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Abstract
Observations on the anisotropies of the Cosmic Microwave Background (CMB) have become a funda-
mental tool in Cosmology. We present a brief description of the formalism necessary to understand the
evolution of the anisotropies, and how their power spectrum gives us information about the evolution
and composition of the universe.
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La ecuación de Boltzmann y el fondo cósmico de microondas
Resumen
Las observaciones de las anisotropías de la Radiación del Fondo Cósmico se han convertido en una
herramienta fundamental en cosmología. Aquí presentamos brevemente el formalismo necesario para
entender la evolucion de las anisotropías, y como su espectro de potencias nos permite conocer la
evolucion y composición del universo.
Palabras clave: Cosmología, radiacion del fondo cósmico, ecuación de Boltzmann..

1 Introduction

A brief treatment of anisotropies in the Cosmic Mi-
crowave Background (CMB) is presented in this arti-
cle [1–5]. They can be completely described by the distri-
bution function in the phase space of the photons. Ignor-
ing the polarization of the cosmic microwave background
(an effect of less than 5%), all the information is included
in the distribution function f (xµ, pµ).

The conjugate momentum is related to the proper
momentum measured by a comoving observer, pµ/a, such
that p = cte along the photon paths, in the absence of
metric perturbations.

2 Boltzmann equation for the Cosmic
Microwave Background

Despite the metric perturbations and scattering pro-
duced by free electrons, the phase space distribution
function of the CMB photons remains blackbody to high
precision:

f (xµ, pµ) = fPlanck

(
E

kT

)
= fPlanck

(
p

kT0 (1 + δT )

)
,

(1)
where T0 = 2.728 K is the current temperature of the
CMB and δT (xµ, n̂) is the temperature variation at the
xµ position of the photons traveling in the direction n̂.

The density in phase space can be calculated from
the initial conditions in the early Universe through the
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Boltzmann equation [6–8]

D̂ [f ] =
∂f

∂xµ

∂xµ

∂t
+

∂f

∂pµ
∂pµ

∂t
= Ĉ [f ] , (2)

where D̂ [f ] is the Liouville operator and Ĉ [f ] is the colli-
sional term containing the effects of non-relativistic elas-
tic scattering between photons and electrons . Under the
sole action of gravity, the collisional term vanishes, that
is, the density of photons in phase space is conserved.

Since the photons obey the geodesic equation, it fol-
lows that

dpλ

dλ
+ Γλ

µνp
µpν = 0. (3)

In this case, the affine parameter λ can be chosen so that
p0 = dx0

dλ
, so the moment will be given by pi/p0 = dxi

dt
,

and the geodesic equation can be expressed as

dpi

dt
= giν

(
1

2

∂gαβ

∂xν
− ∂gνα

∂xβ

)
pαpβ

p0
. (4)

To solve this equation we must know the perturba-
tions that affect the metric. We will introduce scalar
perturbations into the metric and use Newton’s confor-
mal norm, where the metric takes the form

g00 = −
[
1 + 2Ψ

(
xi, t

)]
, (5)

gij = a2
[
1 + 2Φ

(
xi, t

)]
γij , (6)

where γij is the spatial part to perturb the FLRW met-
ric, Ψ can be interpreted as the Newtonian potential. Φ
is the fractional perturbation in spatial curvature. If p
can be neglected, it holds that

Φ = −Ψ. (7)

3 Gravitational redshift and time dila-
tion

For the moment we will analyze the a-collision Boltzman
equation, that is, considering Ĉ [f ] = 0. It is possible
to rewrite this equation in terms of the energy p and
the direction of propagation of the photons ςi in a refer-
ence system that is locally orthogonal on the surfaces of
t = cte. This will be just

∂f

∂t
+

∂f

∂xi

dxi

dt
+

∂f

∂p

dp

dt
+

∂f

∂ςi
dςi

dt
= 0. (8)

It should be noted that dςi/dt ̸= 0 only in the pres-
ence of curvature K or perturbations, since otherwise the
geodesic equations are straight lines. Therefore, since
the factor ∂f/∂ςi is already first order in the fluctua-
tions, this term can be neglected if the global curvature
is K = 0, which we assume from now on. The redshift

term, dp/dt, is always important. We will now develop
an expression for this factor. The energy and direction
of propagation of photons can be expressed explicitly by

p2 = pipi, (9)

ςi = a
pi

p
(1 + Φ) , (10)

it follows that
p0 = (1 + Ψ) p. (11)

By virtue of equations (9), (10), (11) and the com-
ponents of the metric given by (6) and (7), the geodesic
equation takes the form, to the first order in the fluctu-
ations

1

p

dp0

dt
= −

[
∂Ψ

∂t
+

1

a

da

dt
(1−Ψ) +

∂Φ

∂t
+

2ςi

a

∂Ψ

∂xi

]
.

