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Abstract

In this article, we present the fundamentals of Goldstone’s theorem and the breaking of global sym-
metries. As well as one of the important aspects to take into account in the process of spontaneous
symmetry breaking are the possible topological defects generated by the breaking. For this reason,
we will expose the concept of topological defect and the calculation of the relic density of the axion,
considered as a candidate to dark matter.
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Ruptura de la simetria global y defectos topolégicos
Resumen

En este articulo, presentamos los fundamentos del teorema de Goldstone y el rompimiento de las
simetrias globales. Asi como uno de los aspectos importantes a tener en cuenta en el proceso del
rompimiento espontineo de la simetria son los posibles defectos topolégicos generados debido a esta
ruptura. Por esta razon, expondremos el concepto de defecto topolégico y el célculo de la densidad

reliquia del axién, considerado como un candidato para la materia oscura.
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1 Introduction

The dynamics of a system [1-4] involving a quantum
field, ® (z), is determined in terms of the action defined
as

S:/mLz/fL%®uLm®@»7 (1)

where £ is the Lagrangian density and I' a region of
spacetime. Thus, any transformation that satisfies the
condition

S8 =8, (2)

is a symmetry transformation. The relations between
symmetries and conservation laws is described by the
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Noether’s theorem. For each symmetry transformation
there is a current density, called the Noether current,
which is conserved if the symmetry is exact. Each cor-
responding charge, denoted by the operator @), satisfies
the equation

aQ
=0 ®3)
for exact symmetries, this leads to conservation laws for
that charge. In electrodynamics and quantum chromo-
dynamics, local gauge symmetry is respounsible for the
conservation of color and electric charges.

Symmetry transformations are described in terms of
groups. To each symmetry corresponds an abstract ele-
ment of a symmetry group ¢. This group is represented
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by a set of operators G. These are like basis change op-
erators on the Hilbert space of quantum fields

The Hilbert space is a complete, separable, infinite-
dimensional unit vector space. It is also a space consti-
tuted by square-integrable (wave) functions v (g), that
is, whose integral over its domain of definition D, fD P *
()¢ (q)dg = ||¢ ()|, exists. The vector space thus
constituted is usually denoted as £? (D) and the above
integral gives the square of the modulus of ¥ (q).

Quantum fields have bundles of energy and momen-
tum, that is, particles. The state of a free particle with
quadrimomentum p, mass m, satisfying p?> = m? > 0,
spin s, projection o into the z axis with respect to a ref-
erence frame at rest, is created by applying the operator
al (p) to the empty state o, of the system |0)

la,7) = al (¢)10),
where p° is the relativistic energy of the particle p° =

+4/ |p|2 + m?2. Thus, the states of a system of particles
are built from the vacuum state, creating a Hilbert space,
called a Fock space’. The creation operator is used to

compute the inner product

(0,7 Ip,0) = (0l ar (¢) af (1) |0) (4)
where a- (¢) is the annihilation operator that satisfies
ar (g) |0) = 0. Commutation relations are generated by
involving the creation and annihilation operators. In the
case of a real scalar field (s = 0), the commutation rela-
tions are defined as

(q), ( )] =0,
(@),a" ()] =0
[a(g),a" (p)] =296 (a—p).
Then the inner product has the form

[a
[af
i

(5)

(alp) =206 (a—p). (6)

When considering a system of particles represented

by plane waves, that is, free particles, the wave function

of each of them has the form exp (+ipx). Thus the real

scalar field for the free particle is written in terms of a
Fourier transform

1 d*p
(7)
Therefore, the wavefunctions are determined by

(pl ¢ (2) |0) =
0l ¢ (z) Ip) =

Symmetries can be classified into space-time and in-
ternal symmetries. Space-time symmetries transform the

W exp (11030)
W exp (—ipz) .

(8)

coordinates of a point in space-time and into the field in
a particular way, depending on its class (scalar, vector
or spin). Internal symmetries only transform the field.
Both classifications can be divided into global and lo-
cal symmetries. Thus, global space-time symmetries are
associated with special relativity and local ones with gen-
eral relativity; the global internal symmetries are associ-
ated with the approximate symmetries of flavor, isospin,
among others, while the local ones with the color norm
and electroweak symmetries.

The representation of each element g that belongs to
the group of internal symmetries ¢ is a linear operator
7 . If the internal symmetry depends on the parameter
0, then the global and local transformations are given by

6@ —d @ =)o), o
¢ (x) — ¢ (2) =% (9(0(x))) ¢ (x),
respectively.

