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Abstract
The last few decades have seen an explosive increase in the amount and precision of data obtained
from cosmological observations. Theoretical cosmologists have not yet �nished interpreting this amount
of data. Likewise, the wonderful ideas we have for the beginning of the Universe have not yet been
connected with concrete models of elementary particles. Currently, the existence of dark matter (DM)
is accepted in the scienti�c community. Stars, planets, comets, cosmic dust and other forms of matter
make up 5% of the matter in the Universe. The remaining 95% would be "dark matter" and "dark
energy", if it is that, it is not known what it is, in fact they exist. In this work, the standard cosmological
model is studied, as well as the production of relic particles with the Boltzmann equation applied to
the decoupling of relic particles from a reservoir.

Keywords: Field equations, Friedmann equations, conservation of entropy, Boltzmann equation, den-
sity of relic particles..

Producción de partículas reliquiaResumen
Las últimas décadas han visto un explosivo aumento en la cantidad y la precisión de los datos obtenidos
a partir de las observaciones cosmológicas. Los cosmólogos teóricos todavía no han terminado de in-
terpretar esta cantidad de datos. Así mismo, todavía no se han conectado las maravillosas ideas que
tenemos para el inicio del Universo con modelos concretos de partículas elementales. En la actualidad,
la existencia de materia oscura (DM, por sus siglas en inglés) es aceptada en la comunidad cientí�ca.
Estrellas, planetas, cometas, polvo cósmico y otras formas de materia constituyen el 5% de materia del
Universo. El 95% restante sería de �materia oscura� y �energía oscura�, si es que, que no se sabe lo que
es, de hecho existen. En este trabajo se estudia el modelo cosmológico estándar, así como la producción
de partículas reliquia con la ecuación de Boltzmann aplicada al desacoplamiento de partículas reliquia
de un reservorio.

Palabras clave: Ecuaciones de campo, ecuaciones de Friedmann, conservación de la entropía, Ecuación
de Boltzmann, Densidad de partículas reliquia..

1 Standard Cosmology

Cosmology is de�ned as the branch of physics that stud-
ies the origin of the Universe on its largest scale. In 1687,
Isaac Newton published his book entitled "Mathemati-
cal Principles of Natural Philosophy" [1], better known

as "Principia", where he formulated the bases of classi-
cal mechanics through the laws that bear his name and
his theory of gravitation, with which was born analytic
cosmology.

In the year 1916 Einstein published general relativ-
ity in its complete and de�nitive version [2]. Soon after,
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various solutions of the �eld equations of general relativ-
ity [3] [4], which are the structure of modern cosmology,
were published. The hypothesis of isotropy and homo-
geneity 1 applied to general relativity, opened the �eld
of cosmology in the 20-th century with the construc-
tion of models that accept exact solutions, which are
known as Friedmann-Lemaître-Robertson-Walker mod-
els, or FLRW. These types of models were developed
by Alexander Friedmann [5] and later by Howard Percy
Robertson [6] and Arthur Geo�rey Walker [7], among
others [8]. In addition, these principles were based on
the cosmological principle.

The cosmological principle establishes that on large
scales the Universe is homogeneous and isotropic [9], that
is, there are no privileged positions or directions in the
Universe. The clearest evidence of this cosmological prin-
ciple is found in observations of the cosmic microwave
background [10] [11], which reveal the anisotropy of the
Universe.

In this article, we will use units in which c = 1.

1.1 General relativity

In general relativity, the geometry of space-time is char-
acterized by a second-order symmetric tensor, whose
components in the coordinate system {xµ}, will be de-
noted by gµν , where µ = 0, 1, 2, 3. The square of the line
element between two neighboring points in space-time
will be given by the expression

ds2 = gµνdx
µdxν , (1)

where we will assume a metric tensor with signature
(+,−,−,−).

With a metric associated to the space-time manifold,
a covariant derivative associated to this metric can be
de�ned, denoted by the symbol ∇β , whose action on a
tensor is:

∇βA
µ1...µn
ν1...νm =

∂

∂xβ
Aµ1...µn

ν1...νm −
m∑
i=1

Γα
νiβA

µ1...µn
ν1...νi−1ανi+1...νm

+

n∑
j=1

Γ
µj

αβA
µ1...µj−1αµj+1...µn
ν1...νn , (2)

then we have the covariant derivative of the tensor
Aµ1...µn

ν1...νm , where the Γ are the Christo�el symbols, which
in the case of the metric connection and imposing a
metricity condition (∇λgµν ≡ 0), are given by:

Γλ
µν =

1

2
gλσ

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
. (3)

The space-time curvature is characterized by the
Riemann-Christo�el tensor [12] [13] whose components

can be expressed in terms of the Christo�el symbols ac-
cording to the expression:

Rλ
µνκ ≡

∂Γλ
µν

∂xκ
−

∂Γλ
µλ

∂xν
+ Γσ

µνΓ
λ
σκ − Γσ

κµΓ
λ
σν . (4)

The Riemann-Christo�el curvature tensor is de�ned for
any manifold in terms of the connection regardless of the
de�nition of a metric tensor. General relativity requires
a metric since the concept of space-time distance from
special relativity must be generalized.

The �eld equations relate the geometry of space-
time to its matter content. These equations under non-
relativistic conditions reproduce Newtonian mechanics
and Poisson's equation. The geometry appears in the
�eld equations through the Ricci tensor, de�ned by:

Rµν = Rλ
µνλ, (5)

and the curvature scalar

R = gµνRµν . (6)

The relativistic �eld equations of gravitation are
given by

Rµν − 1

2
gµνR = −8πGTµν (7)

where Gµν ≡ Rµν − 1
2
gµνR is the Einstein tensor, Tµν is

the energy-momentum tensor [14] and the coupling con-
stant is expressed by κ = 8πG.

Matter enters the �eld equations through the energy-
momentum tensor, denoted by Tµν , whose time-time
component corresponds to the energy density, the time-
space components to the momentum density, and the
space-space components to the stress tensor [14]. The
�eld equations are the fundamental equations of the rel-
ativistic description of gravitation and are part of general
relativity. In general relativity, gravity is the e�ect of the
existence of a curvature in space-time. The �eld equa-
tions relate the presence of matter to the curvature of
space-time. More precisely, the greater the concentration
of matter, represented by the energy-momentum tensor,
the greater the components of the Ricci tensor [15] [16].

When Einstein deduced his equations, he discovered
that they did not allow a static solution, so he proposed
to modify them by adding a constant Λ, known as the
cosmological constant, obtaining a modi�cation of the
�eld equations. This cosmological constant can have two
physical interpretations [17]. The �rst interpretation: Λ
could be interpreted as a shift in energy, i. e., the right-
hand side of the �eld equations is modi�ed by considering
a new e�ective energy-momentum tensor Qµν

Rµν − 1

2
gµνR = −8πG (Tµν +Qµν) , (8)

1Isotropy refers to the observation that the Universe is the same in every direction and sense. Instead, homogeneity refers to the
observation that the Universe looks the same at all points.
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where Qµν = − Λ
8πG

gµν . In the second interpretation,
gravity is represented by two constants, Newton's con-
stant G and the cosmological constant Λ. The left-hand
side of the �eld equations is modi�ed, as shown:

Rµν − 1

2
gµνR− Λgµν = −8πGTµν . (9)

In this interpretation, space-time is curved even in
the absence of matter since the equation Rµν − 1

2
gµνR−

Λgµν = 0 does not support �at space-time as solutions.

1.2 FLRW cosmological model

The cosmological principle is one of the basic princi-
ples on which the cosmological standard model is based.
The clearest evidence for the cosmological principle is
found in observations of the cosmic microwave back-
ground [9] [10]. Under the conditions of homogeneity
and isotropy, it follows that the Friedmann-Lamaître-
Robertson-Walker metric (FLRW metric) describing the
space-time of the Universe is given by

ds2 = dt2 − a2 (t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2)] ,

(10)
where k = 0,+1,−1. Therefore, the three types of ge-
ometries for space described in the FLRW model metric
are classi�ed as:

� Open universe if k = −1, i.e., hyperbolic space.