(12)
From this relation we obtain an expression for the red-
shift of the photons

1

p

dp

dt
= −

[
1

a

da

dt
+

∂Φ

∂t
+

ςi

a

∂Ψ

∂xi

]
(13)

or

1

p

dp

dt
=

1

p

dp0

dt
(1 + Ψ) +

∂Ψ

∂t
+

∂Ψ

∂xi

dxi

dt
. (14)

The physical interpretation of this equation is as follows.
The change in p will be given by

1

p

dp

dt
=

1

p

∂p

∂t
+

1

p

∂p

∂xi

dxi

dt
. (15)

Secondly

1

p

∂p

∂t
= −1

a

da

dt
− ∂Φ

∂t
, (16)

the first term of this equation corresponds to the cosmo-
logical redshift. But the presence of a spatial curvature
perturbation also stretches space. The actual redshift
factor corresponds to the coefficient of the spatial part
of the metric, that is, a (1 + Φ). Thus, the second term
is due to the redshift caused by perturbations in the cur-
vature.

As for the last term of equation (15), it can be asso-
ciated with

1

p

∂p

∂xi

dxi

dt
=

ςi

a

∂Ψ

∂xi
, (17)

which corresponds to the gravitational shift of the pho-
tons falling and rising from the potential wells. The red-
shift depends on the gradient of the potential along the
direction of propagation.
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4 A-collisional brightness equation

Let us define the brightness function, Θ, by

4Θ =
1

π2ργ

∫
dpp3f − 1 =

δργ
ργ

, (18)

wheree ργ is the photon energy density averaged over
space and directions. So ργ ∝ T 4, δργ ∝ 4T 3δT , there-
fore

Θ
(
t,−→x , ς

)
=

δT

T
(19)

is the fractional change in blackbody temperature.
If equation (13) is used in the acollision Boltzmann

expression (8) and multiplied by p3/π2ργ , integration
over p gives the equation of acollisional brightness

∂Θ

∂η
+ ςi

∂

∂xi
(Θ + Ψ) +

∂ςi

∂η

∂Θ

∂ςi
+

∂Φ

∂η
= 0. (20)

Since the potential Ψ
(
η,−→x

)
is not an explicit func-

tion of the angle ς and ẋi = ςi, this equation can be
written as

d

dη

[
Θ
(
η,−→x , ς

)
+Ψ

(
η,−→x , ς

)]
=

∂Ψ

∂η
− ∂Φ

∂η
, (21)

which shows that in a static potential, the quantity in
brackets is conserved. In this way, the fluctuations in
temperature are given simply by the differences in the
potential

Θ
(
η0,

−→x 0, ς0
)
= Θ

(
η1,

−→x 1, ς1
)
+
[
Ψ
(
η1,

−→x 1

)
−Ψ

(
η0,

−→x 0

)]
.

(22)

5 The collision term

The collision term Ĉ [f ] must be considered, which will
be given by the Compton scattering of photons by free
electrons. This mechanism is primarily responsible for
the thermalization of the cosmic microwave background
(CMB) and governs the mutual evolution of these fluids
up to the moment of decoupling.

We will not derive the expression for the collision in-
tegral here, we will only see the result and analyze its
implications. In its derivation, the following hypotheses
are assumed:

• We apply the limit of the Thomson scattering
δp/p ≪ 1 in the radiation rest system.

• The radiation is not polarized and stays that way.

• The density of e− is low enough that the Pauli sup-
pression terms are ignored.

• The electron velocity distribution is thermal
around a given ensemble velocity −→vb determined by
the baryons.

These approximations are generally valid in cosmol-
ogy. As the anisotropies are small, the fluctuations in-
duced in the polarization are of the order of 10% with re-
spect to the temperature fluctuations. The polarization
produces an effect of 5% in δT/T so it can be neglected
in a first approximation.

With these hypotheses, the equation of collisional
brightness given by

∂Θ

∂η
+ ςi

∂

∂xi
(Θ + Ψ) +

∂ςi

∂η

∂Θ

∂ςi
+

∂Φ

∂η
=

∂τ

∂η

(
Θ0 −Θ− ςiv

i
b +

1

16
ςiςjΠ

ij
ς

)
(23)

where

Πij
ς =

4

π2ργ

∫
dpp3f ij (η,−→x , ς

)
,

with f ij = 1
4π

∫
dΩ

(
3ςiςj − δij

)
f
(
η,−→x , η

)
. Or, we also

write

Πij =
1

4π

∫
dΩ

(
3ςiςj − δij

)
4Θ

(
η,−→x , ς

)
, (24)

where are the quadrupole moments of the energy dis-
tribution, and τ is the optical depth of the Thompson
scattering defined by the scattering rate

∂τ

∂η
= aχeneσT , (25)

where

σT =
8πα2

3m2
e

(26)

is the effective section of Thompson.
In this way, we can summarize the main effects that

tend to produce anisotropies in the CMB, which are:

1. Pure gravitational effects due to changes in Ψ and
Φ, which are present in th acollision Boltzmann’s
equation.

2. Thompson scattering induces a Doppler effect in
the overall system, represented by the −→v b depen-
dent term in equation (24).