2 Lagrangian Formalism

The variation of the action before the infinitesimal trans-
formations

o't = 2" + oz, (10)

P (2) = @ (x) + 60 (x) (11)

result

68 = / [6 (d'z) 2 +d'z6.2], (12)

where the variation of the hypervolume differential is
given by

) (d41:) =d*s' — d*z = d*z0, (62") (13)
and the variation of the Lagrangian density
0L 0L
0 =—0D+ —F——=0(0uP 14
58"t 5(@,8)" ) (1)

with § (0,®) # 0, (69) given (10).
The total variation of the field is composed of
50 (z) = @' (z) — @ (x) +

(0u®) b2, (15)

where the first term represents the direct variation of the

[exp (—ipz) a (p) + exp (—ipz) a’ (p)} field 6o® = @' () — P (x) and the second term arises as a

consequence of the variation in z”. The variation of the
derivative of the field is given by
§(0,®) = 0,@" — 0,%.

Under the coordinate transformation, the right-hand side
of this equation can be written as

(0,27)0,9" — 0, @,

1The Fock space is the Hilbert space prepared as a direct sum of the tensor products of the Hilbert spaces for a particle.
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or

5 (9,®) = (9,2") B, (B + 5B) —

where 9;,2" is an element of the Jacobian matrix of the
transformation z'* — z*, which is given by

8,®,  (16)

0,x" =6, — 0, (6z"). @1

Thus, we get the variation
0(0,®) =

8y, (6®) — 8, (52") D,

Therefore, the variation of the action is

0L
/d [a<1> O 5 (0,8

/d4x {% -
0P
/d4azau [8

0z
49 (0,®)
0L v b

} 0,6z +

-0 }64)—

(19)

Infinitesimal transformations represent symmetries, if
and only if §5S = 0. Consequently, the equation of mo-
tion of the quantum field is obtained, called the Euler-
Lagrange equation [5-15]

07 0L
% o 5w - 20)
Thus, the Noether current [5] is defined as
0L
Bo() — v _ Y
JH(x) = 3(0,) (6, ®@) 6x” — 0®) — 0z"Z,  (21)
and satisfies the continuity equation
OuJ" (z) = 0. (22)

Integrating this equation in a finite volume V'

/d3m8u.]” (z) =
1%

separate the temporal from the spatial derivatives and
by virtue of Einstein’s notation [16]

/ d*290J° () + / dPzdpJ" () =0
Vv \%4

as well as by applying Gauss’s theorem [17], we find
d

o d*zJ° (z) + f dPrngJ* (z). (23)
v v
The volume integral is defined as the charge
(24)

v :/deJO (z)
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If there is no input or output flow at the boundary (iso-
lated system), then we get

Qv

dt

that is, charge is conserved.
Every field behaves like a scalar field (6® = 0) in
space-time translations, therefore, the current density is

0L

=0, (25)

K — _SH
JH(z) = 3(0,) (0,®) —0L.Z | € (26)
from which the energy-momentum tensor is defined
0L
o _ sk
T) = 3(0,) (0.®) —0.2. (27)

Using the Minkowsky metric tensor n”” to raise the
subscript v, T"” = n"?T}' and integrating the continuity
equation in a spatial volume V', we find

%/d‘?’xTOV + }{dsxnka" =0
v v

Consequently, the associated conserved charge is the
quadromoment, which is the generator of infinitesimal
space-time translations,

P’ = / A3z .
\%

3 Global Symmetries

(28)

(29)

Let the quantum field @ (z) be members of a multiplet,

the transformation before the element g (61,02, ...,0N)
from the symmetry group SU (n) results
P}, (x) = Z (U)y @i (2), (30)

1=1
where (U),, is an element of the matrix that represents
the transformation. Since the finite transformation can
always be constructed by the composition of infinitesimal
transformations, the variation under the global infinites-
imal transformation becomes

Ta)kz} D (x) -

Z [6kz +1i0° (
0" (

=1

5<I)1€ (.ZIZ) = CI)k (:C) =

Ta)kz P (x), (31)

with #% as infinitesimals and a = 1,2, 3, ...,n? — 1. Thus,

we arrive at the currents of Noether
0%
” . Z .
']a (w) - - [a(a‘u@k) ( Z(Ta)kl ®l (l‘)):| ’ (32)

we associate the charges

Qva= —z‘Z/d%%(Ta)m P (z).  (33)
Ly



It is enough to show that the n? — 1 charges Qv are rearranging the right side

precisely the generators of the symmetries. For this, a

symmetry operation represents a change of base. The —iZ/d?’x [Hk () (Ta)y, @i (x), P (y)] ,
components of the field are transformed by

U (g) By ()% (g) = @), () = Z (U),; @1 (x). (34) and by virtue of the properties of the Lie brackets

: [Qviar @ (y)] =

DY / & {1 () (T0)y, (91 (2), B (1)
1—-i0"7,) @k (2) (1 +i0°T,) = U),, o (x) (35
( ) i () ( )= 3 (U (0) 65) +[Hk(x)’q)m(x)}(Ta)qu)l(x).