� Plane if k = 0, i.e., Euclidean space.

� Closed if k = 1, i.e., spherical space.

The dimensionless parameter a (t) is the scale factor
of the Universe and its time dependence describes the
cosmological expansion. Consequently, the scale factor
a (t) gives physical measure to the coordinate r. With
this, the instantaneous physical (radial) distances are ex-
pressed by

R = a (t)

r∫
0

dr√
1− kr2

. (11)

The function that is often used to denote the expan-
sion of the Universe is the Hubble parameter [18]

H (t) =
1

a

da

dt
, (12)

the name receives it in honor of Edwin P. Hubble. Hubble
in 1929 observed that the speed with which any object
is moving away from us is proportional to its distance.
Likewise, the Hubble parameter refers to the speed with
which most distant galaxies are receding from us through
Hubble's law

v = Hd, (13)

where v is the speed and tells us how an object moves
away or approaches and d is the distance between the
observer and the distant galaxy that moves away.

1.3 Friedmann equations

Suppose now that the Universe is �lled with an ideal
�uid; adiabatic frictionless �uid, i.e. �uid characterized
by the fact that in a local coordinate system of a �uid
element there is only one isotropic pressure. Therefore,
the energy-momentum tensor will be represented by:

Tµν = (ρ+ p)
dxµ

ds

dxν

ds
− pgµν , (14)

or covariant

Tµν = (ρ+ p) gµρgνσ
dxρ

ds

dxσ

ds
− pgµν .

With this simple description of matter, if we make
use of equation (10) and plug equation (14) into equa-
tion (9), then we get the Friedmann equations

2

a

d2a

dt2
+

1

a2

(
da

dt

)2

+
k

a2
− Λ = −8πGp, (15)

3

[
1

a2

(
da

dt

)2

+
k

a2

]
− Λ = 8πGρ. (16)

A direct consequence of Eqs. (15) and (16) is the con-
tinuity equation. If we di�erentiate equation (16) with
respect to t, then the resulting di�erential equation is di-
vided by a da

dt
, and �nally this resulting equation is sub-

tracted with equation (15) (without taking into account
the cosmological constant), then we get

dρ

dt
+ 3H (ρ+ p) = 0. (17)

There is another physically feasible way to �nd Eq.
(17). This way would be through the application of the
equation of conservation of momentum and energy for
matter in the relativistic theory of the gravitational �eld.
The conservation of energy is expressed in general relativ-
ity by nullifying the divergence of the energy-momentum
tensor, that is, by the equation [19]

∂ (
√
−gTα

σ )

∂xα
− Γα

σβ

√
−ggρβTρα = 0. (18)

Applying this conservation law, i.e. equation (18), to our
hypothesis of the FLRW metric of equation (10) and the
energy-momentum tensor for a perfect �uid (with µ = 0),
we obtain a single energy conservation equation, that is,
equation (17).
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This equation is not actually independent of the
Friedmann equations, but it is necessary for consistency.
This equation implies that the expansion of the Universe
(as speci�ed byH) can give rise to local changes in energy
density. Note that there is no notion of total energy con-
servation, since energy can be exchanged between matter
and geometric space.

1.4 Solution of the dynamical equations in a
Euclidean Universe (k = 0) and without
cosmological constant

In order to determine the solutions to the Friedmann
di�erential equations, let us consider an equation of
state for cosmological matter of the form p = ωρ, with
ω = ω (a), not necessarily constant . Integrating equa-
tion (17) we get

ρ (a) = ρ (a0) exp

{
−3

∫ a

a0

[1 + ω (u)]
du

u

}
. (19)

If ω is constant, then we have

ρ (a) = ρ (a0)

(
a

a0

)−3(1+ω)

. (20)

Equation (20) is studied for three types of matter that
play a very important role in cosmology. The �rst type of
matter is dust (non-relativistic matter), for which ω = 0,
the second type of matter is radiation (relativistic parti-
cle gas), where ω = 1

3
, and �nally, the so-called vacuum

energy, with the value ω = −1.
Let us consider a �at Universe, for this, we substitute

equation (20) in equation (16) obtaining the di�erential
equation

1

a2

(
da

dt

)2

=
8πG

3
ρ0

(
a

a0

)−3(1+ω)

, (21)

equation from which it follows that
(
da
dt

)2 ∝ a2−3(1+ω),
which implies the evolution of the scale factor. The so-
lution to the di�erential equation (21), considering the
initial condition a (t0) = a0, is given by

a (t) = a0

(
t

t0

) 2
3(1+ω)

, (22)

where a0 is the current scale factor, unless ω = −1, in
which case we get a (t) ∝ exp (Ht). It is important to
note that the matter and global radiation in �at Uni-
verses start with a = 0, this is a singularity, known as
the Big Bang. We can therefore calculate the age of the
Universe in question. If we take into account equation
(22), then

H (t) =
1

a (t)

da (t)

dt
=

2

3 (1 + ω) t
. (23)

From equation (23), we calculate the evolution time of
the Universe

t0 =
2

3(1 + ω)H0
. (24)

Unless ω is close to −1, it is often convenient to approx-
imate equation (23) to the quantity:

t0 ∼ H−1
0 . (25)

This quantity is known as the Hubble time.
If we consider the previous analysis and use equations

(20) and (22), we construct the following table:

Type of energy ρ(a) a(t)

Dust a−3 t
2
3

Radiation a−4 t
1
2

Cosmological Constant constant exp(Ht)

Table 1: The behavior of the scale factor applies to the case

of a �at Universe; with curvature k = 0, the behavior of the

energy densities is perfectly general.

1.5 Cosmological parameters

The best known cosmological parameter is the Hubble
parameter, de�ned in equation (12), whose value today
is called the Hubble constant H0 = 1

a(t0)
da
dt

∣∣
t=t0

. The
Hubble constant is given by

H0 = 100h (km/seg/Mpc) . (26)

The Hubble Telescope is one of the main instruments
on extragalactic distances [20] [21]. From the observa-
tions and data collected by this telescope it is inferred
that

h = 0.71± 0.06. (27)

From the Hubble parameter, the critical energy2 density
is de�ned for

ρ0 =
3H2 (t0)

8πG
, (28)

and with the help of equations (26) and (27)

ρ0 ≃ 1.88h210−29 g

cm3
= 9.5× 10−30 g

cm3
, (29)

where this amount is approximately equivalent to 6 pro-
tons per cubic meter.

In terms of the energy density of the Universe and
the Hubble parameter it is possible to de�ne the density
parameter by the mathematical equation

2This energy is taken into account for a �at Universe.
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Ω =
ρ

ρ0
=

8πG

3H2 (t0)
ρ, (30)

where the sign can be used to determine the spatial cur-
vature. The classi�cation of the Universe, according to
the de�nition of equation (30), can be done in the fol-
lowing way:

� For a closed Universe (k = +1) we have that Ω > 1.

� Flat Universe (k = 0), the density parameter is
equal to zero, that is, Ω = 0.

� Open Universe (k = −1), It is true thats Ω < 1.

Cosmological observations allow us to estimate the dif-
ferent density parameters as follows:

� Baryonic matter (matter made up of electrons, neu-
trons and protons): ΩB ≈ 0.04 [22] [23].

� Dark matter: ΩDM = ΩCDM +ΩHDM ≈ 0.26 [24].

� Dark energy (compatible with a cosmological con-
stant): ΩDE = ΩΛ = 0.7 [24].

� Radiation: ΩR ≈ 5× 10−5.