3. Thompson scattering isotropes the rest-system dis-
tribution of electrons, which induces anisotropies
in the radiation system, which are given by the Πij

ς

dependent term in equation ( 24).
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6 The angular power spectrum

A map of the fluctuations in the temperature of the CMB
allows numerous statistical analyses, the most important
of which is the angular power spectrum. If the fluctua-
tions in temperature are Gaussian with random phases,
the angular power spectrum gives a complete description
of the statistical properties of the CMB. Observations so
far have clearly shown that fluctuations in the CMB do
not strongly deviate from these assumptions. Thus, the
observed power spectrum provides the primary point of
contact between the observations and the cosmological
parameters.

A map of the fluctuations in temperature ∆T (n̂) /T ,
where n̂ is a unit vector, defined over the entire sky can
be decomposed into spherical harmonics of the form

∆T

T
(n̂) =

∞∑
l=0

l∑
m=−l

almYlm (n̂) (27)

with

alm =

∫
dΩ

∆T

T
(n̂)Y ∗

lm (n̂) . (28)

If the anisotropies in the CMB are Gaussian and with
random phases, then the alm have a Gaussian distribu-
tion with ⟨alm⟩ = 0 and

⟨alma∗
l′m′⟩ = δll′δmm′Cl, (29)

where δ is the Kronecker delta function and Cl is the
power spectrum. Cl is the mean variance times l that
would be found over a hypothetical ensemble of observers
distributed in the Universe. The actual power spectrum
calculated based on our sky, for a typical observer as-
sumption is

Csky
l =

1

2l + 1

m=l∑
m=−l

|alm|2 . (30)

If we have CMB data without noise, and over the
entire sky, then equation (28) can be evaluated exactly
and (30) is an unbiased estimator of the true power spec-
trum, in the sense that

〈
Csky

l

〉
= Cl, when we average

over the ensemble. Since we only measure 2l + 1 modes
for each l, the estimator (30) has an intrinsic uncertainty
(or cosmic variance) given by

σl =

√
2

2l + 1
Cl. (31)

The real data, on the other hand, have noise and
other sources of error, in addition, the data close to the
galactic plane must be excluded from the analysis, so a
complete sky map is not available. For these reasons,
another method must be found to determine the power
spectrum.

‌

Figure 1: Compilation of power spectrum measurements of
the CMB temperature made by various experiments [9–21].

7 Conclusions

In the analysis shown in this article, it can be seen that
the study of anisotropies has a very important role in
modern cosmology [22–28] because they provide infor-
mation about the universe from the moment baryonic
matter and radiation decouple until our days. In addi-
tion, with the help of the observations and the numeri-
cal codes, it is possible to infer about the characteristics
that different cosmological models would have at differ-
ent times when interpreting the generated spectra of the
CMB.

References

[1] A. A. Penzias y R. W. Wilson, A measurement of
excess Antenna temperature at 4080 Mc/s, Astro-
physical Journal, 142, 419 (1965).

[2] W. Hu, Wandering in the Background: A Cosmic
Microwave Background Explorer, Tesis de Doctor-

ado en Física, Universidad de California, Berkeley,
California, USA, (1995).

[3] A. H. Forushani, Cosmology through CMB, Ph. D.
thesis, Inter-University Centre for Astronomy and
Astrophysics, Pune, India, (2006).

[4] M.J. Reyes-Ibarra and L.A. Ureña-López, La ra-



62 Rev. Inv. Fis. 26(2), (2023)

diación del fondo cósmico, Revista Mexicana de
Física S, 53(4) 133–136 (2007).

[5] W. Hu, N. Sugiyama, and J. Silk, The physics of mi-
crowave background anisotropies, Nature 386, 6620,
37–43 (1997).

[6] L. Boltzmann, Weitere studien über das Wärmegle-
ichgewicht unter Gasmolekülen, Sitzungsberichte
der Kaiserlichen Akademie der Wissenschaften in
Wien, mathematisch-naturwissenschaftliche Classe,
66, 275–370 (1872).

