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Abstract

In this paper, we have given a presentation of the relativistic theory of asymmetric field. It is our
aim to present a theory of gravitation and electomagnetism by a generalization of the concepts and
mathematical methods of the general relativity. We look for the formally most simple expression for the
law of gravitation in the absence of an electromagnetic field, and then the most natural generalization
of this law. This theory contain Maxwell’s theory in the Lambda transformation.
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Resumen Sobre la teoria relativista del campo asimétrico

En este trabajo, damos una presentaciéon de una teoria relativista del campo asimétrico. Es nuestro
objetivo presentar una teoria de la gravitacién y el electromagnetismo mediante una generalizacién de
los conceptos y métodos matemaéticos de la relatividad general. Buscamos la expresion formalmente mas
simple para la ley de la gravitacién en ausencia de un campo electromagnético, y luego la generalizacion
mas natural de esta ley. Esta teoria contiene la teoria de Maxwell en la tranformacién Lambda.
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1 Introduction

The first attempts of unification of Einstein [1] and
Kaluza [2]|, other types of interactions different from
gravity and electromagnetism, such as weak interaction
and strong interaction, have been the subject of various
attempts at unification, and by the end of the 1960s the
electroweak theory was formulated [3—6]. In fact, it is a
unified field theory of electromagnetism and weak inter-
action. Attempts to unify the theory of strong interac-
tion [7, 8] with the electroweak model and with gravity
have since remained one of the still pending challenges
of physicists.

In the beginning of 20th century, the mathematical
theories essential for the creation of the general relativ-
ity [9-17,17,19] were based on the Riemann metric, which
was considered as the fundamental concept of general
relativity. Although, it was later pointed out, correctly,
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that the element of the theory that allows to avoid the
inertial system, it is rather the field of infinitesimal dis-
placement. It replaces the inertial system to the extent
that the comparison of vectors at infinitesimally close
points becomes possible.

In section 2, we present the parallel transport equa-
tion in order to define the covariant derivative of a ten-
sor of rank one and the infinitesimal displacement field
(affine connection). Using the parallel transport equa-
tion, the covariant derivative and the transformation law
of a second rank mixed tensor, we calculate the transfor-
mation equation of the affine connection. Additionally,
we define the symmetric and antisymmetric part of the
displacement field, noting that if the affine connection
is symmetric, we arrive at the relativistic theory of the
gravitational field. In Section 3, by virtue of the affine
connection transformation law, we deduce the curvature
tensor and define the contracted curvature tensor. In
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section 4, a new field is defined by a Lambda function, 1,
where the curvature equations of the theory are invariant
under this transformation. In section 5, we construct a
new curvature tensor in terms of the pseudo tensor U/,.
In section 6, by defining the variational principle, we gen-
eralize the Einstein field equations, of General Relativity,
in the present theory, by means of the new curvature ten-
sor presented in section 5, additionally resulting in the
pseudo tensor /—gn4”. In section 7, we compute the
Bianchi differential identities, the differential identity re-
sulting from the Lambda transformation (which shows
us the role of the electromagnetic vector potential and
the current density equation).

2 Infinitesimal displacement field

If AY is a vector in Pi, and A" + dA” is a vector shifted
at P» along the interval dz", then § A" is an infinitesimal
quantity that indicates how much has been displaced the
vector field under consideration. Consequently, we can
write the equation used to express the infinitesimal dis-
placement field:
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where the I' are functions of x.
On the other hand, if A" is a vector field, the com-
ponents of A* at point P» are equal to A* + dA", where

oA
o Oxv

The difference dA* — § A* in the vicinity of the point
A* +dA> is a vector

dA* dz”.