Therefore, for an infinitesimal transformation

we obtain the expression that indicates how the compo- (38)
nents are transformed in the group Consequently, the commutation relations of the fields
&, and II* are needed to proceed. In bosonic fields, these
(e, ®r] = — Z (Ta)y P (2) - (36) are defined as
[
For the proof, we first define the conjugate moment
[Hk( ), ® y)”zo yo_lglk‘ss(x_y)a
1" (z) = £7 (37) [q)l ( ), @ y)“zO—yO =0, (39)
9 (Bo®r) [11* () ,H ®)]],0_y0 =0
and then the commutator is evaluated in equal times,

The commutator results

[Qvia: @ ()] = =D (Ta),, 1 () (40)
[QVCH m = _ZZ/d?)IHk )kl D, (I) ) D, (y) ) :

Finally, the commutator is evaluated by

Zo = Yo

Qv Qual = |—iY / Eal (2) (o) 1 (2), ~i 3 / &Il (y) (Ty),, @0 (y) 7
Uy

20=¢/0

rearranging terms, on the right side of the equation we have

S [t [dty [t @) (To)y @ 0) 11 ) (T0),, @ )]
Loy %

After applying the properties of the Lie brackets, we have

» / iz / YT (2) (Ta) [T (), B (2)]s0_y0 (T5).,, @, (1)
l L v
Y / &z / T (@) T () (Ta)yy (To),, (@1 (), B ()]]0_y0
1 r v v
SN [t [aty @ w)]| (e @) (T, 0 0)
l Ty v 4
- Pa [ Pyl (y) (Ty),, (17 (z), @
ZZV/ V/y v) (1), [ (@), @, ()]

By virtue of equations (39) one finds

—iZZ/de/dSka () (Ta),, 6:6° (y — x) (Ts),, ®r (v)
! L Vv

20=y0

(Ta)p @1 (2).

20 =40
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+i¥;v/d3mv/d3yﬂs () (

Ts),, 5;0% (x —y) (Ta)yy @i ().

Furthermore, the properties of the Dirac delta function [18] will be used to obtain

—iZZ/dstk (@) (
l Ty

+iZZ/d3xHS (z) (T,
l Ty

or
)kl (Tb

-y / d*z11* (z) (T
v

)+ zZ/d3xH5

Ta)kl 6? (Tb)sr

D, ()
)sr 57If (Ta)kl CI’I (:E) )

(To) g (Ta)yy @i ().

With the help of the definition of the Lie commutator

—1 Z / d?’;er

or in its equivalent form

~2fa Y [ dart @)z,
T v

Finally, we have

) ([Ta; To]), @ ()

[QV,a:QV,b] = if;bQV,c‘ (41)

With equations (36), (40) and (41) we conclude that
the charges are the generators of the symmetry. If H
is the Hamiltonian of the theory, the Heisenberg equa-
tion [19] [20] implies

dQ V,a
dt

= [HaQVﬂ] = [H7 %] =0, (42)
which expresses the invariance of the theory under trans-

formations of the group ¢.

4 Gauge symmetries

If the parameters of the global transformation are con-
sidered to be space-time dependent, we are dealing with
a local transformation

U=U(g(6"(2))). (43)
In a global transformation we have
8,uq)k — 8#<I>§c =
kl 8 (I)l ) + au (U)kz D, (I)] =
1=!
(0,P4) +Za U),, & (z). (44)
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If the theory is claimed to be invariant under a local
transformation, the covariant derivative is introduced

n

Du®r = Z [5kr3u =19 (Ta)y,

r=1

Wi

| ®.,  (45)

where the n? — 1 quantum fields W), are called gauge
fields and g is the coupling constant. We demanding

T8} = (7,8, (46)

then, we get the infinitesimal transformation of the fields

o1

Wo — W' =W+ fEWhee + Eauoa. (47)

This transformation is known as the gauge transfor-

mation of W, which only depends on the group G and

not on how the fields ®x, called material fields, are trans-

formed. Considering an infinitesinal global transforma-
tion, the gauge fields are transformed by

a a a a bpc

Wi = W' =Wi + fr.W,0°, (48)

and since the structure constants generate the adjoint

representation, we have

Wi =W +i6° (Ay)* W (49)

