dr2

1− r2
+ r2 (dθ2 + sin2 θdφ2)] . (23)

With the equation (23), we write the metric of the
three-dimensional homogeneous spherical surface in the
form:
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ds2 = dt2−a2 (t)

[
dr2

1− r2
+ r2 (dθ2 + sin2 θdφ2)] . (24)

Similarly, if we consider a homogeneous surface of
negative curvature with the infinitesimal line element
dσ =

√
−dw2 + dx2 + dy2 + dz2, we obtain

ds2 = dt2−a2 (t)

[
dr2

1 + r2
+ r2 (dθ2 + sin2 θdφ2)] , (25)

and by considering a homogeneous surface of null
curvature with an infinitesimal line element dσ =√
dx2 + dy2 + dz2, we have

ds2 = dt2 − a2 (t)
[
dr2 + r2 (dθ2 + sin2 θdφ2)] . (26)

If we confine equations (24), (25) and (26) we ob-
tain the FLRW metric expressed in equation (19), where
evidently k = −1, 0, 1.

Friedmann equations

Suppose now that the Universe is filled with an ideal
fluid; frictionless adiabatic fluid, that is, fluid character-
ized by the fact that in a local coordinate system of a
fluid element there is only one isotropic pressure. There-
fore, the energy-moment tensor for a Universe of this
type according to the theory of general relativity can be
represented by:

Tµν = (ρ+ p)
dxµ

ds

dxν

ds
− pgµν . (27)

The tensor of equation (27) can be obtained from
the consideration of a frame in free fall, in which the
perfect fluid is at rest in a small neighborhood. In this
framework, the metric tensor would be gµν = ηµν , the
four-speed is given by dxµ

ds
= (1, 0, 0, 0) and the moment

energy tensor is determined by

Tαβ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 .

In some general coordinate frame, the energy-moment
tensor is determined by its transformation law, that is,
Tµν = ∂xµ

∂ξα
∂xν

∂ξβ
Tαβ . Using the transformation law of the

metric tensor gµν = ∂xµ

∂ξα
∂xν

∂ξβ
ηαβ and the quadri-velocity

in the frame of free fall; where ηαβ is the Minkowski’s
metric tensor, from the transformation law of the energy-
moment tensor, we obtain the equation (27).

Making use of the FLRW metric; that is, making use
of equation (19), and introducing equation (27) in the

field equations Rµν − 1
2
gµνR = −8πGTµν , we obtain the

Friedmann equations [19]:

2
a
d2a
dt2

+ 1
a2

(
da
dt

)2
+ k

a2 = −8πGp,

3
[

1
a2

(
da
dt

)2
+ k

a2

]
= 8πGρ,

(28)

where the first equation of (28) corresponds to Gii =
Rii − 1

2
giiR = −8πT ii with i = 1, 2, 3 and the second

of the previous equations corresponds to the 0-0 com-
ponent; that is, R00 − 1

2
g00R = −8πGT 00. The above

equations provide information on how the universe be-
haves as an ideal fluid.

3 Bianchi’s cosmological models

In this section, we develop the formalism of the different
cases of the Bianchi’s cosmological models, i. e., type A
and B. Bianchi’s cosmological models will be analyzed
without matter, cosmological constant and scalar poten-
tial. First, a general model for the Bianchi’s models will
be described; where is the geometric Lagrangian den-
sity LG. Once the geometric Lagrangian density LG is
found, the Hamiltonian density is developed. Finally,
the Hamiltonian density H will be used to develop the
dynamics of the Bianchi’s cosmological models.

The homogeneity and isotropy of the cosmological
models are directly related to the intrinsic symmetries of
the manifold; which in simple terms and locally looks like
a piece of the Euclidean space Rn of n dimensions. A very
viable way to classify the different cosmological models is
by their symmetries. Symmetries or isometries in space-
time are transformations that leave the metric tensor, the
physical and geometric properties invariant. The fields
that generate these symmetries are called Killing’s vector
fields. These fields are defined in a Riemannian manifold,
they are differentiable, and they have a differentiable and
symmetric metric tensor. The Killing’s vector fields are
defined by means of the Lie derivative of the metric ten-
sor equivalent to the nullity in some direction given by
a Killing’s field [29], in mathematical terms these fields
comply with the Killing’s equation:

LXgµν = 0. (29)

The Bianchi’s cosmological models are homogeneous,
therefore, they have Killing’s vectors associated with this
symmetry. However, given the properties of the Lie’s
derivative, the Killing’s vectors have the property:

[Xµ, Xν ] = CλµνXλ,

where Cλµν are the structure constants (appendix B).
Bianchi’s models are classified according to the type of
structure that characterizes them [30,31].
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3.1 General model

In Misner’s notation, the metric of the Bianchi’s models
can be written as [5]

ds2 = −N2dt2 + e2Ω(t)e2βij(t)ωiωj , (30)

where N (t) is the lapse function, ωi are called the dif-
ferential 1-forms, e2Ω(t) is the scale factor of the universe
and βij determines the anisotropic parameters β+ (t) and
β− (t) as follows

βij =

 β+ +
√

3β− 0 0

0 β+ −
√

3β− 0
0 0 −2β+

 . (31)

In this general model of the Bianchi’s models, the
shift function is not stipulated in the metric of equa-
tion (30), consequently in the later developments for the
Bianchi’s cosmological models that will not appear as
variable dynamics. Taking into account the multiplicand
hij = e2Ω(t)eβij(t) of the second term of equation (30)
and when comparing it with gab of the ADM formalism
of general relativity (see appendix A), we can intuit that

the dynamic variables for the Bianchi’s models here will
be Ω, β+, β−, since the lapse function it will set with the
value N = 1; which is the physical norm.

Setting the lapse function equivalent to unity is neces-
sary for the geometric Lagragian density LG to coincide
with the field equations of gravitation in vacuum and to
be able to use the Hamiltonian density, From H, we can
extract the dynamics of the model.

The non-zero components of extrinsic curvature; us-
ing equations (30) and (31) and equation (147), they are
given by:

K11 = 1
N

(
dΩ
dt

+
dβ+

dt
+
√

3
dβ−
dt

)
exp

[
2
(
Ω + β+ +

√
3β−

)]
,

K22 = 1
N

(
dΩ
dt

+
dβ+

dt
−
√

3
dβ−
dt

)
exp

[
2
(
Ω + β+ −

√
3β−

)]
,

K33 = 1
N

(
dΩ
dt
− 2

dβ+

dt

)
exp [2 (Ω− 2β+)] .

(32)
The trace of extrinsic curvature; that is, the equation

K = hijKij is given by

K = − 3

N

dΩ

dt
. (33)

Taking into account the calculation

√
det (hij) =

√
exp (6Ω) exp

(
β+ +

√
3β−

)
exp

(
β+ −

√
3β−

)
exp (−2β+) = exp [3Ω (t)] ,

and inserting equations (32) and (33) in equation (151), we can ensure that the Lagrangian density is expressed by

LG =
6 exp (3Ω)

N

[
−
(
dΩ

dt

)2

+

(
dβ+

dt

)2

+

(
dβ−
dt

)2
]

+N exp (3Ω)(3) R. (34)

The conjugate moments for the dynamic variables
Ω, β+, β− are given by

pΩ = ∂LG
∂Ω̇

= − 12
N
dΩ
dt

exp (3Ω) ,

pβ+ = ∂LG
∂β̇+

= 12
N

dβ+

dt
exp (3Ω) ,

pβ− = ∂LG
∂β̇−

= 12
N

dβ−
dt

exp (3Ω) .