A
Addz” = (% + FQ,,AB) dz”,
lokind
which relates the components of the vector field at two in-
finitely close points. Furthermore, the quantity in paren-
theses is the covariant derivative of the vector field A*.
The tensor character of an arbitrary second rank tensor,
AY. determines the affine transformation law for the in-
finitesimal displacement field. First, let us consider the
transformation law of that tensor

oz oz¥
Oxk Oz '

We substitute the covariant derivatives of both sides
in the transformation equation, for the original coordi-
nate system, and in the prime coordinate system, to find

px _
A =

SAN = -, Atda”, (1)  the equation
0 oxP* ox™* oxP* dz” JA*  OxP* Ox”
A") + T2 Af = ry, A
Oz (3:10” ) t o et Ok Oxo* Oxv  Jxk Oxex M
oz

where we have used the transformation law A”* = e

: A", Due to the chain rule, the partial derivative of the first

term of the first member can be transformed, and as a result we find the equation

oz® 9%xP* ., 0x™ 9z°* QA"

o axT*

 9aP* 9z DA¥

A§ ax’” ox” m A

Ox* Qx*Ox" Oxo* Oz Ox™

that after algebraic manipulations:

TO 8375

Oxh Jgor W

T Ozt Jxo* Oxv

res _ dxP* dz” Ozt 9P Oz oz’ @)
n7 T 9k Qxo* Jxn* 0x*0zP dxo* Oxn*
or
O .
N7 9k 9gox Jxnx N 9xe Jrn*dxor

We call such equations, a pseudo tensor, like the law of affine transformation.

For linear transformations it

changes like a tensor, while for non-linear transformations a term appears that does not contain the expression to be
transformed, but that only depends on the transformation coefficients.
Making equations (2) and (3) symmetric or antisymmetric with respect to the lower indices, we obtain the two

equations

0z 0x” 8z

" 8%zP* 9z* 9z

1
px [ = p* p* —
Fﬂ <_ 2 (Fna + Fon)) - Ot Oxo* Oxn* PL/

* 1 * *
i (= 5 (5 -1 -

T Qxm xor gz AV

O0x0xP Oxo* Oxn* (4)

9z dz¥ oz "
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Therefore, the two parts (symmetric and antisymmet-
ric) transform independently. On the other hand, the
lower indices of the displacement field play completely
different roles in the definition equation (1), so there are
no reasons that force us to limit the displacement field by
symmetry with respect to the lower indices. However, if
done, this leads to the relativistic theory of gravitation.

3 Curvature

Although the G-field does not itself have tensor charac-
ter, it implies the existence of a tensor. The latter is
most easily obtained by displacing a vector A* accord-
ing to 0A* = —I'), A?dz” along the circumference of an
infinitesimal two-dimensional surface element and com-
puting its change in one circuit. This change has vector
character.

Let xo” be the co-ordinates of a fixed point and x”

those of another point on the circumference. Then
& =x" — ,CEOT is small for all points of the circumference

and can be used as a basis for the definition of orders of
magnitude. The integral § JA* to be computed is then
in more explicit notation

o ana
- ]4 ) A%dE".

Underlining of the quantities in the integrand indicates
that they are to be taken for successive points of the
circumference (and not for the initial point, &7 = 0).

We first compute in the lowest approximation the
value of A* for an arbitrary point £ of the circumfer-
ence. This lowest approximation is obtained by replacing
in the integral, extended now over an open path, LATT and
A° by the values I'y, and A° for the initial point of in-
tegration (§7 = 0). The integration gives then

or

A*:AA—F;Ai/%’:AA—FLA%T

What are neglected here, are terms of second or higher
order in £&. With the same approximation we obtain im-
mediately

oy,
dan
Inserting these expressions in the integral above we ob-
tain first, with an appropriate choice of the summation

indices,
A 2] A
?[ (F‘”+ B ¢ (A -

), =TIy + £

F;'WA“&”) de”
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where all quantities, with the exception of £, have to be
taken for the initial point of integration. We then find

A o T arg\'f o n A o N V 3T
~T) A% de” — E1dET + TR TG, A" ¢ £7de

where the integrals are extended over the closed circum-
ference. (The first term vanishes because its integral van-
ishes.) The term proportional to (¢€)® is omitted since it
is of higher order. The two other terms may be combined

into
ary,
[—"+F;mnAf%y%”