By generalizing the electromagnetic tensor, the Yang-
Mills field [21] is defined as

ora ala __
Gy = F =

T+ [5e T 68, (50)
is directly transformed into the adjoint representa-
tion. The conclusion is that for a Lagrangian density
L (P (x),0,Pk (x)) invariant under a global transfor-
mation, it can be invariant under a local gauge transfor-
mation by introducing the gauge fields W7, which enter
the covariant derivatives 2, P, and the Yang-Mills field
Zuv. The Lagrangian density is

1
TP T,

L =2 (P (x), Du®si (2)) = (51)



where the last contribution contains the kinetic en- or
ergy terms and the self-interactions of the non-abelian
gauge fields W;. In general, the Lagrangian density /d3y [<0| Jg (y) @k () |0) — (0] g (x) Jc? (v) \0>] =
Z (P (x),0,Pr (x)) contains the kinetic energy terms v
Zo (i (2),0, Pk (z)) and the interactions between the

pari(;icles zﬁﬁn?('@k((ozg ,0,Pk (z)). Therefore, the mate- B Z (Ta)py (O @ ()]0) # 0. (59)
rial fields become the fundamental representation and the

norm fields the adjoining representation. Also, the sym- Since the current can be written in terms of the trans-
metries determine the interactions between the fields by lation operators of the Poincare group

means of the gauge principle [22]. By promoting a global
symmetry to a local one, the introduced gauge fields in-

l

0 _ il 0 .
duce the terms of the interactions, therefore, these terms Ja (y) = exp (=1y" Pu) Ju (0) exp (iy" Py) (60)
are the mediators of the interactions. thus, these operators leave invariant the state of the vac-
uum, then

5 Spontaneous breaking of symmetry , .
[ 110172 ) exp iy Po) (2 0) -

Since for a global symmetry the generators satisfy 4

[y’ IH} =0, (52) <0| Dy, (‘r) exp (_inP#) Jt(z) (O) |O> 7’é 0.

these do not necessarily leave the vacuum state invari-

ant. The Wigner-Weyl symmetry leaves the vacuum If we insert >, |TLG> <nG‘ = 1, the left-hand side of
state invariant and, consequently, the mass spectrum of  equation (61) becomes

the particles in the theory is degenerate. The Nambu-

Goldstone symmetry does not leave the vacuum state 0 G ) G
invariant, anyd thereg)re the particle spectrum must con- Z (0] Jg (0) ‘nG> <nG‘ Py () ]0) €™ Po /dsyeﬂylﬁ
tain a particle with zero mass, known as the Goldstone nd \%

boson. The Nambu-Goldstone type symmetry is a spon-

taneously broken symmetry. o al o e s i3 BC
When considering the expectation value of the vac- _Z (0] @k (z) ’” > <” ’ Ja (0)]0)e™* 70 /d ye # 0.
nG

(61)

uum state to (36), we obtain v (62)
(0] [T, ®i] |0) = — Z (Ta)y, (0] @4 (x)|0) . (53) By defining the coefficient
1
0 G G
In a Wigner-Weyl symmetry we have that the generators cpe = (0] Ja (0) ‘n > <” ‘ P (2)10), (63)
% |0> — 07 (54) and since
consequently /dSyefiV(ﬁ:f’)G) = (2m)% Ay (:EFG) 7 (64)
(Pr)o = (0] @k (2) |0) = 0. (55) v
In a spontaneously broken symmetry with A3 (ﬁ) as an approximation of the Dirac delta,
the expression (61) becomes
(@) = (0] i () [0) #0. (56) (o1
Goldstone bosons are a consequence of Goldstone’s 5
theorem [23], which is based on the conservation of cur- Vlgnoo (2m)" x
rents
Z {cna exp (iyOP(?) —chaexp (—iyOPOG) }?G70 # 0. (65)
A, J (z) = 0. (57) n@ B
Expression (53) is rewritten in terms of the current Since the left-hand side is independent of 3, it follows
that
3 0 _
[ 01122 )2 @] 10) = R, =0, (66)
v B
. Z (T4),, (0] By () |0) (58) Thus, the massless states |nG> correspond to the

. Goldstone bosons. The number of Goldstone bosons is
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equal to the number of generators that do not annihilate
the vacuum state.

To satisty the norm principle, the global transforma-
tion must be promoted to a local one. In the Nambu-
Goldstone case, the Goldstone bosons associated with
the spontaneous symmetry-breaking generators disap-
pear via a local gauge transformation and the corre-
sponding gauge fields gain mass.