(35)

Using the Legendre’s transformation [32,33], equation
(34) and equations (35); we can notice that the Hamil-
tonian density can be calculated from the equation

H = pΩ
dΩ

dt
+ pβ+

dβ+

dt
+ pβ−

dβ−
dt
− LG,

resulting

H =
N

24
exp (−3Ω)

(
−p2

Ω + p2
β+

+ p2
β−

)
−N exp (3Ω)(3) R,

(36)
where the three-dimensional curvature scalar is given
by [?]

(3)R = CijkC
l
mnhilh

kmhjn + 2CijkC
k
lih

jl + 4CiikC
j
jmh

km,
(37)

where Cijk the structure constants and hij =

e2Ω(t)eβij(t)Ṫhe third term of equation (37) is not taken
into account in the Bianchi’s models belonging to class
A; that is, class A of the Bianchi’s models have structure
constants Ciik = 0, therefore, the third term will only be
used in class B.

Equation (36) constitutes a Hamiltonian constraint
in the ADM formalism of general relativity. There-
fore, H ≈ 0 must be satisfied to reproduce Einstein’s
field equations. In equation (30), that is, the general
metric for the Bianchi’s cosmological models does not
appear the shift function Na, therefore, the equation
LNhabπ

ab = −2hacN
cDbπ

ab = NcHc will not be con-
sidered, therefore will have not generating constraints of
difeomorphism for the Bianchi’s models.

The classical Poisson brackets for the dynamic vari-
ables considered are
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{xi, xj} = 0,
{pi,pj} = 0,
{xi, pj} = δij ,

(38)

where xi = Ω, β+, β− and pi = pΩ, pβ+,pβ− with i =
1, 2, 3.

Next, the formalism of the Bianchi’s models of class
A and B is developed [38].

3.2 Class A

Bianchi I

This Bianchi model is characterized by the differential
1-forms

ω1 = dx,
ω2 = dy,
ω3 = dz.

The constants of the Bianchi I are null, that is,
Cijk = 0 [31]; so it is the simplest model. Therefore, from
equation (36) and using equation (37), the Hamiltonian
density is expressed by the equation

HI =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
, (39)

where N = 1. From equation (39) we can find the equa-
tions of motion

dΩ

dt
= {Ω,HI} =

∂Ω

∂Ω

∂HI
∂pΩ
−∂HI
∂Ω

∂Ω

∂pΩ
= −exp (−3Ω)

12
pΩ,

(40)

dβ+

dt
= {β+,HI} =

∂β+

∂β+

∂HI
∂pβ+

−∂HI
∂β+

∂β+

∂pβ+

=
exp (−3Ω)

12
pβ+ ,

(41)

dβ−
dt

= {β−,HI} =
∂β−
∂β−

∂HI
∂pβ−

−∂HI
∂β−

∂β−
∂pβ−

=
exp (−3Ω)

12
pβ− ,

(42)

dpΩ

dt
= {pΩ,HI} =

∂pΩ

∂Ω

∂HI
∂pΩ

− ∂HI
∂Ω

∂pΩ

∂pΩ
=

exp (−3Ω)

8

(
−p2

Ω + p2
β+

+ p2
β−

)
, (43)

dpβ+

dt
=
{
pβ+ ,HI

}
=
∂pβ+

∂β+

∂HI
∂pβ+

− ∂HI
∂β+

∂pβ+

∂pβ+

= 0,

(44)

dpβ−
dt

=
{
pβ− ,HI

}
=
∂pβ−
∂β−

∂HI
∂pβ−

− ∂HI
∂β−

∂pβ−
∂pβ−

= 0.

(45)

Using the fact that equation (39) is a constraint, then
we solve for p2

Ω from the Hamiltonian density in question;
that is, we have the equation p2

Ω = p2
β+

+ p2
β− , and in-

troduce it into equation (43) and finally integrating the
ordinary differential equations (44) and (45), we obtains

pΩ = p0Ω = constante,
pβ+ = p0β+ = constante,
pβ− = p0β− = constante.

(46)

If we insert equations (46) into equations (40), (41)
and (42) and then integrate in the time the differential
equations in time, we obtain the solutions to the dynamic
variables for this cosmological model:

Ω (t) = 1
3

ln
(
− 1

4

√
p2

0β+
+ p2

0β−
t+ 3Ω0

)
,

β+ (t) = − 1
3

p0β+√
p2
0β+

+p2
0β−

ln
(
− 1

4

√
p2

0β+
+ p2

0β−
t+ 3Ω0

)
+ C1,

β− (t) = − 1
3

p0β−√
p2
0β+

+p2
0β−

ln
(
− 1

4

√
p2

0β+
+ p2

0β−
t+ 3Ω0

)
+ C2,

(47)
where C1 y C2 are constants of integration.

Bianchi II

This Bianchi’s model is characterized by the differential
1-forms

ω1 = dx− zdy,
ω2 = dy,
ω3 = dz.

The constants of the Bianchi II are [31]

C1
23 = −C1

32 = 1.

Using the structure constants and equation (37), the
curvature scalar is determined by

(3)RII = −2 exp
(
−2Ω + 4β+ + 4

√
3β−

)
. (48)

Introducing equation (48) into equation (36), the
Hamiltonian density for the Bianchi II is determined by
the equation

HII =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
+2 exp

(
Ω + 4β+ + 4

√
3β−

)
,

(49)
where N = 1, this will be done in the next models.

From equation (49), we can obtain the equations of
motion

dΩ

dt
= {Ω,HII} =

∂HII
∂pΩ

= −exp (−3Ω)

12
pΩ, (50)
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dβ+

dt
= {β+,HII} =

∂HII
∂pβ+

=
exp (−3Ω)

12
pβ+ , (51)

dβ−
dt

= {β−,HII} =
∂HII
∂pβ−

=
exp (−3Ω)

12
pβ− , (52)

dpΩ

dt
= {pΩ,HII} = −∂HII

∂Ω
=

exp (−3Ω)

8(
−p2

Ω + p2
β+

+ p2
β−

)
− 2 exp

(
Ω + 4β+ + 4

√
3β−

)
, (53)

dpβ+

dt
=
{
pβ+ ,HII

}
= −∂HII

∂β+
=

−8 exp
(

Ω + 4β+ + 4
√

3β−
)
, (54)

dpβ−
dt

=
{
pβ− ,HII

}
= −∂HII

∂β−
=

−8
√

3 exp
(

Ω + 4β+ + 4
√

3β−
)
. (55)

Using the fact that equation (49) is a constraint, then
we clear p2

Ω from the Hamiltonian density in question and
substitute it into equation (45), we obtain the differential
equation

dpΩ

dt
= −8 exp

(
Ω + 4β+ + 4

√
3β−

)
. (56)

By virtue of the Hamiltonian constraint HII ≈ 0,
the dynamics of the Bianchi II is considered below;
according to the second term of equation (49). As-
suming fixed anisotropic parameters β+ and β−, con-
sequently, the last term of equation (49) containing
2 exp

(
Ω + 4β+ + 4

√
3β−

)
→ 0 as Ω → −∞. From the

preceding consideration and by virtue of equations (54),
(55), and (56) taking into account that as Ω→ −∞, we
found pΩ = pβ+ = pβ− = constant and p2

Ω = p2
β+

+ p2
β− .

Bianchis VI0 y VII0
These models have their 1-differential forms expressed in
the form

ω1 = cosh zdx∓ sinh zdy,
ω2 = − sinh zdx+ cosh zdy,

ω3 = dz,

where in the first of the previous equations the sign above
indicates the model VI0 and the sign below the Bianchi
VII0 model, respectively. The type VI0 of the Bianchi’s
models has the structure constants [34]

C1
23 = −C1

32 = 1,
C2

31 = −C2
13 = −1.