Oz#
This is the change AA* of the vector A after displace-
ment along the circumference. We have

fera = e - ferar = - feaen

This integral is thus antisymmetric in ¢ and v, and in

addition it has tensor character. We denote it by f”vu. It
f Y were an arbitrary tensor, then the vector character of
AA* would imply the tensor character of the bracketed
expression in the last but one formula. As it is, we can
only infer the tensor character of the bracketed expres-
sion if antisymmetrized with respect to p and v. This is
the curvature tensor

ore,  org,
Jc— (2 a B
R, = B ISy —Le Loy (6)
and
* a].—‘p; al"p: ok * ok *
RZUK, = 8.’L‘:* - 8.’1,’2* + Fnorp - F’V]K,FZ0'7 (7)

where the transformation law is:

BT — O™ Oz* Oz Oxz"
pon — ox> Ox*P Ox*o Hx*n pUK:

These equations are called the curvature tensor.

Also, we can contract the curvature tensor with re-
spect to p and k to obtain the second rank covariant
tensor:

ore ore
p no p np p
Ryo = Rigp = -1 + T4 (a +FI‘)
(8)

which is often called a contracted curvature tensor.
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4 The ) transformation

Curvature has an important property. For a displace-
ment field a new field is defined using the formula

O\
P
L, ©)

where the Lambda’s function, is an arbitrary function of
the coordinates, and 62 is the Kronecker’s tensor defined
if p=

by
1
=<7
0, if p# p.

If the curvature tensor is formed in terms of I'};, by the
second member of equation (1), then the function A\ van-
ishes, that is, the equations are satisfied

L =10, +6

R:ua (F*) = R;Auzcr (F) )

Ry (F*) =R (F) .

The curvature equations are invariant under the
transformation A\. From this we can say, a theory that
contains only the infinitesimal displacement field in the
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curvature tensor cannot completely determine this field,
but only a function A\, which remains arbitrary. In such
a theory I')}, and I'f,, represent the same field.

5 The pseudo tensor Up,

It turns out that a new tensor can be formed from the
contracted curvature tensor, by introducing a pseudo-
tensor Uf, instead of I',,. In equation (8) the two terms
that are linear in the displacement field can be formally
combined into one, to define a new pseudo tensor, by the
equation

Upy =T, — 0510, (11)
By contraction with respect to py o
Uf’z)p = _3F507

we obtain the relation of I'j, in terms of U},
e, = UL, — LseuP 12
no — Yno T g o np- ( )

Substituting equation (12) in equation (8), we find the
expression:

WUie 1o 1o s o 1 (8 rra - 1.6 12 sa
Sno = 2P —gUngUag'i‘gUnBUgﬁ_UnpUgo‘f'g(UnBUﬁ0+UnpUaB6g)_§UnﬁU"‘)‘6P§‘p’

and we find the tensor, after doing index manipulations:

ouL, . 1 g o
Snor = 5 = UpoUls + 3U Ul (13)

where the new contracted curvature tensor is in terms of UJ,.
If in equation (9) the I'f, are replaced by the Uf,, then we obtain

p ON o, OA .
1oz 7 0xn
This equation defines the transformation A for Uf,. If in equation (3), we replace I'f}, by U/;; with the help of (5.2)
we can calculate the equation

Ury =Ul + 6 (14)

dzP*  9*x® 1. .5
_UPx§Pt —
Oz Qx*Qxo* +

px
Uno = 3Yns%

ox’* 0z 02, dxP* 9z 0x° lUB 5

Ok Ozo* dxnr & dzr Ozo* Oz \3 PV )7

and when we use the definition of equation (10), the third term of the preceding equation is transformed, to arrive at
the expression

8z Az’ Ozt " ox’*
Ozt Oxo* dxn* &V Oz dx* Ozt

a9zt FZ _ 9zP* 9%z
v

81’5 B8
axn* £B°

?x™ 1

Uno = +

1
B * *
UL — 5ot

By virtue of the equation I'f} finally we find the equations

Dz T 9x™ 9xM*9xP*
9z dx¥ oz’ dxP*  9%x” ozt 9%z
Ul = Ul + — 67 . (15)
N7 9k 9xox Jxnx N Qxe dxn*Oxo* 7* x> Ozn*Oxt*