An important consequence of the density parameters is
the consistency relationship between the cosmological pa-
rameters [24]:

ΩB +ΩDM +ΩDE = 1. (31)

If we substitute equation (16) into equation (15), then

we have the equation 1
a

d2a
dt2

= − 8πG
3

(ρ+ 3p) + Λ
3
. From

this equation another basic parameter is de�ned, the de-
celeration parameter [25]:

q = −a

(
da

dt

)−2
d2a

dt2
=

4πG

3H2
(ρ+ 3p)− Λ

3H2
. (32)

The uniform expansion corresponds to q = 0 and re-
quires a cancellation between matter and vacuum energy.
For matter we have q > 0, otherwise, for the vacuum en-
ergy domain, q < 0. According to the current density
parameter, the presence of radiation is negligible, but in
the past radiation was dominant. At present, the total
energy content is dominated by dark energy, similar to
a cosmological constant, and therefore the expansion of
the Universe at present is accelerating (see Figure 1).

Figure 1: Magnitude-Redshift diagram to study the ex-

pansion of the Universe. At redshifts greater than z = 0.1,

cosmological predictions begin to diverge, depending on the

assumed cosmic densities of mass and vacuum energy. The red

curves represent models with zero vacuum energy and mass

densities ranging from the critical density ρ0 to zero. The best

�t is given by the blue line which assumes a mass density ρ0/3

plus a vacuum energy density twice as high, which implies an

accelerated expansion of the Universe [26].

1.6 Behavior of FLRW models

In this section we will study the behavior of the
Friedman-Lemaître-Robertson-Walker models to under-
stand the e�ect produced by their di�erent components.
As we will see below.

The energy conservation equation

dρ

dt
+

3

a

da

dt
(ρ+ p) = 0,

can be interpreted as the �rst law of thermodynamics
dQ = dU − pdV = d

(
ρa3
)
− pd

(
a3
)
= 0. To obtain the

explicit solutions of a (t) and k, equations (16) and (17)
are often used. Furthermore, it is necessary to comple-
ment these equations with the equation of state p = ωρ
that relates the pressure and density of the �uid. With
this it is possible to integrate equation (17) to obtain the
relation (20). The most important �uids in cosmology
are barotropic, that is, their pressure is proportional to
their density, i. e, p = ωρ, and therefore dp

dρ
= Constant.

In this case, equation (20) leads to ρ ∝ a−3(1+ω). If
the Universe contains N �uids of di�erent species with
equations of state ωi, this result holds for each species
separately as long as they do not interact. If we denote
by ρi,0 the current density of each species, then the to-
tal energy density of the Universe corresponding to the
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epoch a (t), will be

ρ =

N∑
i=1

ρi,0
a3(1+ωi)

,

where we have set a0 = 1 for simplicity. Then, the Fried-
man equation (16), for the scale factor, can be written

(
1

a

da

dt

)2

=
8πG

3

N∑
i=1

ρi,0
a3(1+ωi)

− k

a2
+

Λ

3
.

Evaluating this equation in the present, and under the
Hubble parameter, we get:

H2
0 =

8πG

3

N∑
i=1

ρi,0 −
k

a2
+

Λ

3
. (33)

Equation (33) can be rewritten in the form

k = H2
0

(
8πG

3H2
0

N∑
i=1

ρi,0 +
Λ

3H2
0

− 1

)
. (34)

In this way the curvature of space will be given by the
energy content of the Universe and the value of the cos-
mological constant.

In terms of the critical density, equation (28), it is
possible to de�ne the density parameter corresponding
to each species of the Universe

Ωi,0 =
ρi,0
ρ0

=
8πG

3H2
0

ρi,0,

and if we de�ne

ΩΛ =
Λ

3H2
0

,

and

Ωk =
k

H2
0

,

it is possible to rewrite (34) in the form

N∑
i=1

Ωi,0 +ΩΛ +Ωk = 1. (35)

Thus, the equation for the evolution of the scale fac-
tor can be rewritten as follows

(
da

dt

)2

= H2
0

{
N∑
i=0

Ωi,0

[
a−(1+3ωi) − 1

]
+ΩΛ

(
a2 − 1

)
+ 1

}
. (36)

In this way, knowing the energy content of the Universe, it is possible to obtain its temporal evolution. Assuming
a �at Universe, without cosmological constant, containing a single species of equation of state ωi ̸= −1, the time

evolution of the scale factor is given by the proportionality relation, a (t) ∝ t

(
2

3+3ωi

)
.

It is also possible to use (38) to obtain another useful relation. Separating variables, integrating and assuming
that a = 0 for t = 0, an expression is obtained for the age of the Universe given by

t0 =
1

H0

1∫
0

ada√∑N
i=1 Ωi,0a1−3ωi +ΩΛa4 +

(
1−

∑N
i=1 Ωi,0 − ΩΛ

)
a2

. (37)

As we have seen, the radiation density dominates the evolution of the Universe in its early stages, however, its
contribution is negligible compared to that of matter or dark energy, which dominate its later stages. For this reason
we will consider only Universes with these two components (assuming that ωDE = −1). In this way, equations (38)
and (39) can be written as (

da

dt

)2

= H2
0

[
Ωm

(
a−1 − 1

)
+ΩΛ

(
a2 − 1

)
+ 1
]
, (38)

and

t0 =
1

H0

1∫
0

da√
Ωm (a−1 − 1) + ΩDE (a2 − 1) + 1

. (39)

1.7 Some solutions to the homogeneous and isotropic models

In this way it is possible to study some important particular cases for various combinations of the parameters
(Ωm,ΩDE).
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� � The Einstein-de Sitter model. This is a �at Universe with Ωm and ΩDE = 0. In this model

a (t) =

(
t

t0

)2/3

,

t0 =
2

3H0
.

� Open model without Dark Energy. In this universe Ωm < 1 and ΩDE = 0. In this model, the evolution of the
scale factor is given parametrically by

a =
Ωm

2 (1− Ωm)
(cosh θ − 1) ,

H0t =
Ωm

2 (1− Ωm)3/2
(sinh θ − θ) ,

H0t0 =
Ωm

2 (1− Ωm)
− Ωm

2 (1− Ωm)
3
2

ln

(
2− Ωm + 2

√
1− Ωm

Ωm

)
.

� Closed model without Dark Energy. In this universe Ωm > 1 and ΩDE = 0. In this model, the evolution of the
scale factor can also be obtained in the form

a =
Ωm

2 (1− Ωm)
(cos θ − 1) ,

H0t =
Ωm

2 (1− Ωm)3/2
(sin θ − θ) ,

H0t0 =
Ωm

2 (1− Ωm)
− Ωm

2 (1− Ωm)
3
2

ln

(
2− Ωm + 2

√
1− Ωm

Ωm

)
.

� Flat model with Dark Energy. In this model the contributions of Dark Matter and Dark Energy ( ωDE = −1)
combine to produce a �at Universe. In this case we get

a (t) =

(
Ωm

1− Ωm

) 1
3
[
sinh

(
3
√
1− Ωm

2
H0t

)]2/3
,

H0t0 =
1

3
√
1− Ωm

ln

(
2− Ωm + 2

√
1− Ωm

Ωm

)
.

1.8 Thermal equilibrium in an expanding
Universe

The Universe has evolved from a very compact and ex-
tremely dense state. We now observe that the photon ra-
diation around us has a strong thermal spectrum. Only
part of the gas in the Universe is in thermal equilibrium,
the rest has decoupled. In the description of a parti-
cle plasma in thermal equilibrium, the density in phase
space, f (−→p , t), is the fundamental object. By consider-
ing only the FLRW metrics, the density will not depend
on either momentum or position. From this density func-
tion, the densities of n particles and of energy ρ and the
pressure p are found, which correspond to a gas of a
species of particles with g internal degrees of freedom

n =
g

(2π)3

∫
f (|−→p |) d3p, (40)

ρ =
g

(2π)3

∫
E (|−→p |) f (|−→p |) d3p, (41)

p =
g

(2π)3

∫
|−→p |2

3E
f (|−→p |) d3p, (42)

where E =

√
|−→p |2 +m2. The density in phase space

will be given by the Fermi-Dirac (FD) [27] [28] or Bose-
Einstein (BE) [29�32] distributions, depending on the
particles, whether they are fermions or bosons, respec-
tively. These are:

f
(
|−→p |2

)
=

1

exp [(E − µ) /T ]± 1
, (43)



8 Rev. Inv. Fis. 25(3), (2022)

where T is the equilibrium plasma temperature and µ is
the chemical potential of the species, which introduces
an asymmetry between particle and antiparticle. Ad-
ditionally, if the species is in chemical equilibrium, the
chemical potential, µ, is related to those of the species
with which it interacts.