6 Goldstone’s theorem

If we consider the global invariant Lagrangian density
U (1) composed of a complex scalar field @ (z) and its
complex conjugate ®* (z) then

L =0,P"0*P -V ("),
V(@) = m?®*® + \ (&), (67)
The described system of the Lagrangian density (67)
transforms with the Lagrangian density composed of
the two real fields 1 and 2, which are related to ®
and ®* through from @ %(g@l +ip2) and * =

% (1 — 1p2), as follows

1 1
L = S0u010" 01 + 5 0up20"p = V (6 + 03) . (68)

Equation (68) has the symmetry O (2), that is, the La-
grangian density (68) is invariant when considering the

following transformation
(69)

sin 6
cos @

cos
—sind

©1
U
P2

(6)~(2)=( A
Y2 P2
so that the symmetry U (1) is equivalent to the symmetry
O (2).

In quantum field theory, excitations of particles in
a field are defined as quantum fluctuations of the field
around the lowest energy state, i. e., the state related to
vacuum. The constant value of the field corresponding to
the lower energy state is called the vacuum expectation
value (VEV), i. e. (0|®|0) = ®g. To find the spec-
trum of the particle, the potential is expanded around
the minimum corresponding to the lowest energy state

5d%
V (1, 92) =V (o1, poz2) + g 3 Apq +
a=1,2 Palo
1 o*V
5 ———| ApalApy+ ..., (70
2 Z 9pa0ps |, PalPb (70)

a,b=1,2

where Ap, = pa — Poa, Ap = pp — pop and Py =
(@01,(,002) is the VEV of & = (@1,()02), i. e. Poa
(0] 0 |0) (a =1,2). Since the potential V' has a mini-
mum in & = &g, the second term of the right side of
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o%v
9¢ad¢s |
term of the right side of equation (70) is called the mass
matrix and is diagonalized to generate the spectrum of
the particle mass.

Now, two possible cases of V are possible. (1) The
first case corresponds to the single vacuum state and is
called “Wigner phase”. Considering the parameters m?
and X for the potential in expression (67) as positive
m? >0 and X > 0,

= m2, in the third

equation (70) is zero. The

2
(P2 +@2) + 2 (Pi+¢3),  (T1)

2 2\
V(%‘Hﬁz)f B 1

and requires the following condition for the vacuum

ov
(T) =m’po1 + Apo1 (o1 + ¢02) =0,  (72)
Y1/

oV 2 2 2
- =m + A\ + ¢ =0. 73
( 9 2)0 ®o2 ®o2 (‘POl 02) ( )

Thus, through equations (72) and (73), it is obtained to
the single vacuum with 01 = @02 = 0. The mass matrix
becomes diagonal in this case

TTL2 _ m2 0
ab — 0 m2 )

which means that ¢1 and @2 have equal masses m as can
be seen from equation (71). (2) On the other hand, in
which the vacuum state is non-unique is called “Nambu-
Goldstone phase”. In this case, for example, in con-
tinuously or infinitely degenerate vacuum states with
@01 # 0 and/or o2 # 0, for the potential with m? = — >
(1*>0) and A >0

(74)

2
A
% (o7 + 3) +7 (P +¢2).

The minimum of V is in the following partial derivatives

V(1 +¢3) (75)

ov
<87) = —p o1 + Apo1 (9031 + 9032) =0, (76)
®1/

(57)
(9(,02 0

leading to the condition

= — 1002 + Aoz (6031 + 9032) =0, (77)

2 2

(@°P), = @] = & = L.
(78)

In other words, all points on a circle with radius
12/ in the plane (o1, ¢2) correspond to the min-
imum of V, that is, the vacuum state is already non-
unique but has O (2) symmetry. From expression (75)

we obtain

2 2 _u?
$o1 + po2 = V7 = F-,0r

v =

82‘/ 2 2 2 2

T@g =—pu +A (501 + 902) + 27, (79)
1

&V

gz = W AT el F2xeh (80)
2



*V

— 81
83016%02 ( )

= 2)\@1 p2.
Therefore, if we choose a point  (po1 = v, o2 =0) as
a physical vacuum, the mass matrix can be expressed as

s (220 0
Map = 0 0 .

Therefore, ¢} = p1 — v corresponds to a particle with
mass m? = 2\v?, while ) = - is massless. 5 is called
the "Goldstone boson". If these new fields are used, the
Lagrangian density (68) is expressed

(82)

1
g = (8H<,01) +

2

’ 1\2 1\2
Avipy [(@1) + (¢2) ] 2 (83)
The Lagrangian density no longer has O (2) symmetry,
although the Lagrangian density (68) does. That is, the
symmetry of the Lagrangian density has been broken by
the symmetry breaking of the vacuum state. This sym-
metry is called a hidden symmetry or spontaneous sym-
metry breaking (SSB).