The Bianchi VII0 have structure constants given by
[31,34]:

C1
23 = −C1

32 = −1,
C2

31 = −C2
13 = −1.

With the structure constants and using equation (37),
the curvature scalar is

(3)RV I0V II0
= −4 exp (−2Ω + 4β+)

[
cosh

(
4
√

3β−
)
± 1
]
,

(57)
where the sign above indicates the Bianchi VI0 and

the sign below the Bianchi VII0; this will be the case in
the development of these two models. If we use equation
(57), equation (36) becomes

HV I0V II0
=

exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
+

4 exp (Ω + 4β+)
[
cosh

(
4
√

3β−
)
± 1
]
. (58)

With these two Hamiltonian densities; that is, equa-
tions (58), we can write the equations of motion

dΩ

dt
=
{

Ω,HV I0V II0

}
=
∂HV I0V II0

∂pΩ
= −exp (−3Ω)

12
pΩ, (59)

dβ+

dt
=
{
β+,HV I0V II0

}
=
∂HV I0V II0

∂pβ+

=
exp (−3Ω)

12
pβ+ ,

(60)

dβ−
dt

=
{
β−,HV I0V II0

}
=
∂HV I0V II0

∂pβ−
=

exp (−3Ω)

12
pβ− ,

(61)

dpΩ

dt
=
{
pΩ,HV I0V II0

}
=

exp (−3Ω)

8

(
−p2

Ω + p2
β+

+ p2
β−

)
− 4 exp (Ω + 4β+)

[
cosh

(
4
√

3β+

)
± 1
]
, (62)

dpβ+

dt
=
{
pβ+ ,H

V I0
V II0

}
= −

∂HV I0V II0

∂β+
= 16 exp (Ω + 4β+)

[
cosh

(
4
√

3β+

)
± 1
]
, (63)
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dpβ−
dt

=
{
pβ− ,H

V I0
V II0

}
= −

∂HV I0V II0

∂β−
= 16

√
3 exp (Ω + 4β+) sinh

(
4
√

3β−
)
. (64)

Taking equation (58) and inserting it into equation (62) we obtain the equation of motion in terms of the dynamic
variables Ω, β+, β−

dpΩ

dt
= −

∂HV I0V II0

∂Ω
= −16 exp [4 (Ω + β+)]

[
cosh

(
4
√

3β+

)
± 1
]
. (65)

By virtue of the Hamiltonian constraint HV I0V II0
≈ 0,

the dynamics of the Bianchi cosmological models VI0 and
VII0 are shown below according to the second term of
equation (58). Assuming the fixed anisotropic param-
eters β+ y β−, consequently, the last term of equation
(58) tends to 0, as Ω → −∞, where it turns out that
each conjugate moment is constant and p2

Ω = p2
β+

+ p2
β− .

By virtue of equations (63), (64) and (65) tend to zero
as Ω→ −∞ and therefore pΩ = pβ+ = pβ− = constant.

Bianchi VIII

In the Bianchi VIII the 1-differential forms are given
by [39]

ω1 = cosh y cos zdx− sin zdy,
ω2 = cosh y sin zdx+ cos zdy,

ω3 = sinh ydx+ dz.

For this cosmological model, the structure constants
are [31,34]

C1
23 = −C1

32 = −1,
C2

31 = −C2
13 = −1,

C3
12 = −C3

21 = 1.

Using these structure constants and inserting them
into equation (37), the curvature scalar is given by the
scalar equation

(3)RV III = −4 exp (−2Ω + 4β+) cosh
(
4
√

3β+

)
− 2 exp (−2Ω− 8β+)− 4 exp (−2Ω + 4β+)

+8 exp (−2Ω− 2β+) cosh
(
2
√

3β−
)
,

(66)

and, therefore, if we use equation (66) to substitute it in equation (36), the Hamiltonian density turns out to be

HV III =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
+ exp (Ω) [W (β+, β−)− 1] , (67)

with

W (β+, β−) = 1 + 4e4β+ cosh
(

4
√

3β+

)
+ 2e−8β+ − 8e−2β+ cosh

(
2
√

3β−
)

+ 4e4β+ .

From equation (67), we find the equations of motion:

dΩ

dt
= {Ω,HV III} =

∂HV III
∂pΩ

= −exp (−3Ω)

12
pΩ, (68)

dβ+

dt
= {β+,HV III} =

∂HV III
∂pβ+

=
exp (−3Ω)

12
pβ+ , (69)

dβ−
dt

= {β−,HV III} =
∂HV III
∂pβ−

=
exp (−3Ω)

12
pβ− , (70)

dpΩ

dt
= {pΩ,HV III} =

exp (−3Ω)

8

(
−p2

Ω + p2
β+

+ p2
β−

)
− exp (Ω) [W (β+, β−)− 1] , (71)

dpβ+

dt
=
{
pβ+ ,HV III

}
= −∂HV III

∂β+
= − exp (Ω)

∂W

∂β+
,

(72)

dpβ−
dt

=
{
pβ− ,HV III

}
= −∂HV III

∂β−
= − exp (Ω)

∂W

∂β−
.

(73)
Using equation (67) and inserting it into equation

(71), we obtain the differential equation

dpΩ

dt
= −4 exp (Ω) [W (β+, β−)− 1] . (74)

With the Hamiltonian constraint HV III ≈ 0, the dy-
namics of the Bianchi VIII can be seen as the dynam-
ics of a particle at a time-dependent potential. The
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simplest motions are obtained by assuming the fixed
anisotropic parameters β+ and β−, consequently, the last
term of equation (67) containing W (β+, β−) tends to
zero at the limit Ω → −∞. From the preceding con-
sideration and equations (72), (73) and (74), we obtains
pΩ = pβ+ = pβ− = constant and p2

Ω = p2
β+

+ p2
β− .

For large values of β of W (β+, β−), it can be found
that in the limit β+ → −∞ the value of W (β+, β−),
from equation (67), behaves as

W (β+ → −∞, β−) ∼ 2 exp (−8β+)− 8 exp (−2β+)

× cosh
(

2
√

3β−
)
,

and for the limit β → +∞ taking into account
β− � 1, the anisotropic potential behaves in the way

W (β+ → +∞, β−) ∼ 1 + 4
(
2 + 24β2

−
)

exp (4β+) .

Bianchi IX

This cosmological model have the 1-differential forms ex-
pressed by [39]:

ω1 = cos z sin ydx− sin zdy
ω2 = sin z sin ydx+ cos zdy

ω3 = cos ydx+ dz.

This cosmological model has the following structure
constants [31,34]

C1
23 = −C1

32 = 1,
C2

31 = −C2
13 = 1,

C3
12 = −C3

21 = 1.

If we substitute these structure constants in equation
(37), we obtain the three-dimensional curvature scalar

(3)RIX = −2 exp (−2Ω− 8β+) + 8 exp (−2Ω− 2β+)×
cosh

(
2
√

3β−
)
− 4 exp (−2Ω + 4β+)

[
cosh

(
4
√

3β+

)
+ 1
]
.

(75)
and then equation (77), that is, the equation that

represents the scalar of spatial curvature, we replace it
in equation (36) we get to

HIX =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
+

exp (Ω) [V (β+, β−)− 1] , (76)

where

V (β+, β−) = 1+2e−8β+−8e−2β+ cosh
(

2
√

3β−
)

+4e4β+

×
[
cosh

(
4
√

3β−
)

+ 1
]
.