By plugging the distribution functions, i.e. equation
(43), into equations (40), (41) and (42) and using the
relation d3−→p = 4π |−→p |2 dp = 4π |−→p |EdE, we �nd the
expressions for the densities of n particles and for energy
ρ and the pressure p

n =
g

2π2

∞∫
m

√
E2 −m2

exp [(E − µ) /T ]± 1
EdE, (44)

ρ =
g

2π2

∞∫
m

√
E2 −m2

exp [(E − µ) /T ]± 1
E2dE, (45)

p =
g

6π2

∞∫
m

√
(E2 −m2)3

exp [(E − µ) /T ]± 1
dE. (46)

The integrals of equations (44), (45) and (46) have
not analytical solution, however, analytical results can
be found for the following limits. First of all, taking
T ≫ m y T ≫ µ, we have the non-degenerate relativis-
tic limit, where di�erentiating bosons from fermions, we
�nd:

ρ =

{
π2

30
gT 4

7
8

π2

30
gT 4

(BE),

(FD),
(47)

n =

{
1
π2 ς (3) gT

3

3
4π2 ς (3) gT

3

(BE),

(FD),
(48)

p =
ρ

3
, (49)

where ς (3) = 1.202... is the Riemann zeta function of
3. Second, the other limit corresponds to non-relativistic
particles, m ≫ T :

n = g

√(
mT

2π

)3

exp

[
− (m− µ)

T

]
, (50)

ρ = g

√(
mT

2π

)3

m exp

[
− (m− µ)

T

]
, (51)

p = g

√(
mT

2π

)3

T exp

[
− (m− µ)

T

]
≪ ρ, (52)

corresponding to the Maxwell-Boltzmann statistic [33�
36].

The energy density and pressure of non-relativistic
species are exponentially smaller than those of a rela-
tivistic species when the Universe is composed of pure
radiation. When calculating the total energy density, it

is convenient to express the density of each species as a
function of the photon temperature, T ,

ρR = T 4

 ∑
i=bosons

π2

30
gi

(
Ti

T

)4

+
7

8

∑
i=fermions

π2

30
gi

(
Ti

T

)4
 ,

where Ti is the temperature of each boson or fermion,
also to simplify the previous equation, we de�ne the pa-
rameter g∗ (which counts the e�ective relativistic degrees
of freedom)

g∗ =
∑

i=bosons

gi

(
Ti

T

)4

+
7

8

∑
i=fermions

gi

(
Ti

T

)4

, (53)

getting the equation

ρR =
π2

30
g∗T

4. (54)

With these results we can calculate H, t and a, de-
pending on the temperature of the photon reservoir, for
a Euclidean Universe, dominated by radiation. With the
help of the quantity ω = 1/3 (for radiation, substituting
in the equation of state), of equations (47), (16), (23),
a (t) ∝

√
t and (22) we can �nd the expressions

H =

√
8πG

3
ρR =

√
4π3

45

√
g∗

T 2

MP
, (55)

t =
1

2H
=

√
45

16πg∗

MP

T 2
∼
(

T

MeV

)−2

seg, (56)

T ∝ 1

a
, (57)

where it has been taken into account that G ∝ M−2
P ,

where MP = 1.2× 1019GeV is the Planck mass.

1.9 Conservation of entropy

In processes that are locally in thermal equilibrium, the
entropy per comoving unit volume corresponding to the
species that participate in them is conserved. Therefore,
we �nd an expression for this entropy. To accomplish
this end, we use the second law of thermodynamics

TdS = d [(ρ+ p)V ]− V dp− µd (nV ) , (58)

where V = a3 is the comoving volume to which we apply
this law.

Di�erentiating equation (46) with respect to T , we
�nd

dp

dT
= − gT

6π2

∞∫
m

√
(E2 −m2)3

[
E

T 2
+

d

dT

( µ
T

)] df (|−→p |)
dE

dE,

(59)
where f (|−→p |) is the corresponding distribution function.
Integrating the above equation by parts, we arrive at
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dp

dT
=

1

T

 g

2π2

∞∫
m

f (|−→p |)E2
√

E2 −m2dE +
g

6π2

∞∫
m

f (|−→p |)
√

(E2 −m2)3dE


+T

d

dT

( µ
T

) g

2π2

∞∫
m

f (|−→p |)E
√

E2 −m2dE,

or; using equations (44), (45) and (46):
dp

dT
=

ρ+ p

T
+ nT

d

dT

( µ
T

)
. (60)

Now, from equation (51), and using (53), we �nd

dS =
1

T
d [(ρ+ p)V ]− µ

T
d (nV )− V

T

ρ+ p

T
dT − V

T
nTd

( µ
T

)
,

and rearranging, we have:

S =
ρ+ p− µn

T
V. (61)

Recall that the conservation of the energy-momentum tensor, that is, dρ
dt

= −3H (ρ+ p), brings us to the relationship

d
(
ρa3) = −pd

(
a3) , (62)

where by subtracting and adding the term a3dp, we get the equation

d

dT

[
(ρ+ p) a3] = a3 dp

dT
. (63)

From equation (60), equation (63) takes the form

d

dT

[
(ρ+ p) a3] = a3 ρ+ p

T
+ a3nT

d

dT

( µ
T

)
, (64)

then dividing by T , plus adding and subtracting (µ/T ) d
dT

(
a3n

)
, equation (64) takes the form

d

dT

[(ρ+ p− µn

T

)
a3
]
= − µ

T

d

dT

(
a3n

)
,

or, with the help of equation (61):

dS

dT
= − µ

T

d

dT

(
a3n

)
. (65)

From (65), therefore, we see that the entropy in a comoving volume is conserved during the expansion if |µ| ≪ T , or
if a3n = constant. The last condition tells us that there is no net creation or annihilation of particles in that volume.

The quantity that will be useful to work with is the entropy density, s:

s ≡ S

V
=

ρ+ p

T
, (66)

where we have already assumed that |µ| ≪ T .
Recalling that in a Universe dominated by radiation, the energy and pressure will be for the relativistic species,

and by virtue of equations (47) and (49), we �nd the entropy density associated with each of these species:

si =
ρi + pi

Ti
=

4

3

ρi
Ti

=

{
2π2

45
giT

3
i

7
8

2π2

45
gT 3

i

(BE),

(FD).
(67)

When calculating the entropy density, it is convenient to express the density of each species as a function of the photon
temperature, T ,

s = T 3

 ∑
i=bosons

2π2

45
gi

(
Ti

T

)3

+
7

8

∑
i=fermions

2π2

45
gi

(
Ti

T

)3
 ,
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where the parameter g∗ (which counts the e�ective relativistic degrees of freedom) is de�ned

g∗S =
∑

i=bosons

gi

(
Ti

T

)3

+
7

8

∑
i=fermions

gi

(
Ti

T

)3

,

getting the equation

s =
2π2

45
g∗ST

3. (68)

Now, we have the entropy, it allows us to easily relate the entropy density of the Universe with the density of
photons. From (68) and (48) we �nd that

s =
π4

45ς (3)
g∗Snγ = 1.8g∗Snγ , (69)

relationship that will change as the number of relativistic species changes.
The conservation of entropy in a comoving volume, S, implies that the entropy density decreases with the variation

of the volume, that is, s ∝ a−3. This variation is the same as that su�ered by the density of particles n, if the number
of particles in the comoving volume remains constant. This allows us to de�ne the amount

Y ≡ n

s
∼ Constant, (70)

which is useful, since it remains constant if the number of relativistic species does not change.