Transformation equation for the pseudo tensor U} in two arbitrary coordinate systems. Note that the indexes for
both systems take the values from 1 to 4 independently of each other, even if the same letter is used. Observing
this formula, it is worth noting that according to the last term it is not a symmetric transposition with respect to
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the indices 7 and £. This circumstance can be clarified by showing that this transformation can be considered as a
composition of a coordinate transformation, which is a symmetric transposition, and a X transformation. To see it we
write the last term in the form:

1 [ ps02™ 9%z o 0T 9%z 1 [ pu0z™ 9%z o 07" 9%z
—— 16 +0 + 3 — Ogx
2 |77 9z 979z " Oz Oxo*OzrT* 2 |7 Oz~ dxo*dx™ 7" dz> OxT*Oxn*
The first of these two terms is a symmetric transposition. We combine this term with the first two terms of the
second member of (15) in an expression K};. Now let us consider, what we get, if the transformation
vz = K7

is followed by the transformation A

* % * * a)\ * 8)\
Uns =Ups +ons Ereri 05 prrs
The composition gives
0k * * 8)\ * 8>\
Unt =Ko+ 6. Erer o5 prore

This implies that (15) can be considered as such a composition provided that the term

1 6p* 8.@7* 821,04 e axT* ana
2 | ™ Oz Oz 0z 7" Oz OxT*Oxn*
can be expressed in the form 55:8‘2% — 65’“:%. For which, it is sufficient to show that there exists a A such that
1 T 2, .« A
10z 0°x _ 0 (16)
2 Oz Qxm*Qx™  Oxn*
and
1 T * 2, .«
10z 0°x _ o\ . (17)
2 Oz Qzo*Jx™  OQxz*
To transform these equations. First, we have to express %“;—T,: by the inverse transformation coefficients, 665—;*. On
one side,
oz dx™* N
=4,. 18
oxr™ 0x° (18)
For other \ \
ox ox oD A
Ve = — = DJ. 19
Ox™* o™ 9 ( oz ) ( )

AxT*

Here V7, represents the factor that accompanies and can be expressed as the derivative of the determinant

OxT*

D= ‘gj;* with respect to i‘f—i. Therefore, it has
dz> 9log D N
a2y ~ 9 20
a7 9 (55=) (20)

From (18) and (19) it follows that
oxr™ Olog D

Ox° _8(ax0)'

OxT*

With this relationship, the first member of equations (16) and (17) can be written as

1 dlogD 0 9z* \ _ 10log D
20 ( Sz ) Oxro* OrT* - 2 Hxox

OxT*

This implies that equations (16) and (17) are satisfied by
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1
A= §logD,

Which proves that the transformation (15) can be considered as a composition of the symmetric transpose transfor-
mation

dz’* 9z¥ oz vy dxP* 9%z 1 5" ox™*  9%z® e ox™* 9%z
Ok Ozo* Oxn* N Qx> dxm* Oz 2 | 7F Qx> OxTrOxn* T Qx> Oxo*drT* |’
and a transformation \. Equation (21) can be taken instead of (15) as the transformation formula for U. Any

transformation of the field U, which only changes its representation form, can be expressed as a composition of a
coordinate transformation according to (21) and a transformation .

px _
Ujo =

(21)

6 Variational principle and field equations
The task of finding the field equations, of a variational principle, has the advantage that the compatibility of the
resulting systems of equations is ensured, and that the differential identities related to covariance, the “Bianchi

identities”, in addition to the laws of divergence, result in a systematic way. When considering the action integral, it
is required as integrating at a scalar density. We build this density in such a way that an action is postulated of the

form
S d4 nv 3 ,uy 6Upc7
= x/—99"" S, dt | &’z | /—g9"",Ul,, 9 )
where \/— |gw| =+v/—9g

The variational principle is

0S5 = /dt/dSCE(S (\/jggl“/s/,u/) = Oa

where /—gg"” and U}, vary independently. The variations of these ﬁelds cancel out at the border of the intergration
domain and the variation of the Lagrangian density, Lcampo = v/—99"" Suv, gives:

o v 8 14
/dt/dgsc {6 (V=99") Sno — \/—gnk"sUp, + Bt [\/—gg” 5U§y]} =0,
where S, is the contracted curvature tensor and n\” is a pseudo tensor. The last term does not provide any

information, since 0U/,, vanishes at the boundary. From this we obtain the field equations