With equation (76) we can write the equations of mo-
tion as:

dΩ

dt
= {Ω,HIX} =

∂HIX
∂pΩ

= −exp (−3Ω)

12
pΩ, (77)

dβ+

dt
= {β+,HIX} =

∂HIX
∂pβ+

=
exp (−3Ω)

12
pβ+ , (78)

dβ−
dt

= {β−,HIX} =
∂HIX
∂pβ−

=
exp (−3Ω)

12
pβ− , (79)

dpΩ

dt
= {pΩ,HIX} = −∂HIX

∂Ω
=

exp (−3Ω)

8
×(

−p2
Ω + p2

β+
+ p2

β−

)
− exp (Ω) [V (β+, β−)− 1] , (80)

dpβ+

dt
=
{
pβ+ ,HIX

}
= − ∂H

∂β+
= − exp (Ω)

∂V

∂β+
, (81)

dpβ−
dt

=
{
pβ− ,HIX

}
= − ∂H

∂β−
= − exp (Ω)

∂V

∂β−
. (82)

Using the fact that equation (76) is a constraint, then
we clear p2

Ω from the Hamiltonian density in question and
substitute it into equation (80), we get the differential
equation

dpΩ

dt
= −4 exp (Ω) [V (β+, β−)− 1] . (83)

The conditionHIX ≈ 0 must be fulfilled to reproduce
Einstein’s equations. Consequently, the dynamics of the
Bianchi IX can be viewed as the dynamics of a particle
at a time-dependent potential. Simple motions are ob-
tained by assuming fixed anisotropic parameters β+ and
β−, consequently, the last term of equation (76) con-
taining the anisotropic potential V (β+, β−) is negligible,
accordingly Ω → −∞, where each conjugate moment is
constant and p2

Ω = p2
β+

+ p2
β− .

From the preceding limit in the Hamiltonian con-
straint (76) it was found that the conjugated moments
are constant in that limit. Another viable way to verify
such a statement could be done by taking the limit when
Ω → −∞ in equations (81), (82) and (83), and conse-
quently we have the result pΩ = pβ+ = pβ− = constant.

For the asymptotic description; that is, for large β,
it can be found that in the limit β+ → −∞, the value of
the anisotropic potential of equation (76) behaves as

V (β+ → −∞, β−) ∼ 2 exp (−8β+)− 8 exp (−2β+)×

cosh
(

2
√

3β−
)
,
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and finally for the opposite case, in addition to taking
into account that β− � 1, the anisotropic potential be-
haves in the way

V (β+ → +∞, β−) ∼ 1 + 96β2
− exp (4β+) .

3.3 Class B

Bianchi III

The structure constants of the Bianchi III are [31,40]

C1
13 = −C1

31 = 1.

Using the structure constants and equation (37), the
curvature scalar is determined by

(3)RIII = 2C1
13C

1
31h11h

33h11+2C1
31C

1
31h

33+4CiikC
j
jmh

km,

equation of which when using the values of the struc-
ture constants given for this Bianchi’s model, we find

(3)RIII = 4 exp (−2Ω + 4β+) . (84)

Taking equation (84) and substituting it in equation
(36), we find the Hamiltonian density expressed by:

HIII =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
−4 exp (Ω + 4β+) ,

(85)
With the previous Hamiltonian constraint, that is,

equation (85) we can write the equations of motion

dΩ

dt
= {Ω,HIII} =

∂HIII
∂pΩ

= −exp (−3Ω)

12
pΩ, (86)

dβ+

dt
= {β+,HIII} =

∂HIII
∂pβ+

=
exp (−3Ω)

12
pβ+ , (87)

dβ−
dt

= {β−,HIII} =
∂HIII
∂pβ−

=
exp (−3Ω)

12
pβ− , (88)

dpΩ

dt
= −∂HIII

∂Ω
=

exp (−3Ω)

8

(
−p2

Ω + p2
β+

+ p2
β−

)
+

4 exp (Ω + 4β+) , (89)

dpβ+

dt
=
{
pβ+ ,HIII

}
= −∂HIII

∂β+
= 16 exp (Ω + 4β+) ,

(90)

dpβ−
dt

=
{
pβ− ,HIII

}
= −∂HIII

∂β−
= 0. (91)

If we insert equation (85) into equation (89), we ob-
tain an equation of motion in terms of the dynamic vari-
ables Ω, β+, β−

dpΩ

dt
= −∂HIII

∂Ω
= 16 exp (Ω + 4β+) . (92)

Using the Hamiltonian constraint HIII ≈ 0, the dy-
namics of the Bianchi III can be unraveled according to
the second term of the Hamiltonian constriction. As-
suming fixed anisotropic parameters β+ and β−, conse-
quently, the last term of equation (85) tends to zero,
as Ω → −∞; in other words, the last term in equa-
tion (85) becomes very small if Ω becomes very large.
From the above it follows that each conjugate moment
is constant and p2

Ω = p2
β+

+ p2
β− . Since equations (90),

(91) and (92) tend to zero as Ω → −∞ and therefore
pΩ = pβ+ = pβ− = constant (for the solution of this
cosmological model in vacuum, see [41]).

Bianchi IV

This cosmological model has the structure constants ex-
pressed by equations [31,40]

C1
13 = −C1

31 = 1,
C1

23 = −C1
32 = 1,

C2
23 = −C2

32 = 1.

Using equation (37), we obtain the relation

(3)RIV = 2C1
23C

1
32h11h

33h22 + 4CiikC
j
jmh

km,

from which we finally obtain that the intrinsic curvature
scalar for the Bianchi IV is given by

(3)RIV = −2 exp
(
−2Ω + 4β+ + 4

√
3β−

)
+8 exp (−2Ω + 4β+) .

(93)
Using equation (93) and we substitute it in equation

(36) to then find the Hamiltonian constraint

HIV =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
+

2 exp
(

Ω + 4β+ + 4
√

3β−
)
− 8 exp (Ω + 4β+) . (94)

From equation (94) we can write the equations of mo-
tion

dΩ

dt
= {Ω,HIV } =

∂HIV
∂pΩ

= −exp (−3Ω)

12
pΩ, (95)

dβ+

dt
= {β+,HIV } =

∂HIV
∂pβ+

=
exp (−3Ω)

12
pβ+ , (96)

dβ−
dt

= {β−,HIV } =
∂HIV
∂pβ−

=
exp (−3Ω)

12
pβ− , (97)
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dpΩ

dt
= −∂HIV

∂Ω
=

exp (−3Ω)

8

(
−p2

Ω + p2
β+

+ p2
β−

)
−

2
[
exp

(
4
√

3β−
)
− 4
]

exp (Ω + 4β+) , (98)

dpβ+

dt
=
{
pβ+ ,HIV

}
= −∂HIV

∂β+
=

8
[
exp

(
4
√

3β−
)
− 4
]

exp (Ω + 4β+) , (99)

dpβ−
dt

=
{
pβ− ,HIV

}
= −∂HIV

∂β−
=

8
√

3 exp
(

Ω + 4β+ + 4
√

3β−
)
. (100)

Equation (94) replacing it in equation (98), we obtain
an equation in terms of the dynamic variables Ω, β+, β−
given by the expression

dpΩ

dt
= −∂HIV

∂Ω
= 4

[
exp

(
4
√

3β−
)
− 4
]

exp (Ω + 4β+) .

(101)
Let’s now analyze the Hamiltonian constraint HIV ≈

0. That is, the dynamics of the cosmological model can
be unraveled according to the second and third terms of
Hamiltonian constraint. Assuming fixed anisotropic pa-
rameters β+ and β−, consequently, the last two terms of
equation (94) tend to zero as Ω → −∞; in other words,
the last two terms of equation (94) become very small
if Ω becomes very large. Taking into consideration the
previous analysis, from equations (99), (100) and (101),
we find that dpΩ

dt
=

dpβ+

dt
=

dpβ−
dt

= 0 as Ω → −∞;
therefore, we conclude that according to these conditions
pΩ = pβ+ = pβ− = constant.