2 Relic Particles

If the Universe had always been in a state of thermal
equilibrium, then what it would look like today would
be very simple, i. e., a gas in thermal equilibrium at
2.75 ºK. Thanks to processes out of equilibrium we can
now observe all the richness of the Universe. Exam-
ples of non-equilibrium processes are the decoupling of
neutrinos and photons [37] [38], Primordial Nucleosyn-
thesis [38�45], Bariogenesis [46�51], the in�ationary pe-
riod [52�57], etc. It is of utmost importance to under-
stand these processes, if we want to treat the evolution of
species that decouple from the thermal reservoir. Such
species are the background of relic particles in the early
Universe and play a very important role in questions of
dark matter.

Primordial nucleosynthesis (Big Bang Nucleosynthe-
sis, or BBN) describes the processes that occurred in the
Universe in the period between 10−2 and 100 seconds. In
these moments when were formed the lightest nuclei of
the periodic table of chemical elements, which are basi-
cally 4He, 3He, D and 7Li.

The BBN model is supported by the standard model
of particle physics and the cosmological standard model.
The model presented below allows predictions to be made
about the number of light nuclei that formed in the pe-
riod between 10−2 and 100 seconds. Primordial nucle-
osynthesis (BBN) is one of the great pillars of the cos-
mological standard model. Therefore, the predictions of
this model agree with the observations, within the range
of error. However, BBN predictions depend on a large
number of parameters, one of the most important being

the expansion rate of the Universe. The expansion of
the Universe of the most important predictions of gen-
eral relativity, and its rate is given, from the Friedmann
equation, that is, equation (16), when taking into ac-
count that the Universe is homogeneous and isotropic.

2.1 Relic particles

One of the most notable consequences of the gradual de-
crease in the temperature of the Universe is the evolution
su�ered by the distributions of particle species.

Therefore, it is necessary to determine the distribu-
tion functions fi of each species as a function of |−→p | and
t. The spatial dependence disappears due to the homo-
geneity of the Universe. As a �rst approximation, a qual-
itative approach is used. This criterion can be veri�ed
numerically with the general formalism that will be pre-
sented in the Boltzmann equation. The criterion consists
in comparing the rate of expansion of the Universe, H (t),
with the total rate of interaction Γi (t), which takes into
account all the interactions of the species i-th with any
other particle. This comparison allows for two regimens:

1. When Γi (t) ≫ H (t), the interactions allow to
maintain the thermodynamic equilibrium between
the interacting species at a certain temperature T ,
therefore, we have a plasma. Furthermore, all rel-
evant interactions are short-range. For this reason
we can assume that the interactions are limited to
making thermalization possible and that the dis-
tribution function is simply that of an ideal gas of
bosons or fermions, that is, equation (2.36). The
function f evolves adiabatically.
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2. From Γi (t) ≲ H (t), keeping Γ (t)j ̸=i ≫ H (t) for
all other species, the rate of reactions that keep par-
ticle i in equilibrium is not fast enough to overcome
the expansion of the Universe, and so the particle
of species i decouples from the plasma. The other
species remain in thermal equilibrium, with distri-
bution functions (1.43). To determine the distri-
bution function of the decoupled particles, fD, we
can follow the following argument. When species
i decouples, it falls freely following a geodesic in
spacetime. Suppose then that at a certain instant
t, a comoving observer observes dN = fd3pd3r par-
ticles in a proper volume d3r and with an interval
of moments (−→p ,−→p + d−→p ). Since the particles can-
not interact, at time t + δt, the observer will con-
tinue to observe dN particles, in a proper volume
that has increased by a factor [a (t+ δt) /a (t)]3

and in a range of moments that has decreased by
[a (t+ δt) /a (t)]−3. Since the volume of the phase
space is conserved and dN is conserved, then f
must be conserved along the geodesic.

As the distribution function is conserved, even after
decoupling, this allows to determine the function fD valid
for moments after the decoupling time, tD. From the
equilibrium distribution function fequil, valid for t < tD
and given by equation (43), it is found that

fD (−→p , t) = fequil

(
a (t)

aD

−→p , tD

)
. (71)

2.2 Uncoupled particle density

With what has been described so far, we will be able
to describe the non-equilibrium behavior of particles
that were relativistic or non-relativistic when decoupling.
Whatever the class, it will depend on the relationship
between the mass of the particle and the temperature at
the moment of decoupling, TD. For simplicity, in this
section we will neglect the chemical potential of the par-
ticles, that is, µ ≪ TD.

In the case of relativistic particles, let us consider
those particles that at the moment of decoupling ful�ll
the condition TD ≫ m. For these species, E ≃ |−→p | and
therefore, according to equation (71) we have that

fD (−→p ) = fequil

(
a (t)

aD

−→p , TD

)
≃

1

exp
[
E (a (t) /aD)T−1

D

]
± 1

, (72)

even though the particles are no longer in equilibrium,
it corresponds to an fequil distribution with a tempera-
ture T (t) = [aD/a (t)]TD. This decrease in temperature,
T ∝ a−1, is slightly faster than at equilibrium, i.e. than
the equation T ∝ g

−1/3
∗S a−1.

If we take into account equations (47), (48) and (49),
then we obtain the energy densities of decoupled particles
and the pressure

ρ =


π2

30
gT 4

D

[
aD
a(t)

]4
7
8

π2

30
gT 4

D

[
aD
a(t)

]4 (BE),

(FD),
(73)

n =


1
π2 ς (3) gT

3
D

[
aD
a(t)

]3
3

4π2 ς (3) gT
3
D

[
aD
a(t)

]3 (BE),

(FD),
(74)

p =
ρ

3
. (75)

If a species decouples when it is already in the nonrela-
tivistic regime, that is, when TD ≪ m, the distribution
function is

fD (−→p ) = fequil

(
a (t)

aD

−→p , TD

)
≃

exp

(
− m

TD

)
exp

[
− p2

2m

1

TD

(
a

aD

)2
]
, (76)

where the Maxwell-Boltzmann distribution function has
been used, as it corresponds to a non-relativistic gas. In
this case E ≃ m+ p2/2m, so the dependence of the dis-
tribution function on the kinetic energy corresponds to
a function in equilibrium with an e�ective temperature
T (t) = [aD/a (t)]2 TD. We see that it decreases faster
than in the relativistic case, being T ∝ a−2.

From of equations (50), (51) and (52) we can �nd the
energy, particle and pressure densities:

n = g

√(
mTD

2π

)3 (aD

a

)3
exp

[
− m

TD

]
, (77)

ρ = g

√(
mTD

2π

)3 (aD

a

)3
m exp

[
− m

TD

]
, (78)

p = g

√(
mTD

2π

)3 (aD

a

)5
TD exp

[
− m

TD

]
≪ ρ. (79)

As expected, according to equation (77), we �nd n ∝
a−3, just as in the relativistic case.

2.3 Boltzmann equation

The Boltzmann equation is the partial di�erential equa-
tion that governs the evolution of a given distribution
function of a species A in phase space. This equation, in
its non-relativistic version, is written as follows [58] [59]

D̂NRf =

(
∂

∂t
+−→v · ∇+

−→
F · ∇−→p

)
f
(−→x ,−→p , t

)
= ĈNR [f ] .

(80)
The relativistic generalization [59�64] of equation

(80) is expressed by
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D̂f = pρ
∂f

∂xρ
− Γλ

µνp
µpν

∂f

∂pλ
= Ĉ [f ] , (81)

where Ĉ [f ] is the collision term. For the Friedmann
case, where the distribution function depends on energy
and time, f = f (E, t), the Boltzmann equation; that is,
equation (81), takes the form:

E
∂f

∂t
− 1

a (t)

da (t)

dt
|−→p |2 ∂f

∂E
= Ĉ [f ] . (82)

Integrating this equation over −→p A, and recalling from

equation (40) that

nA =
gA

(2π)3

∫
f (E, t) d3pA, (83)

we obtain

dnA

dt
+ 3

1

a (t)

da (t)

dt
nA =

gA

(2π)3

∫
Ĉ [f ]

d3pA
EA

. (84)

The collision term for an arbitrary process P: A+a+b+
... −→ i+ j + ... will be given by

g

(2π)3

∫
Ĉ [f ]

d3pA
EA

= −
∫

dΠAdΠadΠb...dΠidΠj ... (2π)
4 δ4 (pA + pa + p...− pi − ...)