In short, starting from the Lagrangian density with
a global symmetry, negative parameter m? = —p? and
breaking the symmetry of the vacuum states by choos-
ing a particular point among the states of symmetrically
degenerate vacuum, it was found that a massless particle
(Goldstone boson) appeared. This mechanism is called
Goldstone’s theorem [23] [24] [25]. In general, massless
Goldstone bosons [26] appear depending on symmetry
properties when a global symmetry is spontaneously bro-
ken.

7 Finite temperature effects

The usual methods used in quantum field theories are
adequate to describe situations in a vacuum, such as oc-
cur in accelerators. However, in the primitive Universe
the conditions are quite different, being characterized by
a high-temperature plasma, with an energy density that
cannot be neglected. In these conditions, it is necessary
to find other methods, halfway between thermodynam-
ics and quantum field theories, that allow realistic cal-
culations to be made under these conditions where the
environment is characterized by a thermal bath. These
methods are developed by finite temperature field the-
ory [27].

Effective potential

The function that contains all the finite temperature ef-
fects is the effective potential, ‘/effﬂ. This is composed
of the classical potential in vacuum, Vp, plus the term
that describes the quantum and temperature effects V*
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eff (¢e) = Vo (ée) + 1% (¢c),

where ¢. = ¢ (z) is the constant value in space that the
field takes, for a translational invariant theory.

There are two formalisms to calculate the second term
of equation (84), that is, the potential V', both giving
the same results, at least to first order. Ome formal-
ism is the imaginary time method to describe equilib-
rium situations, and the other is the real time method,
with which certain non-equilibrium systems can be in-
vestigated. Taking into account the contributions of the
diagrams to 1 loop, it follows that the effective potential

is [27]
ORy P TRy

2 B
where 8 = 1/T and w is

=VIBI" +m?(ge),

where m? (¢.) is the curvature of the potential, also
called displaced mass

(84)

log (1 — eiﬁ“’)} ,  (8b)

(86)

8?Vo (¢c)
002
The first part of the integral (85) accounts for the
quantum corrections in vacuum, giving the effective po-
tential at zero temperature, Vi|,_,. The part of (85)
that depends on temperature can be written as

3 G [5+5e0-)] -

1
WJB [m? (¢c) B,

m? (¢0)

(87)

(88)

where the bosonic thermal function, Jp, has been defined
as

JBm,B

log 1—exp( \/m)]

7dx
’ (9)

In this way, the effective potential at 1 loop comnsists
of the following parts

5 [m? (¢c) 5] -

(90)

The function Jp [27] admits an expansion for high
temperatures

Vers (9e) = Vo (@) + Vi (e)lr—ot5 577

2/84
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where (¢ is the Riemann zeta function and ay =
1672 exp(%—nyE), with vg =~ 0.577 the Euler-

Mascheroni constant.

With these approximations we have that, at high tem-
peratures, the part of the effective potential to a loop
that depends on temperature approaches

1 2,12 1 3 1 4 m2
—m T — m 647T2m log T
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where the terms that are constant with the field have
been neglected.

8 Phase transitions

One of the most relevant consequences of finite temper-
ature effects is the influence they exert on phase tran-
sitions. The key point is that at finite temperature the
fundamental state of the system does not correspond to
the minimum of V; (¢), but is the value that minimizes
the potential fof (¢), given in equation (84). Thus, the
state that defines the vacuum is a function of tempera-
ture, (¢ (7).

In the context of cosmology, the Kirzhnits effect [28]
is very important. In the Big Bang theory, initially the
Universe is at very high temperatures, so it is to be ex-
pected that, due to temperature effects, the symmetries
are not broken. In this way, for a discrete symmetry, the
minimum of the corresponding potential will be found
at (¢ (7)) = 0. For a certain critical temperature value,
T., the minimum at ¢ = 0 will become metastable and a
phase transition will occur.

There are two types of phase transitions: first order
and second order. In the case of first order transitions,
for T' > T, the potential only has a minimum at ¢ = 0.
As the temperature decreases, but still with 7" > T, a
local minimum develops at ¢ # 0. When the tempera-
ture reaches its critical value, the minima are degenerate
and for T' < T, the minimum at ¢ # 0 becomes the abso-
lute minimum. In this case, between the local minimum
at ¢ = 0 and the global minimum at ¢ # 0 there is a
potential barrier, so a classical transition cannot occur
between the two minima. This has to be developed by
quantum tunneling, which implies the formation of real
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vacuum bubbles that rapidly expand up to speeds close
to light. On the other hand, in the second order transi-
tions, said potential barrier does not appear between the
minima and the transition takes place gradually. There-
fore, the origin ¢ = 0 goes from being a global minimum
for T' > T, to a local minimum for T' < T..