Bianchi V

This cosmological model is characterized by the following
structure constants [31,40]

C1
13 = −C1

31 = 1,
C2

23 = −C2
32 = 1.

Using equation (37) once again, we find the following
relationship of the three-dimensional scalar of curvature
for the previous structure constants

(3)RV = 8 exp (−2Ω + 4β+) . (102)

If we substitute equation (102) in equation (36), we
find the Hamiltonian density

HV =
exp (−3Ω)

24

(
−p2

Ω + p2
β+

+ p2
β−

)
−8 exp (−2Ω + 4β+) .

(103)

Using equation (103), we find the Poisson brackets
expressed by

dΩ

dt
= {Ω,HV } =

∂HV
∂pΩ

= −exp (−3Ω)

12
pΩ, (104)

dβ+

dt
= {β+,HV } =

∂HV
∂pβ+

=
exp (−3Ω)

12
pβ+ , (105)

dβ−
dt

= {β−,HV } =
∂HV
∂pβ−

=
exp (−3Ω)

12
pβ− , (106)

dpΩ

dt
= {pΩ,HV } = −∂HV

∂Ω
=

exp (−3Ω)

8
×(

−p2
Ω + p2

β+
+ p2

β−

)
+ 4 exp (Ω + 4β+) , (107)

dpβ+

dt
=
{
pβ+ ,HV

}
= −∂HV

∂β+
= 16 exp (Ω + 4β+) ,

(108)

dpβ−
dt

=
{
pβ− ,HV

}
= −∂HV

∂β−
= 0. (109)

If we substitute equation (103) in equation (107) we
obtain the equation of motion

dpΩ

dt
= −∂HV

∂Ω
= 16 exp (Ω + 4β+) . (110)

Using the Hamiltonian constraintHV ≈ 0, the dy-
namics of the Bianchi V can be unraveled according to
the second term of said Hamiltonian constraint. Assum-
ing the fixed anisotropic parameter β+, consequently, the
last term of equation (103) tends to zero, as Ω → −∞.
Since equations (108), (109) and (110) tend to zero as
Ω→ −∞, then the result is pΩ = pβ+ = pβ− = constant.

Bianchi VIh
In the Bianchi VIh the non-zero structure constants are
[31,40]

C1
23 = −C1

32 = 1, C2
31 = −C2

13 = −1
C1

13 = −C1
31 = 1, C2

23 = −C2
32 = h.

With the previous structure constants, substituting
them in equation (37), we find an equation for the in-
trinsic curvature scalar expressed by

(3)RV Ih = 2C1
23C

1
32h11h

33h22 + 2C2
13C

2
31h22h

11h33+

4C1
32C

2
31h

33 + +4
[(
C1

13

)2
+
(
C2

23

)2
+ 2C1

13C
2
23

]
h33,
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then, we obtain

(3)RV Ih = −4 exp (−2Ω + 4β+)
[
cosh

(
4
√

3β−
)
− 1
]

+4 (1 + h)2 exp (−2Ω + 4β+)(111)

From equation (111), we find the Hamiltonian density
through equation (36):

HV Ih = 1
24

exp (−3Ω)
(
−p2

Ω + p2
β+

+ p2
β−

)
+ 4 exp

(Ω + 4β+)
[
cosh

(
4
√

3β−
)
− 1
]
− 4 (1 + h)2 exp (Ω + 4β+) .

(112)

With this Hamiltonian density; that is, the equation
(112), we can write the equations of motion

dΩ

dt
= {Ω,HV Ih} =

∂HV Ih
∂pΩ

= −exp (−3Ω)

12
pΩ, (113)

dβ+

dt
= {β+,HV Ih} =

∂HV Ih
∂pβ+

=
exp (−3Ω)

12
pβ+ , (114)

dβ−
dt

= {β−,HV Ih} =
∂HV Ih
∂pβ−

=
exp (−3Ω)

12
pβ− , (115)

dpΩ
dt

= − ∂HV Ih
∂Ω

= 1
8

exp (−3Ω)
(
−p2

Ω + p2
β+

+ p2
β−

)
− 4 exp (Ω + 4β+) cosh

(
4
√

3β−
)

+4 exp (Ω + 4β+) + 4 (1 + h)2 exp (Ω + 4β+) ,
(116)

dpβ+

dt
= −∂HV Ih

∂β+
= −16 exp (Ω + 4β+)

[
cosh

(
4
√

3β−
)
− 1
]

+ 16 (1 + h)2 exp (Ω + 4β+) , (117)

dpβ−
dt

=
{
pβ− ,HV Ih

}
= −∂HV Ih

∂β−
= −16

√
3 exp (Ω + 4β+) sinh

(
4
√

3β−
)
. (118)

If we use the Hamiltonian constraint (112), consequently we can transform equation (116) to the equation of
motion

dpΩ

dt
= −∂HV Ih

∂Ω
= −16 exp (Ω + 4β+)

[
cosh

(
4
√

3β−
)
− 1
]

+ 16 (1 + h)2 exp (Ω + 4β+) . (119)

We consider the Hamiltonian constraint, then, the dynamics of the cosmological model of Bianchi VIh can be
unraveled according to the second and third terms of said Hamiltonian constraint. Assuming fixed anisotropic pa-
rameters β+ and β−, consequently, the last two terms of equation (112) tend to zero as Ω → −∞. Taking into
consideration the previous analysis, from equations (117), (118) and (119) we find that dpΩ

dt
=

dpβ+

dt
=

dpβ−
dt

= 0 as
Ω→ −∞; therefore, we conclude that according to these conditions pΩ = pβ+ = pβ− = constant.

Bianchi VIIh
In the Bianchi VIIh the non-zero structure constants are [42]

C1
23 = −C1

32 = −1, C2
31 = −C2

13 = −1
C1

13 = −C1
31 = h, C2

23 = −C2
32 = h.

From the previous structure constants, applying them to equation (37), we find the intrinsic curvature scalar expressed
by the equation

(3)RV IIh = 2C1
23C

1
32h11h

33h22 + 2C2
13C

2
31h22h

11h33 + 4C1
32C

2
31h

33+

+4
[(
C1

13

)2
+
(
C2

23

)2
+ 2C1

13C
2
23

]
h33,

or

(3)RV IIh = −4 exp (−2Ω + 4β+)
[
cosh

(
4
√

3β−
)

+ 1
]

+ 4h2 exp (−2Ω + 4β+) . (120)

From equations (36) and (120), it can be found that the Hamiltonian density is expressed by the equation

HV IIh = 1
24

exp (−3Ω)
(
−p2

Ω + p2
β+

+ p2
β−

)
+ 4 exp (Ω + 4β+)

[
cosh

(
4
√

3β−
)

+ 1
]

−4h2 exp (Ω + 4β+) .
(121)

With this Hamiltonian density; that is, the equations (121), we can write the equations of motion
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dΩ

dt
= {Ω,HV IIh} =

∂HV IIh
∂pΩ

= −exp (−3Ω)

12
pΩ, (122)

dβ+

dt
= {β+,HV IIh} =

∂HV IIh
∂pβ+

=
exp (−3Ω)

12
pβ+ , (123)

dβ−
dt

= {β−,HV IIh} =
∂HV IIh
∂pβ−

=
exp (−3Ω)

12
pβ− , (124)

dpΩ
dt

= − ∂HV IIh
∂Ω

= 1
8

exp (−3Ω)
(
−p2

Ω + p2
β+

+ p2
β−

)
− 4 exp (Ω + 4β+) cosh

(
4
√

3β−
)

−4 exp (Ω + 4β+) + 4h2 exp (Ω + 4β+) ,
(125)

dpβ+

dt
= −∂HV IIh

∂β+
= −16 exp (Ω + 4β+)