×
[
|M|2P fAfafb... (1± fi) (1± fj) ...− |M|2Q fifj ... (1± fA) (1± fa) ...

]
, (85)

where P and Q represent the processes A+ a+ b+ ... −→ i+ j+ ... and i+ j+ ... −→ A+ a+ b+ ..., also the di�erent
f correspond to the di�erent functions of distribution in the phase space of the di�erent species. The factors (1± f)
are the factors of ampli�cation (+, for bosons) or inhibition (−, for fermions). On the other hand, we have de�ned

dΠ ≡ gd3p

(2π)3 2E
. (86)

Using the invariance T , we can be stated that

|M|2A+a+b+...−→i+j+... = |M|2i+j+...−→A+a+b+... , (87)

which we will simply denote as |M|2 . Finally, if we consider that we normally do not have Bose-Einstein degenerate or
condensed fermions, we can approximate the Bose-Einstein and Fermi-Dirac statistics to the Maxwell-Boltzmann one,
without having to introduce relevant modi�cations. This is because, where T ≳ µi, the three distribution functions
are very similar around the maximum. Also, if they are much less than 1, then 1± f ≃ 1. Taking into account these
considerations, and equation (87), we obtain a simpler di�erential equation

dnA

dt
+ 3HnA = −

∫
dΠAdΠadΠb...dΠidΠj ... (2π)

4 δ4 (pA + pa + ...− pi − ...) |M|2 [fAfafb...− fifj ...] , (88)

which will be applied below in two types of two-body reactions, which are generally the most relevant.

2.3.1 Processes AA ↔ XX

Consider an annihilation process AA ↔ XX, where X represents any of the particles into which A can annihilate. We
will assume that X and X have thermal distributions and zero chemical potential, in order to apply equation (88).

So, the collision term of the integrand is fAfA−fXfX = fAfA− exp
(
−EX+E

X
T

)
. On the other hand, conservation of

energy implies that Ex+Ex = EA+EA, so the collision term takes the form, fAfA−fXfX = fAfA−exp
(
−EA+E

A
T

)
,

that is, fAfA−fXfX = fAfA−fequilibrio
A fequilibrio

A
. If there is no asymmetry between A and A, by virtue of equation

(83), we can transform equation (88) into the di�erential equation

dnA

dt
+ 3HnA = −⟨σAA→XX |v|⟩

[
n2 −

(
nequil
A

)2]
, (89)

where (
nequil
A

)2
⟨σAA→XX |v|⟩ = −

∫
dΠAdΠAdΠXdΠX (2π)4 δ4 (pA + pA − pX − pX) |M|2
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× exp

(
−EA + EA

T

)
.

The second term of the di�erential equation (89), due to the expansion, can be eliminated by working with the ratio
between the particle density and the entropy density. This quantity is denoted by Y and was de�ned in equation (70).
However, we know that s ∝ a−3 along the expansion, d

dt
s = −3Hs, so we have

dY

dt
=

1

s

(
dn

dt
+ 3Hn

)
.

On the other hand, we would be interested in working with temperature, rather than with time. To do this, we
introduce the independent variable x ≡ m/T , using the relationship 1

T
dT
dt

= − 1
a

da
dt

= −H we arrive at the expression

dY

dt
= Hx

dY

dx
. (90)

Finally, if we consider the possibility that there are other annihilation channels for A, we will simply have to add
the di�erent distributions σj . Then, with the help of equation (90), the Boltzmann equation (89) takes the form

dY

dx
= −⟨σ |v|⟩ s

xH (x)

(
Y 2 − Y 2

equil

)
= −x ⟨σ |v|⟩ s

H (m)

(
Y 2 − Y 2

equil

)
. (91)

In the second equality of expression (91), (55) has been used to establish the change of variable x = m/T

H ≃ 1.66
√
g∗

(
T 2

MP

)
= 1.66

√
g∗

(
m2

MP

)
x−2 ≡ H (m)x−2. (92)

By working a bit on equation (91) it is possible to make analytically visible the approximate decoupling criterion,
Γ
H

∼ 1, exposed above. If we de�ne

Γ = nequil ⟨σ |v|⟩ , (93)

then, we can write equation (91) in the form

x

Yequil

dY

dx
= − Γ

H

[(
Y

Yequil

)2

− 1

]
, (94)

which tells us that the change of particles A per volume comovil is controlled by the factor Γ/H, which gives an idea
of the e�ectiveness of the annihilations and the deviation of Y from equilibrium.

From equation (94) we can deduce a qualitative behavior of the rate of interaction and the rate of expansion of the
Universe. For high temperatures, the value of x approaches zero. Under these conditions, Γ ≫ H is usually the case,
so for equation (94) to hold and the second member term to be very small, the approximation Y ≃ Yequil must hold.
For very large values of x; that is, for very small values of temperature, when Γ ≪ H holds, the term on the �rst
member of Boltzmann's equation (94) must be very small, so that, in such a case, Y ∼ Cte. Thus, since Γ ∝ Yequil

and, therefore, decreases as T decreases, whatever the regime, there must be a more or less localized interval, centered
on xD, from which annihilations are ine�cient.

2.3.2 Processes A+ 1 ↔ 2 + 3

Let us now consider a process other than pair annihilation, such as the type A + 1 ↔ 2 + 3, where species 1, 2 and
3 represent any of the plasma particles that interact with A. The procedure for �nding the equation Boltzmann,
which gives us the particle density A, is analogous to the one followed in the previous subsection, so we will not
repeat it. Which implies that we will �nd a di�erential equation di�erent from equation (94). As in the previous
section, species 1, 2, and 3 will be assumed to be in thermal equilibrium and to have zero chemical potential. So,
the collision term of the integrand is fAf1 − f2f3 = fA exp

(
−E1

T

)
− exp

(
−E2+E3

T

)
. As in the previous case, we

assume that the particles are non-relativistic, therefore they obey the Maxwell-Boltzmann distribution function. On
the other hand, conservation of energy implies that EA + E1 = E2 + E3, so the term of the collisions is of the form,

fAf1 − f2f3 =
[
fA − exp

(
EA
T

)]
exp

(
−E1

T

)
, that is, fAf1 − f2f3 =

[
fA − fequil

A

]
exp

(
−E1

T

)
. This leads us to write

equation (88) in the form
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dnA

dt
+ 3HnA = −⟨σA+1→2+3 |v|⟩nequil

A

[
n− nequil

A

]
, (95)

where

(
nequil
A

)2
⟨σA+1→2+3 |v|⟩ = −

∫
dΠAdΠ1dΠ2dΠ3 (2π)

4 δ4 (pA + p1 − p2 − p3) |M|2 exp
(
−EA + E1

T

)
.

Analogously to the development of the previous section, we use the de�nitions (70), (92), (93) and the equation
x ≡ m/T to arrive at the di�erential equation

x

Yequil

dY

dx
= − Γ

H

[
Y

Yequil
− 1

]
. (96)

We have obtained an equation slightly di�erent from equation (94), but with a completely equivalent behavior
related to the number of particles of species A.

2.4 Relic Particle Density

One of the most important features of relic particles is
that they may be an important component of the dark
matter present in the Universe. As we know, dark mat-
ter contributes 23% to the total energy density of the
Universe. Therefore, to know if dark matter is composed
of one relic species or another, one must know how to
calculate the contribution to the energy density of the
Universe corresponding to a relic particle species. To
calculate the current density of relic particles, it is done
through the equation

nA0 = Y∞s0, (97)

where

s0 =
2π2

45
g∗S0T

3
0 , (98)

with T0 ≃ 2.75ºK and g∗S0 ≃ 3.91.