_ aUpU B
Sno = 1~ U Ulis +3UnBUM:0, (22)

V—gnt” = 8 o (vV=99"") +v—g9" (U,‘]LA - 75“U,§§) +v/—gg"" ( Upy — 75“U§ ) , (23)

which are invariant with respect to coordinate transformations and the transformation \.
In the case of the symmetric field we obtain the fields equations most simply in the following manner. We use as
Lagrangian function the scalar density

Lo =/—99"" R (24)

where R, is the curvature tensor in the relativistic theory of gravitation.
If we vary the volume integral of Z¢, i. e.

§ [ Lod's =~ [d'a [alu (V=99"") + V=99 Th, + V=99"Tir — /= g“”FAA] oy,
+fd4m6f,f [6% V=99"") + v/~ g/\"FM} ore, — fd4m\/ (R’“’ — 59“”R) O

independiently with respect to I' and g, then variation with respect to I' yields

[W (V=99"") + V=99 T, + V=99" T\ — \/*gg“”l“,?x}
+65 [32 (V=99"") + V=99*"T3,] =0
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or
Oguv

oxP
and variation with respect to g yields the equations R, — %gwR =0, 0r Ry, =0.

The variation of the gravitational action, fd4x.,fc, with respect to gw leads to the Einstein’s field equations of
general relativity, and the variation with respect to the affine connection, I'},,, reveals that the connection is necessarily
the metric connection.

Another way of treating the Lagrangian density of the action proposed in the relativistic theory of the asymmetric
field can be characterized as follows. From /—gg"*” and R, construct a Lagrangian density-function . whose integral
we vary independiently with respect to /—gg"” and I';;,. The variation of the integral of .

O f Ldis=— [d's lam (V=99") + V=99 T}, + V=99 T'» *FQWFA J ot
+ [ d*esy [58 (V=99"") + /=99 T3] 6T0, + [ d'ab (vV=99"") Ry

with respect to /—gg""yields the 16 equations

Ly — Gualpy, =0 (25)

%)

Ry, =0 (26)
the variation with respect to the I'j,, at first the 64 equations (see Appendix A)

nz N v v 0 —ggh? o
(\/ 99") | gg Y, + VTG T — e T — oy | 298" \/aaf]g)«k«/jggA re | =0 (1)

If there were no bracket in (27) would imply the vanishing of

a vV v v v
%Jr\/—ggA T8, +vV=99""Tpx — v/=99" Ty, (28)

however, this would require the vanishing I'}y. We can resolve this difficulty in the following manner. We can compute
\

the equations of (27)
22 (V99" + V=gg*Th, + /99" F" + V99" T + vV=a9 W e — V=99

(29)
Hv v ag
—V=99" Ty =9 [azx (\/—799&) + /g, + gy VT } =0,

and

(\/ 99V ) +v= gA*”F“ +v=gg" T8, + V- g@PZA +v/=gg" F \/—ggﬂfﬁvA
HY v g
—,/—ggVF;‘;\—(Sp { (\/ gV ) +v- gLI‘” +v- gVP‘A‘J] =
If we contract the equation (30) with respect to v and p

(Fg )+Fg*“rp =0. (31)

From this, we can deduce that the necessary and sufficient condition for sz = 0 is that 0, (\/—gguvp) = 0. In order
Vv

to satisfy this identically it suffices to asume

v_ 9
V=99" =

o (V=99"") (32)

where \/—gguvy is a tensor density which is antisymmetric in all three indices. That is, we require that \/—ggMVV be
derived from a “vector potential”. Therefore, we substitute in the Lagrangian density

V99" = Ve S (V") (3)

and vary independiently with respect to the I' then yields
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Oguv .
axp (a7 74

The variation respect to the \/—gg” and /—gg">" yields the equations

') — gual'py =0. (34)

Ry =0, (35)

0 0 0
@R;{/Iz + B uRV\/)\ + o VR)\;J, =0. (36)

If we omit axy (\/—gguvy) = 0, then the system of field equations not weakened is therefore:

Ruy =0,
0 1o} 1o}
61‘)\ /J,V+6WRVA+ ) VR)\;L_O7
Iy =0,
Vv
89 v « o
ng = Gorlup = gual'py = 0.