[
cosh

(
4
√

3β−
)

+ 1
]

+ 16h2 exp (Ω + 4β+) , (126)

dpβ−
dt

=
{
pβ− ,HV IIh

}
= −∂HV IIh

∂β−
= −16

√
3 exp (Ω + 4β+) sinh

(
4
√

3β−
)
. (127)

If we use the Hamiltonian constriction (121), we can transform equation (125) to the equation of motion

dpΩ

dt
= −∂HV IIh

∂Ω
= −16 exp (Ω + 4β+)

[
cosh

(
4
√

3β−
)

+ 1
]

+ 16h2 exp (Ω + 4β+) . (128)

In the Hamiltonian constraint HV IIh ≈ 0, we can
treat the dynamics of the Bianchi VIIh according to the
second and third terms of said Hamiltonian constraint.
Assuming fixed anisotropic parameters β+ y β−, con-
sequently, the last two terms of equation (121) tend to
zero as Ω → −∞. Taking into consideration the pre-
vious analysis, from equations (126), (127) and (128)
we find that dpΩ

dt
=

dpβ+

dt
=

dpβ−
dt

= 0 as Ω → −∞;
therefore, we conclude that according to these conditions
pΩ = pβ+ = pβ− = constant.

4 Classification of Bianchi’s cosmological
models

4.1 Jacobi’s identity

The Lie’s bracket of infinitesimal differential operators
related to the quantity Cλρσ is given by

[Xρ, Xσ] = XρXσ −XσXρ = CλρσXλ,

with

Xλ = Uµλ
∂

∂xµ
.

It can be shown that for certain types of arbitrary
structure constants a group exists, if the structure con-
stants have the antisymmetric property

Cλρσ = −Cλσρ, (129)

this property can be verified in the Lie’s bracket and
they satisfy the Jacobi-Lie identity [43]

CλρµC
µ
στ + CλσµC

µ
τρ + CλτµC

µ
ρσ = 0, (130)

which is deduced from the Jacobi’s identity [43]

[Xρ, [Xσ, Xτ ]] + [Xσ, [Xτ , Xρ]] + [Xτ [Xρ, Xσ]] = 0.
(131)

Example

As an example, we have the group of rotations of a flat
three-dimensional space with Killing’s vectors given by

Uµ1 = (y,−x, 0) , Uµ2 = (z, 0,−x) , Uµ3 = (0, z,−y) .
(132)

Therefore, the differential operators Xλ when insert-
ing the Killing vectors (equations 132) are determined
by

X1 = y∂/∂x− x∂/∂y, X2 = z∂/∂x− x∂/∂z,
X3 = z∂/∂y − y∂/∂z.

(133)
Also by making use of equations (133); that is, of the

differential operators associated with the Killing’s vec-
tors, the Lie’s brackets are

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2,

therefore, the structure constants are given by C3
12 =

C1
23 = C2

31 = 1, from which the rotations of flat space do
not commute. These brackets correspond to the opera-
tors of quantum mechanics and their commutation rules.
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4.2 Structure constants of the groups G3

The movement groups of a group are characterized by the
number of its Killing’s vectors, the structure of the group,
and the regions of transitivity. Establishing all non-
isomorphic groups Gr of r Killing’s vectors, of groups
whose structure constants cannot be converted into some
other by linear transformations of the base, is a purely
mathematical problem of group theory.

Each group with two elements is an Abelian group if

[X1, X2] = 0, (134)
or else you have

[X1, X2] = αX1 + βX2, (135)
where α 6= 0. If we consider the second case, that is, in a
non-Abelian group, we can arrive at a new commutation
rule with structure constant C1

23 = 1, that characterizes
the two non-isomorphic G2 groups.

We turn our attention now to homogeneous three-
dimensional cosmological models of the universe; that is,
where all the points of the three-dimensional universe
are equivalent. A set of non-isomorphic groups G3 can
be obtained from the relation

1

2
ερσλCµρσ = Aλµ, (136)

where ρ, σ = 1, 2, 3, and ερσλ is the Levi-Civita symbol,
which is defined by [44]

ερσλ =


0, there is repetition of two indices,
1, (ρ, σ, λ) an even permutation of (1, 2, 3),
−1, (ρ, σ, λ) an odd permutation of (1, 2, 3).

(137)
Since Aµλ is a 3 × 3 matrix, then we can separate

it into two parts, in other words, we decompose it into
the symmetric and antisymmetric parts, respectively. Its
symmetric part is represented by the matrix n(µλ) and
the antisymmetric part by ελµρAρ, where Aρ is a vector.
Therefore, we can write this matrix using the equation

Aλµ = n(λµ) + ελµρAρ. (138)
Substituting equation (138) in equation (136); after

some manipulations, we get the mathematical relation

Cλρσ = εµρσn
(λµ) + δλσAρ − δλρAσ, (139)

where δλρ is the Kronecker delta and is defined as [44]

δλρ =

{
1, if λ = ρ,

0, if λ 6= ρ.
(140)

Using equation (139) and substituting it in the
Jacobi-Lie identity we obtain

n(ρσ)Aρ = 0,

where the index of the internal multiplication can be ap-
plied to any of the two indices of n(ρσ), because it is a
symmetric quantity.

The basis of the Killing’s vector space can be cho-
sen in such a way that Aµλ is a diagonal matrix, that
is, n(ρσ) = diag (n1, n2, n3) and also have the vector
Aρ = (a, 0, 0), from which we have an1 = 0. From the
above, we have a G3

[X1, X2] = n3X3 + aX2,
[X2, X3] = n1X1, an1 = 0,

[X3, X1] = n2X2 − aX3, ni = 0,±1.
(141)

In class B, it is introduced a scalar h with the equa-
tion

AρAσ =
1

2
hερµνεσλτn

(µλ)n(ντ). (142)

Using Aρ = (a, 0, 0) and nµλ = diag (n1, n2, n3), we
obtain from equation (142) the quantity

a2 = hn2n3,

from where the condition n2n3 6= 0 is deduced.
FLRW cosmological models can only be generalized

to some Bianchi’s models. The Bianchi’s type I and
VII0 are a generalization of the Euclidian FLRW model
(k = 0), the Bianchi IX for the spherical FLRW cosmo-
logical model (k = 1) and the Bianchis V and VIIh are
for the hyperbolic FLRW model (k = −1). The rest of
Bianchi’s cosmological models do not contain the FLRW
cosmological models as a particular case.

4.3 Classification tables of Bianchi’s models

The previous analysis allows the following classification
of the 11 Bianchi’s cosmological models in the Table
1 [45,46].

As shown in Table 1, there are eleven types of
G3 groups, which are distributed through the so-called
Bianchi’s cosmological models from I to IX.

And according to the structure constants [31,40], not
to the parameters a, n1, n2, n3, we obtains the Table 2.

The Bianchi’s cosmological models have as a limit
case the Bianchi I by keeping the parameters β+ y β−
fixed and taking the limit Ω→ −∞.
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‌

Class A A A A A A B B B B B
Type Bianchi I II VI0 VII0 VIII IX V IV III VIIh VIh

a 0 0 0 0 0 0 1 1 1 a a
n1 0 1 1 1 1 1 0 0 0 0 0
n2 0 0 -1 1 1 1 0 0 1 1 1
n3 0 0 0 0 -1 1 0 1 -1 1 -1

Table 1: Classification of Bianchi’s models according to the parameters a, n1, n2, n3.