Calculation of Y∞

The value of Y∞ is obtained by solving the di�erential
equation (94), or (96), and looking for Y (x → ∞). To
solve these di�erential equations, we must �rst �nd the
behavior of Γ with temperature. Once known, it is not
always possible to �nd analytical solutions to equations
(94) and (95) and approximate methods must be used.
To �nd the value of Y∞, it is necessary to know the func-
tion Yequil (x), which will depend on whether the regime
is relativistic, x ≪ 1, or non-relativistic, x ≫ 1. By
virtue of equations (48), (50), and (68) and considering
the limit µ ≪ T , we have

Yequil =

{
45ζ(3)

2π2 (g/g∗S) ≃ 0.28 g
g∗S

45ζ(3)

2π4
3
4
(g/g∗S) ≃ 0.21 g

g∗S

(BE),

(FD),

(99)
for relativistic particles, and

Yequil =
45

2π4

√
π

8

g

g∗S

(m
T

)3/2
exp

(
−m

T

)
≃

0.15

(
g

g∗S

)
x3/2e−x, (100)

for non-relativists.
As can be seen, according to equation (99), when the

particles are relativistic, the value of Yequil remains con-
stant. For this reason, when decoupling occurs in the rel-
ativistic regime, the value of Y∞ does not depend on its
details. The only dependence on the moment in which
it occurs is found in the value of g∗S . On the other
hand, when the decoupling occurs in the non-relativistic
regime, the dependence of xD is much greater.

The di�erence between the value of Yequil (xD) and
the value of Y∞ found by solving the di�erential equa-
tion is quite small. As we have just seen, this di�erence
is completely negligible when the decoupling occurs in
the case that the particle is relativistic. This qualitative
reasoning has been adopted in the calculations, since we
have always been interested in the case of decoupling of
relativistic particles. However, for the case of particles
that decoupled being non-relativistic, if you want to ob-
tain more precise values of Y∞ than those obtained with
Yequil (xD), the procedure to follow to �nd them is stan-
dard [65].

As already mentioned, one of the reasons why it is im-
portant to know how to calculate the current density of
relic particles is to elucidate whether any of these species
could be dark matter. For this reason, we are interested
in knowing what fraction of the energy density of the
Universe would correspond to relic particles. Particles
that can be dark matter are non-relativistic, at present,
so their current energy density is

ρA0 = nA0mA, (101)
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where nA0 is found from equation (97). The contribution
to the density of the Universe corresponding to the relic
particle A, will be

ΩA =
ρA0

ρc
=

nA0mA

ρc
, (102)

where ρc is the value of the critical density of the Uni-
verse at present, estimated in equation (28).

The contribution of dark matter to the density of the
Universe is bounded by ΩDM ≲ 0.23. This limit obvi-
ously also has to be respected by the above equation for
ΩA, so we impose restrictions on the characteristics of
the relic particles.

2.5 Nucleosintesis primordial

The �rst ideas about the BBN appeared in the 1950s,
George Gamow [66�69] and his collaborators Alpher and
Herman [70] developed great advances in the Big Bang
theory, for example, the prediction of the cosmic mi-
crowave background.

It could be thought that this �eld is scienti�cally com-
plete, which is not entirely true if you look at the number
of publications that appear regularly on the subject. On
the other hand, over the years, observational data on pri-
mordial abundances have improved signi�cantly. Keep in
mind that determining, through observations, the essen-
tial elements is not an easy task. Not only do we have
to measure concentrations of elements in di�erent stellar
environments, but we also have to know what the evolu-
tion of these elements has been since they were created,
to know if the concentrations we currently observe are
higher or lower than the primordial ones.

Thus, the BBN, the Hubble expansion and the cosmic
microwave background (CMB) are the pillars on which
the Big Bang theory is based. Of the three, the BBN
gives evidence of the Universe in its most remote times,
so we can say that the BBN period is the oldest labo-
ratory we have. It is a tool that allows us to test and
constrain a large number of parameters, and any new
theory that emerges has to pass the BBN test. This is
another reason why the BBN is a model that will always
be important, since any extension of the cosmological
standard model has to be consistent with the predictions
of the BBN.

2.6 Formation of light nuclei

In previous paragraphs it was mentioned that the pe-
riod in which the BBN takes place is between 10−2 y 100
seconds. This is equivalent to a temperature range of
10 MeV ≲ T ≲ 0.1 MeV, the energy range characteristic
of nuclear reactions.

In the initial conditions of the BBN period, the par-
ticles present in the Universe are photons (γ), neutrinos

(ν) and antineutrinos (ν) of the three lepton families,
electrons

(
e−
)
, neutrons (n), and protons (p). The re-

actions between these particles are mediated by weak
interactions

n −→ p+ e− + ν,
ν + n −→ p+ e−,
e+ + n −→ p+ ν.

(103)

Under these conditions the rate of interaction of the
reactions is much lower than the rate of expansion of the
Universe. As stated at the beginning of this chapter, if
Γw ≫ H, all the particles involved in the weak inter-
actions are in thermal and chemical equilibrium, so the
number densities follow the distributions (47-52) . In
our time the neutrons and protons are non-relativistic,
the ratio of their densities when they are in equilibrium
is: (

n

p

)
equil

= exp
[
−mn −mp

T

]
, (104)

where it has been taken into account that mn
mp

≃ 1 and
µn = µp. The last assumption follows from chemical
equilibrium and taking the lepton chemical potentials to
be negligible. If the case of non-zero neutrino lepton
chemical potential is considered, then we have a phe-
nomenon called degenerate BBN.

If the rate of interaction, Γw, becomes less than the
rate of expansion of the Universe, H, thermal equilib-
rium is lost. To know when this deviation from equi-
librium occurs, it is necessary to know the evolution
equation of the rate of interaction with temperature.
For electroweak reactions, we have Γw ∝ G2

F , where
GF = 1.2 × 10−6GeV −2 is the Fermi constant. If we
are in a temperature regime in which T > me, then
Γw ∼ G2

FT
5, taking into account that the rate of in-

teraction has dimensions of energy.
By virtue of equation (55), we have thatH ∼ T 2/MP ,

we can estimate the Fermi temperature, at which neu-
trons and protons decouple from the thermal plasma.
This happens when Γw ≃ H, whence G2

FT
5 = T 2/MP ,

and consequently

TF ≃ 1
3
√

G2
FMP

≃ 0.8 MeV. (105)

Below the Fermi temperature, electroweak two-body
reactions become ine�ective, and if neutron decay did not
exist, the ratio of neutrons to protons would be constant,
taking the value(

n

p

)
F

= exp

[
−mn −mp

TF

]
≃ 1

6
. (106)

The �rst nuclear reaction necessary for nuclei to be-
gin to form is the union of a proton with a neutron to
form a deuteron, i. e., p + n −→ D + BD, where BD

represents a photon with an energy corresponding to the
binding energy of Deuteron, BD = 2.2 MeV. Once the
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Deuterium reaction is e�ective to the right, it opens a se-
ries of nuclear channels, initiated with Deuterium. These
channels are:

D + n −→3 H +B3H con B3H = 6.9 MeV,
D + p −→3 He+B3He con B3He = 7.7 MeV,
D +D −→4 He+B4He con B4He = 28.3 MeV,

(107)
the third of these is the most e�ective, since 4He is the
most strongly bound nucleus of all those formed. Note
that all these nuclear reactions occur when the tempera-
ture is less than that of deuterium, that is, T ≃ 0.1 MeV
and they take place in one direction. In nature, there are
no stable nuclei with mass numbers A = 5, 8 and this is
what explains why heavier nuclei are not formed in ap-
preciable concentrations in Primordial Nucleosynthesis.
For example, the reaction 4He +4 He −→8 Be + B8Be

is not e�ective, since 8Be is unstable and immediately
decays into 4He. The rest of the heavier nuclei will form
much later in stellar nucleosynthesis, because in stars the
densities are much higher, allowing three-body reactions
to occur.