An important point, especially at the calculation
level, in the study of phase transitions produced by tem-
perature effects is that the first order (a loop) of the
usual perturbation theory, in powers of coupling con-
stants, loses its validity for temperatures above the criti-
cal temperature [29]. Then it is necessary to replace this
theory of perturbations by an improved expansion, where
diagrams of more than one loop are taken into account.
In this improved theory an infinite number of diagrams
are summarized for the order of the expansion, which is
known as Daisy summarization [27]. The effect of this
summarization is to introduce a shift in the mass that
depends on the temperature

m?® (¢e) — mlsp =m” (¢c) + 11 (93)

where II o« T? is the self-energy corresponding to the
propagator when they have taken into account all the di-
agrams with loops added to the propagator to the first
order in temperature. Obviously, this II function de-
pends on the potential being considered.

Since we believe that the Universe evolved through
such a symmetry breaking sequence. There are many
questions we can ask ourselves about the cosmological
implications of the regime.

9 Topological defects

Another important aspect to take into account in the pro-
cess of spontaneous symmetry breaking are the possible
topological defects generated by the breaking. Topologi-
cal defects [30] [31] [32] are concentrations of energy that
are generated after the spontaneous breaking of a symme-
try, in case the resulting vacuum has a non-trivial topol-
ogy. To understand non-trivial topology, let’s look at a
couple of examples: domain walls [33] [34] and cosmic
strings [35] [36]. The existence and stability of these ob-
jects will be dictated by topological considerations, with
numerical simulations being the only treatment that al-
lows studying their evolution.

As a first example, we consider the breaking of sym-
metry in a potential with a symmetry under reflection
Z, that is, an invariance before the change ¢ — —¢.
Given the breaking of this symmetry, the expected value
of the field in a vacuum can take the value (¢) = +v,
or the value (¢) = —v. Considering that the theory was
translational invariant, it has been assumed that all space
is in the same ground state, an assumption that is not
true. There will be regions where (¢) = +v and others



where (¢) = —v, there being no reason for the field to
take one or the other value. Then, since between the
regions where (¢) is different, the field has to pass from
¢ = +v to ¢ = —v continuously, there must be regions
in space in which ¢ = 0, that is, zones of false vacuum.
These zones are two-dimensional regions, with a certain
thickness, that separate the different boundaries where
the expected value of the field has different values. These
zones are called domain walls and they appear whenever
a discrete symmetry is broken. In this case, the vacuum
is said to have a non-trivial topology because it consists
of two disconnected states. If we look at the shape of the
potential after the break, we can see that in areas where
¢ = 0, the energy is greater than in the rest of the space.
As a conclusion, these domain walls are two-dimensional
regions with a high concentration of energy.

Another example of a topological defect is that of
cosmic strings [35] [36]. In this case, the symmetry to
consider would be, for example, the N = 2 case of the
O (N) symmetry, respected by the potential (103) (see
appendix A). A particular case would be a complex field,
¢ = |¢| exp (i0). In that case, once the symmetry is bro-
ken, the expectation value of the field in vacuum can
be found at any point on a circle of radius v. That is,
the expected value of the module of the field is fixed at
(l¢ly = v, but the value of its phase can be any. Thus,
there is a phase that depends on the position, 9(?),
which can be different at each point in space. However,
the ¢ field can only take on a single value at each point
in space, so the change in phase, Af, around any closed
path must be a multiple of 27. We take, for example, a
path in which Af = 27. As we compress the path into
a point, Theta cannot continuously vary from Af = 27
to A@ = 0. For this reason, there will be a point in said
path where the time phase is undefined, the only possi-
bility of this undefined being that (|¢|) = 0. This false
vacuum point on the considered path is part of a one-
dimensional false vacuum tube. These tubes are called
cosmic strings and would be the one-dimensional ana-
logue to domain walls. In this case, the topology of the
vacuum is non-trivial because there is no unique way to
map the manifold that defines it to a circle. As in the
case of domain walls, in the region where (|¢|) = v, the
energy is greater than the rest of space, so these strings
are one-dimensional concentrations of energy.