‌

‌

Class Type Structure constants
A I Cλρσ = 0,

A II C1
23 = −C1

32 = 1,

B III C1
13 = −C1

13 = 1,

B IV C1
13 = −C1

31 = 1, C1
23 = −C1

32 = 1, C2
23 = −C2

32 = 1

B V C1
13 = −C1

31 = 1, C2
23 = −C2

32 = 1

A VI0 C1
23 = −C1

32 = 1, C2
31 = −C2

13 = −1

A VII0 C1
23 = −C1

32 = −1, C2
31 = −C2

13 = −1

A VIII C1
23 = −C1

32 = −1, C3
12 = −C3

21 = 1, C2
31 = −C2

13 = −1

A IX C1
23 = −C1

32 = 1, C2
31 = −C2

13 = 1, C3
12 = −C3

21 = 1

B VIh
C1

23 = −C1
32 = 1, C2

31 = −C2
13 = −1,

C1
13 = −C1

31 = 1, C2
23 = −C2

32 = h

B VIIh
C1

23 = −C1
32 = −1, C2

31 = −C2
13 = −1,

C1
13 = −C1

31 = h, C2
23 = −C2

32 = h

Table 2: Classification of Bianchi models according to the structure constants.

‌

5 Concluding remarks

We show the way to construct the Lagrangian density
and the Hamiltonian density for each cosmological model
of Bianchi, in a vacuum, without cosmological constant
and also, without scalar field. As previously mentioned,
from the Hamiltonian density it was possible for us to
analyze each of the Bianchi’s space-times. However, it
has not been mentioned that the curvature scalar (3)R is
the one that was always the main argument to calculate
all the Hamiltonian densities H, this scalar according to
equation (37) depends on the structure constants Cλµν .
The structure constants are of the utmost importance in
this work since they are the ones that provide an alge-
braic classification of the Bianchi’s models in accordance
with group theory, as shown in tables 1 and 2. In partic-
ular, table 2 has been the basis for our analysis of each
Bianchi spacetime.

We show the way to construct the Lagrangian density
and the Hamiltonian density for each cosmological model
of Bianchi, in a vacuum, without cosmological constant
and also, without scalar field. As previously mentioned,
from the Hamiltonian density it was possible for us to
analyze each of the Bianchi’s space-times. However, it
has not been mentioned that the curvature scalar (3)R is
the one that was always the main argument to calculate
all the Hamiltonian densities H, this scalar according to

equation (37) depends on the structure constants Cλµν .
The structure constants are of the utmost importance in
this work since they are the ones that provide an alge-
braic classification of the Bianchi’s models in accordance
with group theory, as shown in tables 1 and 2. In partic-
ular, table 2 has been the basis for our analysis of each
Bianchi spacetime.

We conclude, as seen in the section on the classifica-
tion of Bianchi cosmological models, that FLRW cosmo-
logical models can only be generalized to some Bianchi’s
models. The Bianchi’s type I and VII0 are a generaliza-
tion of the Euclidian FLRW model (k = 0), the Bianchi
IX for the spherical FLRW cosmological model (k = 1)
and the Bianchis V and VIIh are for the hyperbolic
FLRW model (k = −1). The rest of Bianchi’s cosmo-
logical models do not contain the FLRW cosmological
models as a particular case.
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Appendix A: ADM Formalism of General
Relativity

One way to unravel the dynamics of General Relativity
is to see it as a Cauchy problem, that is, to analyze the
dynamics of the evolution of a three-dimensional hyper-
surface where the fields are defined. This way of treating
General Relativity was formulated by R. Arnowitt, S.
Deser and C.W. Misner [47–57]; it is known as the ADM
formalism of General Relativity [58,59].

Decomposition of space-time

Let’s get started an analysis by describing some quanti-
ties on the hypersurface. Let us consider a vector flow tµ,
which we decompose into its normal part and tangential
to the hypersurface as

tµ = Nnµ +Nµ, (143)

where nµis a unit vector to the hypersurface and Nµ

is a tangent vector. The scalar N is called the "lapse"
function, and the Nµ function is called the "shift" func-
tion. These, together with the metric gab constitute
the ADM variables. The lapse function represents how
far one hypersurface is separated from another, in other
words, it measures the ratio of the proper time flux τ
with respect to the function t, as the normal movement
to the hypersurface is performed, and therefore we have
dτ = Ndt. On the other hand, the spatial part of the shift
function measures the amount of tangential displacement
for the hypersurface contained in the vector field tµ.

Geometrically, the vector flux tµ can be interpreted
as follows: Let us consider two infinitesimally close hy-
persurfaces, as explained in the preceding paragraph, the
term Nnµ tells us how much we move perpendicular to
the hypersurface, on the other hand, the vector Nµ can
be said to indicate how much we move tangentially to
the hypersurface (see figure 1).

Figure 1: 3 + 1 decomposition of the manifold, with lapse
function N , and shift vector N i.

The metric tensor gab of the hypersurface

(3)ds2 = gabdx
adxb,

and the metric tensor of spacetime is related by

ds2 = gµνdx
µdxν = −

(
Ndx0)2 + gab ×(

dxa +Nadx0) (dxb +Nbdx0
)
, (144)

where (dxa+Nadx0) is the displacement on the base hy-
persurface and Ndt is the proper time between them, or,
rearranging terms

ds2 =
(
NaNa −N2) (dx0)2 + 2Nadx

adx0 + gabdx
adxb,

where the space-time have signature (−,+,+,+). From
the last equation it can be seen that the components of
the metric tensor are given by

gµν =

(
NaN

a −N2 Nb
Na gab

)
, (145)

where gab denotes the spatial metric tensor. The con-
travariant components of the metric tensor are found by
inverting the matrix gµν , so that we have

gµν =

(
−1/N2 Nb/N2

Na/N2 gab −NaNb/N2

)
. (146)

Extrinsic curvature

For an arbitrary vector uµ at a point p belonging to the
hypersurface, we construct a covariant derivative Dµ as-
sociated with the metric tensor hµν by

Dµuν = hρµh
σ
ν∇ρuσ = hρµh

σ
ν

(
∂uσ
∂xρ

− Γλρσuλ

)
.

An extrinsic curvature can be defined, which describes
how hypersurfaces

∑
t curve with respect to the 4-

dimensional manifold. The above is represented math-
ematically by

Kµν =
1

2N
hρµh

σ
ν

(
∂hρσ
∂t
−∇ρNσ −∇σNρ

)
,

or

Kµν =
1

2N

(
∂hµν
∂t
−DµNν −DνNµ

)
. (147)

Note that Kµν does not depend on the derivatives with
respect to t of Nµ.
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Curvature scalar

The Riemann tensor is defined by

[∇µ,∇ν ]uρ = Rσµνρuσ, (148)
and the curvature scalar

R = Rµνρσg
µρgνσ,

or, if we do some mathematical tricks

(3)R = R+K2 −KµνK
µν + 2∇µ (nν∇νnµ − nµ∇νnν) .

(149)
Next, we define the intrinsic curvature scalar in the

hypersurfaces
∑
t, related to the 4-dimensional curvature

scalar, in the form:

(3)R = R+K2 −KµνK
µν + 2∇µ (∆µ) ,

where ∆µ = nν∇νnµ − nµ∇νnν . This equation is called
the Codazzi’s equation and shows the relationship be-
tween the curvature scalar of the hypersurface and the
curvature scalar of space-time. The last term of this
equation is a covariant derivative of the term and when
introduced into action, by means of the divergence the-
orem, it does not have dynamic information and we can
ignore it.