[7] L. Boltzmann, Über die Beziehung zwischen dem
zweiten Hauptsatz der mechanischen Wärmetheorie
und der Wahrscheinlichkeitsrechnung respek-
tive den Sätzen über das Wärmegleichgewicht,
Sitzungsberichte der Kaiserlichen Akademie
der Wissenschaften in Wien, Mathematisch-
Naturwissenschaftliche Classe, Abt. II, 76 (1877)
373–435. Reprinted in Wissenschaftliche Abhand-
lungen, Vol. II, pp. 164–223, Leipzig: Barth,
(1909).

[8] M. Valenzuela, Production of relic particles, Revista
de Investigación de Física, 25(3) (2022) 1-20. Doi:
https://doi.org/10.15381/rif.v25i3.22291.

[9] D. J. Fixsen, The Temperature of the Cosmic Mi-
crowave Background, The Astrophysical Journal,
707 (2), 916-920 (2009).

[10] M. White, Anisotropies in the CMB, Proceedings of
the Los Angeles Meeting, DPF 99 (2019).

[11] G. F. Smoot, Cosmic Microwave Background Radi-
ation Anisotropies: Their Discovery and Utilization,
Nobel Lecture, Nobel Foundation, Retrieved 2008-
12-22.

[12] G. F. Smoot, et al., Structure in the COBE differ-
ential microwave radiometer first-year maps, Astro-
physical Journal Letters, 396(1), L1–L5 (1992).

[13] C. L. Bennett, et al., Four-Year COBE DMR Cos-
mic Microwave Background Observations: Maps
and Basic Results, Astrophysical Journal Letters,
464, L1–L4 (1996).

[14] S. Hanany, et al., MAXIMA-1: A Measurement
of the Cosmic Microwave Background Anisotropy
on Angular Scales of 10’-5°, Astrophysical Journal.
545(1), L5-L9 (2000).

[15] P. de Bernardis, et al., A flat Universe from high-
resolution maps of the cosmic microwave back-
ground radiation, Nature, 404 (6781), 955–959
(2000).

[16] L. Verde, et al., (WMAP Collaboration), First-Year
Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Determination of Cosmological Pa-
rameters, Astrophysical Journal Supplement Series,
148(1), 175-194 (2003).

[17] G. Hinshaw, et al., (WMAP collaboration),
Three-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: temperature analysis, As-
trophysical Journal Supplement Series, 170(2), 288-
334 (2007).

[18] P. A. R. Ade, (BICEP2 Collaboration), Detection
of B-Mode Polarization at Degree Angular Scales by
BICEP2, Physical Review Letters, 112 (24), 241101
(2014).

[19] J. Chluba, et al., New Horizons in Cosmology with
Spectral Distortions of the Cosmic Microwave Back-
ground, Voyage 2050 Proposals, 51 (3), 1515-1554
(2021).

[20] The Planck Collaboration, Planck 2013 results.
XXVII. Doppler boosting of the CMB: Eppur si
muove, Astronomy, A27, 571 (2014).

[21] The Planck Collaboration, Planck 2018 results. I.
Overview, and the cosmological legacy of Planck,
Astronomy and Astrophysics, A1, 641 (2020).

[22] S. Weinberg, Gravitation and Cosmology: Princi-
ples and applications of the General Theory of Rel-
ativity, Jhon Wiley & Sons, (1972).

[23] S. Weimberg, Cosmology, Oxford University Press,
(2008).

[24] M. Valenzuela, Clasificación algebraica de los mode-
los de Bianchi, Tesis de Licenciatura en Física, Uni-
versidad Autónoma de Zacatecas, México, august
2012.

[25] M. Valenzuela, Hamiltonian formalism of the
Bianchi’s models, Revista de Investigación de Física,
25(1), 26-48 (2022). Doi: https://doi.org/10.
15381/rif.v25i1.21413

[26] M. Valenzuela, Gravitation, cosmology and dark
matter, Revista de Investigación de Física, 26(1)
(2023) 35-68. Doi: https://doi.org/10.15381/
rif.v26i1.22806

[27] C. W. Misner, K. S. Thorne y J. A. Wheeler, Grav-
itation, Freeman, San Francisco, (1973).

[28] Robert J. A. Lambourne, Relativity, Gravita-
tion and Cosmology, Cambridge University Press,
(2010).

https://doi.org/10.15381/rif.v25i3.22291
https://doi.org/10.15381/rif.v25i1.21413
https://doi.org/10.15381/rif.v25i1.21413
https://doi.org/10.15381/rif.v26i1.22806
https://doi.org/10.15381/rif.v26i1.22806

	Introduction
	Boltzmann equation for the Cosmic Microwave Background
	Gravitational redshift and time dilation 
	A-collisional brightness equation
	The collision term 
	The angular power spectrum
	Conclusions