The field equations (22) and (23) are the field equations of the relativistic asymmetric field theory. Furthermore,
the system of field equations not weakened is equivalent to the system (22) and (23), since it has been deduced from the
same integral by the variational method [20-24] (see other versions of non-symmetric theories of gravitation [20-33]
and quantum gravity [34-37]).

7 Differential Identities

The field equations are not independent of each other. To do this, we take an infinitesimal transformation defined of
the form

ot — " =t 4 (37)
where £* is an infinitesimal vector.
Under the transformation law
ox’* 0x7*
[ aPO* — /7 nv
99 Oxk Oxv 8x7* ’

and with the help of equation (37), we obtain the variation (see appendix B)

5 (V) = Vi S+ v S - v 6+ [FN8 e, (38)
e 5 (/SF) = V0 — T

The variation for the pseudo tensor Uf,; with the help of equation (37) and equation (15), it is given by (see
appendix C):

. (238 i3 o 9%
P __ P _ TP _ 7T 14 —_U” —
OUnes = Une = Une = Uno g = Uao Ggn = Un s ~ Gmowe amk v (39)

In the variational calculus, the variations (38) and (39) represent the variations for fixed points of the coordinates.
To obtain these, the terms in the parentheses have to be added. If these transform variations are substituted; that is,
equations (38) and (39), in the integral

/dt/d‘;x {(5 (\/ —ggng) Sno‘ - \/jgngw(SU;\u} ’

it becomes, therefore, identically null. Considering that this integral depends linearly and homogeneously on £ and
its derivatives, it can be represented as follows
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/ dt / d’z/—gmu* =0

and through repeated integration by parts, the differential identities of the integrand are deduced, ( /—gm, = 0), i
e.,

o 8 [eg [ed
—gn 77 + 8.’1,‘)‘ 7]0) - amn (V 79”2 Ulfd) (\/ n"l Up ) (40)
82 (\/ — nﬁg) 8977 0 Ao 0 nA a no _
~ 9zedxn  Qxv "7 9x (g Sw) - Oz (g Sn") + Ox” (8% Sha) =0,
or
oup, 0 0 (v/—gn")
W n e Ul S B snpony L5 o ) R s ) & /- SN
—gn B + gy [\/ gn, U —/—gn," UL, — /—gn," Uy, pre (41)
oa"° o - -
_%SW iy (9A Suo + 8" S — 64" Sna) =0

with g"” = /—gg"”. These are four differential identities for the first terms of the field equations (22) and (23),
which are equivalent to the Bianchi identities.

There is a fifth identity corresponding to the invariance of the action integral with respect to infinitesimal A
transformations. By substituting ¢ (/—gg"”) = 0 and 6U}, = 67,0, A — 650, A in the integral

/dt/d%{&( ~99") S, an”aUA}

we find,

oA oA
[—gnh" _sp 9N
/ ( * dxv o ozt > ’

a A\/U 4
2/— vV—gns | Adz =0
Oz

after an integration by parts:

the desired identity

Ao

o)

. 0. (42)

un
For \/—gn,’, from field equations (23), we find
(V=99
un
et 2
oxn

equation that expresses the nullity of the magnetic density and guvn plays the role of the electromagnetic potential
vector. If we name

(Gr =) 5o (V=a9) =0 (13)
then .
(GW z) w —0. (44)

We now have the identity

aGMVV o (\/jggqu)

oxv ox 0x*0x™ 0
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0. (45)

After differenciate equation (45) with to respect to p, we found the next expression

BG#VV - 32 a( /jggf‘vu)
oxr Ox*Ox oxP

(46)

After applying two cyclic permutations of the indices u, v and p two further equations appear. Then, we obtain

G

e Gy,
+ +

Po 9 (x/jgguvu) 9 (\/jggpvu) 9 (\/—Tlguvp)

oxP ox”

dzr  Ox*dxe oxP

=0. 4
+ oxv + oxt 0 (47)

Therefore, the equations which according to field equations hold for an antisymmetric field are

Py g (\/jgguvu) 9 (\/jggpvu) 9 (\/jgguvp)

+

0
o (v=94¥) =0 (48)
5 + oy =0. (49)

Ox* x> oxP

If, in the equation (49), the expression inside the
parentheses would itself vanish, then we would have
Maxwell’s equations for empty space.