Hamiltonian formulation

Taking the Codazzi equation, we can rewrite the action
for the gravitational field in the form

S[gab, N,N
a] =

∫
dt

∫
d3xN

√
det (h)

(
(3)R−K2 +KµνK

µν
)
, (150)

with

LG = N
√

det (h)
(

(3)R−K2 +KµνK
µν
)
. (151)

The action we propose includes the action of Einstein’s gravity, a cosmological constant, matter and scalar potential

S =
1

16πG

∫
dt

∫
d3xN

√
h
(

(3)R−K2 +KµνK
µν − 2Λ

)
+

∫
d4x
√
−g
[
−1

2
gµν

∂Φ

∂xµ
∂Φ

∂xν
− V (Φ)

]
. (152)

So far we have rewritten the action of the gravitational field so that we can find the field equations in a vacuum,
taking the variation of the action and setting it equal to zero (δS = 0)

0 =

∫
dt

∫
d3x

(
δLtotal
δḣab

δḣab +
δLtotal
δṄa

δṄa +
δLtotal
δṄ

δṄ +
δLtotal
δΦ̇

δΦ̇

)
,

where the conjugated moments are

πab =
δLtotal
δḣab

=
√

det (h)
(
Kab −Kqab

)
, (153)

πΦ =
δLtotal
δΦ̇

=

√
h

N

(
∂Φ

∂t
−N i ∂Φ

∂xi

)
, (154)

πa =
δLG
δṄa

= 0, (155)

π =
δLG
δṄ

= 0. (156)

The cancellation of the conjugated moments indicates that the system has first class constrictions, this is Dirac’s
terminology [60].

So the action is expressed by

S[gab, N,N
a] =

∫
dt

∫
d3x

{
ḣabπ

ab + Ṅaπa + Ṅπ −NaHa −NH
}
, (157)

with

H =

√
h

8πG

(
KabKab −

1

2
K2

)
−
√
h

16πG

[
(3)R− 2Λ +

1

2

√
h

(
π2

Φ

h
+ hab

∂Φ

∂xa
∂Φ

∂xb
+ 2V

)]
, (158)

Ha = −2hacDbπ
bc + habπΦ

∂Φ

∂xb
. (159)



44 Rev. Inv. Fis. 25(1), (2022)

The “lapse” and “shift” functions act as Lagrange mul-
tipliers, varying the action (158) with respect to the
lapse function, N , we obtain the Hamiltonian constraint
Ha ≈ 0. On the other hand, varying the action with
respect to the "shift" function, Na, leads to the moment
constraint, Ha ≈ 0. These constraints are simply the
components (00) and (0i) of the Eisntein’s equations; in
Dirac’s terms, they are secondary constrains [60]. The
analysis of each Bianchi model presented in this article,
in accordance with the formalism presented in this ap-
pendix, can be extended to the case where matter, cos-
mological constant and a scalar field are considered (to
analysis of some Bianchi’s models, see [61–68]).

Appendix B: Structure constants

Let us consider the case of a group of r-parameters and
n variables. The starting point is given by

xµ0 = fµ (x0;0) ,

where µ = 1, 2, ..., n.
We can obtain xµ by the transformation

xµ = fµ (x0;a) .

We could go to xµ + dxµthrough transformation

xµ + dxµ = fµ (x0;a + da) .

However, we can also go from xµ a xµ + dxµ by a
parametric infinitesimal change δa, that is,

xµ + dxµ = fµ (x; δa) .

Expanding, the preceding result gives

dxµ =

r∑
σ=1

∂fµ (x;a)

∂aσ

∣∣∣∣
a=0

δaσ,

where σ = 1, 2, ..., r, or equivalently

dxµ = Uµσ (x) δaσ, (160)

where

Uµσ (x) =
∂fµ (x;a)

∂aσ

∣∣∣∣
a=0

.

The connection between daσ and δaρ can be estab-
lished by the equation

aσ + daσ = ϕσ (a; δa) ,

and therefore

daσ =
∂ϕσ (a;b)

∂bρ

∣∣∣∣
b=0

δaρ = V σρ (a) δaρ, (161)

where ρ = 1, 2, ..., r.
The inverse matrix V σρ will be λρτ , where λρτV σρ = δστ .

The inverse of the transformation established in equation
(161) is given by

δaρ = λρτ (a) daτ . (162)

Substituting equation (162) into equation (160), we
find

dxµ = Uµσ (x)λσρ (a) daρ,

o well

∂xµ

∂aρ
= Uµσ (x)λσρ (a) . (163)

The infinitesimal transformation x→ x+ dx induces
in F (x) the transformation F (x) → F (x) + dF (x).
Therefore

dF (x) =
∂F

∂xµ
dxµ =

∂F

∂xµ
Uµσ δa

σ = δaσUµσ
∂F

∂xσ
= δaσXσF,

where

Xσ = Uµσ
∂

∂xµ
, (164)

they are called the infinitesimal operators of the group.
Equation (163) describes the change in the point x

generated by an infinitesimal displacement from its ini-
tial position x (0), where a = 0.

In order to obtain a finite displacement, equation
(163) is required to be integrable, that is, the condition

∂2xµ

∂aτ∂aρ
=

∂2xµ

∂aρ∂aτ
. (165)

Substituting equation (163) into equation (165), we
find the result

Uµσ (x)
∂λσρ (a)

∂aτ
+
∂Uµσ (x)

∂xβ
∂xβ

∂aτ
λσρ (a) = Uµσ (x)

∂λστ (a)

∂aρ
+
∂Uµσ (x)

∂xβ
∂xβ

∂aρ
λστ (a) .

Using Eq. (163) once more and rearranging terms, we obtain[
Uβν (x)

∂Uµσ (x)

∂xβ
− Uβσ (x)

∂Uµν (x)

∂xβ

]
λντ (a)λσρ (a) + Uµσ (x)

[
∂λσρ (a)

∂aτ
− ∂λστ (a)

∂aρ

]
= 0.

Multiplying the above equation by Uτξ U
ρ
η ; we obtain, and for brevity suppressing x and a,
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[
Uβν

∂Uµσ
∂xβ

− Uβσ
∂Uµν
∂xβ

]
λντλ

σ
ρU

τ
ξ U

ρ
η =

[
∂λστ
∂aρ
−
∂λσρ
∂aτ

]
Uτξ U

ρ
ηU

µ
σ = Cσξη (x;a)Uµσ ,

and using the equation Uτξ λ
ν
τ = δνξ , we can write

Uβξ
∂Uµη
∂xβ

− Uβη
∂Uµξ
∂xβ

=

[
∂λστ
∂aρ
−
∂λσρ
∂aτ

]
Uτξ U

ρ
ηU

µ
σ = Cσξη (x;a)Uµσ . (166)

The term Uµσ (x) is independent of a, and therefore if we differentiate equation (166) with respect to aκ, we find

∂

∂aκ

[
Uβξ

∂Uµη
∂xβ

− Uβη
∂Uµξ
∂xβ

]
=

[
∂2λστ
∂aκ∂aρ

−
∂2λσρ
∂aκ∂aτ

]
Uτξ U

ρ
ηU

µ
σ =

∂

∂aκ
[
Cσξη (x;a)

]
Uµσ ,

and therefore the constants Cσξη (x;a) are independent of the parameters a.
Lie brackets are given by

[Xρ, Xσ] = XρXσ −XσXρ,

taking into account equation (164), we can write the equation

[Xρ, Xσ] = Uµρ
∂

∂xµ
Uνσ

∂

∂xν
− Uνσ

∂

∂xν
Uµρ

∂

∂xµ
=

(
Uµρ

∂Uνσ
∂xµ

− Uµσ
∂Uµρ
∂xµ

)
∂

∂xν
,

that when compared with equation (166)

[Xρ, Xσ] = CλρσU
ν
λ
∂

∂xν
,

or equivalently according to equation (164), we find [69,70]

[Xρ, Xσ] = CλρσXλ.

Given the antisymmetry of the Lie bracket, then the structure constants must be antisymmetric at the lower
indices.
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