However, not all neutrons end up forming 4He nu-
clei. There comes a time when the temperature decreases
to values where it is not possible to break the Coulomb
barriers, that is, electrostatic repulsion prevents the re-
action between deuteron and deuteron from taking place,
so the remaining neutrons form deuterium, although at
very low densities. The order of magnitude of the ratio
of deuterium nuclei to protons is D

H
∼ 10−5.

Apart from 4He and 2H, nuclei of 3He and 7Li are
also formed in the BBN, but residually. Their abun-
dances are of the order

3He
H

∼ 10−6and
7Li
H

∼ 10−10,
which are very di�cult to determine. measure, so the
information that comes from these atomic nuclei is very
poor.

Everything exposed in this section is a semi-
qualitative development of the relevant processes that
occur in promondial nucleosynthesis. Actually, to obtain
precise data, a numerical code is used that simulates a
network of 88 nuclear reactions between 26 atomic nu-
clei, in an expanding box [71]. The primordial abun-
dances predicted by the BBN depend on many param-
eters. Any parameter that a�ects the expansion of the
Universe, the rate of nuclear reactions, the weak inter-
actions, the binding energies, the rate of expansion, etc.,
will be important in the �nal concentrations of the light
nuclei. Some of the parameters that introduce variations
in the predictions are the rate of expansion of the Uni-
verse, H, the weak interactions, density of Baryons, ΩB ,
and the asymmetry between neutrinos and antineutrinos.
No more are mentioned, since it is impossible to list them
all. We only mention the most relevant ones.

2.7 Primordial Abundances

The BBN predictions for 2H, 3He, 4He and 7Li cor-
respond to the concentrations present when t ∼ 200s.
However, the observed abundances correspond to much
later times, after the start of stellar nucleosynthesis.
For this reason, the greatest di�culty in experimentally
determining the primordial abundances lies in the fact
that the di�erent synthesized elements have undergone
a large number of chemical processes, with which the
abundances observed in recent years di�er signi�cantly
from the primordial concentrations. Nuclei of 2H, 3He,
4He and 7Li are very brittle and burn up rapidly in-
side stars, at a relatively low temperature, around 106K.
Generally, the gas inside a star usually exceeds the crit-
ical temperature. However, although stellar processes
can alter the abundances of light nuclei from their pri-
mordial values, they also produce other heavy elements,
such as C, N, O and Fe, that is, metals. These met-
als are the traces of stellar activity, so if astrophysical
regions with low abundances of metals are sought, the
abundances of light elements measured there will initially
approach their primordial values. These regions are usu-
ally stellar environments as far away as possible (high
gravitational redshift), which is equivalent to measuring
in remote times when there had not been much stellar
activity yet. However, even if the metallicity is low, it
is not easy to show that the measured abundances are
really the primordials.

Helium is observed in hot, ionized gas, T ≫ 104K,
found near young, luminous stars. The zones where this
gas is found are called H II and are formed mainly by
hydrogen and helium, with an O abundance of 0.02 to
0.2 times greater than of the Sun.

Instead, the evolution of Helium after BBN is sim-
pler. Deuterium is destroyed in stars, producing 3He.
Because it is a very loosely bound nucleus, there is no as-
trophysical process that can produce signi�cant amounts
of Deuterium. For this reason, any measure of deuterium
provides a lower bound on its primordial abundance. In
recent decades, thanks to high-resolution spectra, it has
been seen that in quasar systems with high redshift and
low metallicity, there is a signi�cant presence of deu-
terium. It is believed that these systems are not con-
taminated by stellar processes, so the abundance of deu-
terium that is observed must be very close to the primor-
dial one. These deuterium measurements are the �rst of
light elements at cosmological distances and exhibit a
large number of systematic errors.

7Li measurements are very problematic. The most
suitable systems for the observation of 7Li are the atmo-
spheres of stars of poor metallicity located in the halo of
our galaxy. However, di�erent factors make it di�cult
to obtain primordial abundance. On the one hand, the
detection of 6Li in these stars suggests that 6Li and 7Li
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were created prior to their formation. On the other hand,
a small but signi�cant correlation is observed between Li
and Fe. All this indicates that the 7Li observed in these
stars is not the primordial one. However, the primor-
dial abundance of 3He is the most di�cult to estimate,
since this nucleus is created and destroyed in stellar en-
vironments. In addition, the only available observations
correspond to the solar system and to H II regions of our
galaxy, with high metallicity [72]. This makes estimation
of primordial abundance very di�cult. This problem is
compounded because stellar nucleosynthesis models con-
�ict with 3 He observations [73]. For these reasons 3 He
and 7Li cannot be used as cosmological indicators.

3 Concluding remarks

One of the cosmological parameters that we have men-
tioned is the dark matter density parameter. In as-
trophysics and cosmology, dark matter is called non-
interacting matter with a composition that does not emit
or re�ect electromagnetic radiation to be observed di-
rectly with current technical means, but whose existence
can be inferred from the gravitational e�ects it causes
on visible matter ( Visible matter is that which emits or
re�ects electromagnetic radiation). Despite the similar
name, dark matter and dark energy are thought to be
di�erent phenomena, it is not known whether they are
related or not. Dark matter is a form of matter that
does not emit and absorb light, i. e., the only interaction
to which it reacts is gravitation. Instead, dark energy
is a new ingredient to explain the Universe, because the
known forms of matter and dark matter explain only
30% of the Universe. The rest, that is, 70%, would be
explained by dark energy, which is distinguished from
dark matter by the fact that it is gravitationally repul-
sive, leading the Universe to accelerated expansion.

One of the most notable consequences of the gradual
decrease in the temperature of the Universe is the evo-
lution su�ered by the distributions of particle species.
Therefore, it is necessary to determine the distribution
functions fi of each species as a function of |−→p | and t.
The spatial dependence disappears due to the homogene-
ity of the Universe. As a �rst approximation, a qualita-

tive approach is used. This criterion can be veri�ed nu-
merically with the general formalism that was presented
in the Boltzmann equation. The criterion consists in
comparing the rate of expansion of the Universe, H (t),
with the total rate of interaction Γi (t), which takes into
account all the interactions of the species i-th with any
other particle. This comparison allows for two regimens:

1. When Γi (t) ≫ H (t), the interactions allow to
maintain the thermodynamic equilibrium between
the interacting species at a certain temperature T ,
therefore, we have a plasma. Furthermore, all rel-
evant interactions are short-range.

2. From Γi (t) ≲ H (t), keeping Γ (t)j ̸=i ≫ H (t) for
all other species, the rate of reactions that keep par-
ticle i in equilibrium is not fast enough to overcome
the expansion of the Universe, and so the particle
of species i decouples from the plasma. The other
species remain in thermal equilibrium, with distri-
bution functions (1.43).

The BBN, the Hubble expansion and the cosmic mi-
crowave background (CMB) are the pillars on which the
Big Bang theory is based. Of the three, the BBN gives
evidence of the Universe in its most remote times, so we
can say that the BBN period is the oldest laboratory we
have. It is a tool that allows us to test and constrain
a large number of parameters, and any new theory that
emerges has to pass the BBN test. This is another reason
why the BBN is a model that will always be important,
since any extension of the cosmological standard model
has to be consistent with the predictions of the BBN.

So far, it has been described that the cosmological
standard model is based on the general theory of rela-
tivity and the standard model of elementary particles.
However, it is known that one theory like the other has
its limitations. Consequently, currently, there are some
open problems that do not �nd a solution within the
framework of the cosmological standard model. Some of
these open problems are, for example, explaining the na-
ture of dark matter, the cosmological constant, explain-
ing why the total energy density is so close to critical,
etc.
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