If this is taken, the expression

O 0gun Ognu
A\ \4 Vv

oxm + Oz+ + ozv =0, (50)

expresses the current density. Furthermore, the diver-
gence of this magnitude becomes identically zero [12-14].

The system (50) thus contains essentially four equa-
tions which are written out as follows:

ngvg aggvo agovz

0x0 + Ox2 + Ox3 =0 (51)
O0g30  Ogqr  Ogi3
Tt T Fam T G0 = O (52)
O0gq1  Ogiz  Ogz0
87; + a—x; + aT«i =0, (53)
Ogi12  Ogas  Ogs
8ZE; + 8xI + 33:; =0 (54)

This system correspond to the second of Maxwell’s
system of equations. We recognize this at once by set-
ting

gzv?,i;fx: ggvligm glgigz, (55)
910 = Bz, g20 = Ey, g3 = E-.

Then in place of (51), (52), (53) and (54) we may set, in
the usual notation of the three-dimensional vector anal-
ysis

Now, we take 0 = 6%g,wwe obtain
vV.-E=o, (58)

Vi OF

Therefore, we deduce the Maxwel’s first system. Thus
(48) and (49) are substantially the Maxwell’s equations
[38-41] of empty space.

8 Concluding remarks

A generalization of the relativistic field theory has been
presented, starting from the infinitesimal displacement
field, avoiding the concept of inertial system. Also, with
the transformation law of Fﬁy, we calculate the curva-
ture tensor and define the contracted curvature tensor.
However, later, we define a pseudo tensor U}, in terms of
the infinitesimal displacement field, with which, we find
another curvature tensor. With this curvature tensor
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and the variational principle, we deduce the field equa-
tions, the Bianchi differential identities and the differen-
tial identity of the electromagnetic vector potential.

Therefore, we obtain equation (48), the first sys-
tem of Maxwell’s equations. If, in the equation (49),
the expression inside the parentheses would itself van-
ish, then we would have Maxwell’s equations for empty
space, whose solutions therefore satisfy our equations.
Maxwell’s equations of empty space seem to be too weak,
however, it is not a (justified) objection to the theory
since we do not know to which solutions of the field equa-
tions there correspond rigorous solutions which are reg-
ular in the entire space. It is clear from the start that
in a consistent field theory which claims to be complete
(in contrast e.g. to the pure theory of gravitation) only
those solutions are to be considered which are regular in
the entire space.
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Appendix A: Variational principle
Hamilton’s principle

The variational principle consists in finding the extremes
of the Lagrangian density ., for the relativistic theory
of the asymmetric field. The action must be expressed
as an integral over space-time (with the volume-invariant
element) of a scalar function. The variational principle
for the relativistic theory of the asymmetric field is ex-
pressed in the form

S = / Ld's, (60)

where ¥ = R\/—g is the scalar Lagrangian density and
g is the determinant of the metric tensor g,,. Making
small variations dg,, in the metric tensor g, and keep-
ing the tensor g,. and its first derivatives constant on
the boundary, in effect, we can find that 65 = 0 for dg..
gives the field equations in the absence of matter.

Palatini’s proposal

Palatini’s proposal is very elegant and consists of the idea
of treating the metric and the connection as independent
fields in the Einstein Lagrangian. To be more specific,
let’s change .Z as a functional of g"” and I'j, and its

derivatives only
ore,
Zz.,?f(g*“’,l"" “),

K Qe

thus the Ricci tensor depends only on I';, and its deriva-
tives. So, if we carry out a variation with respect to g"”
and the principle of stationary action immediately gives

31

the field equations in vacuum R,,. Starting from the
action in the form

S = / 0" Ry d'z,

we carry out a variation and use the Leibniz rule for
products, to obtain

59 = / (60" Ry + g" 6 Ry d'a,

where we have written g"” = /—gg"".
Now we use the Palatini equation [42]

6Ruy = vu (6FZ¢7) - VU (6F/iu) )

in consequense

68 = / 69" Ry d o+ / g"" [~V (6T7,) + V., (6T5,)] d'z,

the second term vanishes, since the covariant derivative
of g"" vanishes identically, in other words, by making use
of the divergence theorem, this new quantity vanishes be-
cause the variations are assumed null at the frontier, to
obtain

1
68 = — / V=g (R“ﬁ - 59“61%) Sgapd'z,
where we have used the equation

1 «
IV=9=5V-99 #6gas.

By virtue of the steady-state action principle, we obtain
the field equations

1
R~ 2g""R=0 (61)
or
Ry, =0.

o

Next we do a variation with respect to I'},,,

SO

68 = / g" [V, (6T%,) =V, (6T%,)] d*=.

Integrating by parts and discarding the divergence term
by the usual argument, we get

68 = / (67 Vo — V,g"] 6T, d"z.

Since ¢S vanishes for an arbitrary volume, the integrand
must vanish, i.e.

0, Vog" — V,g"" =0.
The 6I'?

f., variations are arbitrary. In consecuense



32 Rev. Inv. Fis. 25(2), (2022)

y7a % o
(V o Q99" | /=514, + V=9 Tl — V=g T — 3, (V OW=997) | y=ggore,| =0 (62)

Appendix B: Variation of \/—gg"”

If we consider the special case of an infinitesimal transformation of coordinates, i. e., equation (37), where £° is a
vector field. Then, when differentiating the proposed transformation, we find

dut ., O¢

dzv VJF@J:”'

Substituting in the transformation equation

ox’* 0x7*

[ pox _
99 ozt Oxv

and using the Taylor’s theorem to first order, we obtain

V=gg""

amT*

VTG0 (%) ~ <5u5u Y og” +5u ) [ngg (ze) — (\/fggpo)g)\:l ‘1 o

P Oxo Ox ox™* |’

Rearranging terms

)

vx v o aé.y 65“ 89“” A 657
" I w _ _
g""" (k) = {g (w6) + 0" 5+ 50— € ] ‘1 B

where g"” = \/—gg"”. We consider terms to first order and subtracting g*” (z) from each side, it follows that

vk o ag” Vag‘u 89‘“’ A v 857—
0 ok ~ e 95 v 06 e
o () — g (@) ~ g ox° + ozxP  Ox? ¢ ox™*
or
[ o 85” v 85“ agMV A v 857-
M — Mo IS PV =S P L
o0 = oz° +o oxzr Oz S Az |’

The preceding equation is equivalent to equation (38).

Appendix C: Variation of pseudo tensor U, ;)V

Differentiating the transformation (37), it follows that

ox*H ogH
=6y .
oxv * oxv
Substituting this equation in (21) for the pseudo tensor U and using the first-order Taylor’s theorem, we obtain the
expression

A iz
UL (xx) = ( 84046, — oko, o¢ +5"5A—a§ — 8068Y 0¢ Ut (as) — e o
Av

P Gy Oz M7 O Oz *
0¢8N\ o 0¢°\ e
_ (g P B
((Sa 323"‘) 010" O 0ot Oz ) Oz OxP*
or, by neglecting second-order terms in £":
. o¢” o o 9P OUjo
P — 7P a Y6 e _ 7P _ _ n
U"J (:r*) - U"U ((L'*) + Una Oxe U>“7 oxn* U77>\ Oxo* Ox*Oxo* 81:)\* € .
Also, subtracting U/, (z*) from each side, it follows that
* 234 3 o ¢ U .
P o _ 7P _ 7P _ _ n
OUno (@) = U""a « Uk O+ Unn Ozo*  Ox1*Oxo*  Oxt* &

This equation is the variation of the pseudo tensor UJ, (z*).
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