Other examples of topological defects are magnetic
monopoles [37] [38] and textures [39]. The former are
zero-dimensional analogues to strings and domain walls
and appear in breaking spherical symmetries. Textures
are delocalized objects of higher dimensions, which ap-
pear when breaking the most complicated symmetry
groups. In addition, there can also be topological defects
that are a combination of those described, such as [40]
domain walls linked by cosmic strings, strings that end
in monopoles, etc.
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The specific effects vary depending on the topolog-
ical defect considered. For example, domain walls and
monopoles are cosmologically catastrophic. Any model
in which there is a production of these types of defects
has to face the problem that defects evolve in such a
way that they contradict different irrefutable observa-
tional facts of the Universe, such as producing too large
anisotropies in the background of radiation or predicting
densities of Q ~ 10*!p.. Therefore, the models must be
discarded.

However, cosmic strings and possibly textures are
much more benign. Among other characteristics, they
can play the role of seeds that give rise to the formation
of the large-scale structure that is currently observed,
as well as the anisotropies of the radiation background.
Another important contribution would be to the dark
matter of the Universe.

The spontaneous breakage of many theories predicts
the existence of one or more types of topological defects.
These objects are inherently nonperturbative and prob-
ably cannot be produced in the high-energy collisions
that take place in terrestrial accelerators. Instead, they
can be produced in phase transitions that occur in the
early Universe. For this reason, these defects are con-
sidered to be traces of the first moments of the Uni-
verse. Although they are not minimum energy config-
urations, monopoles, strings, and domain walls (bound-
ary domain) are topologically stable and, as predicted
by the Kibble mechanism [41], their production is in-
evitable at phase transitions. One of the most important
consequences of these objects is that they crucially affect
the evolution of the Universe. The concrete effects vary
depending on the topological defect considered. For ex-
ample, domain walls and monopoles are cosmologically
catastrophic. Any model in which there is production of
these types of defects has to face the problem that the
defects evolve in such a way that they contradict differ-
ent irrefutable observational facts of the Universe, such
as producing excessively large anisotropies in the Cosmic
Microwave Background.

10 The axion

The axion is one of the best-known pseudo Goldstone
bosons, although experiments looking for it have so far
failed to detect it. Its motivation is theoretical and arises
as a consequence of the spontaneous rupture of Peccei-
Quinn (PQ). This symmetry is the most elegant solution
to the CP problem of strong interactions, so if the ax-
ion finally does not exist, an alternative solution to this
problem will have to be found [42]. Axion physics has
very precise properties, all of which depend on a single
free parameter, f,, the symmetry breaking scale of PQ.
The importance of the axion is mainly due to the possi-
bility that it is the main component of the Dark Matter



of the Universe [43] [44] [45] [46].

Cosmological production

There are different mechanisms that cause the produc-
tion of axions, which we will group into thermal and non-
thermal mechanisms, the latter being the ones that pre-
dominate. Among the non-thermal mechanisms we can
basically find two classes, those originated in the oscil-
lations of the axion field and those that are produced
from the decay of the topological defects generated in
the spontaneous breaking of the symmetry PQ [47] [48].

The cosmological history [15] [49] of the axion begins
at temperatures T' ~ fa, when the U (1)p, symmetry
breaks spontaneously. In principle, all possible expected
values for the axion field, (a), are equally likely, but nat-
urally (a) is expected to be of the order of the scale of
PQ.

The vacuum expectation value (VEV) for the axion
field is subjected to the evolution equation

d* {a) d(a)
dt? dt

where H is the Hubble parameter and m, (¢) is the mass
of the axion, which evolves over time (as a function of
temperature and temperature as a function of time). In
the interval f, > T > Agcp, the Hubble parameter is
much larger than m, and (a) remains constant, since H
acts as a friction. The mass of the axion is suppressed
at high energies and it is on the QCD scale that it be-
gins to be relevant, quickly becoming m, ~ H. From
this moment on, the friction induced by H is inefficient
and the field of the axion begins to evolve. Thus, for a
temperature T ~ Agcp we have

+mg (t) (a) =0,

+ 3H (t) (94)

2
AQCD

~H~——= 95
Mq Mp ( )
moment from which the axion field begins to oscillate
around (a) = 0.

The mass of the axion increases adiabatically as T
decreases, so the oscillation is approximately sinusoidal

with an amplitude that decreases with time [50] [51]

(a) =~ A(t)cos(maq (t)t), (96)
to which corresponds a density of axions
Na ~ maA? ~T?, (97)
and an energy density
Pa = MaNg. (98)

From these reasonings, we can estimate the current
energy density of axions produced from these oscillations
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To
Agcep

3

) . (99)

meo it must be interpreted as the mass of the axion at

zero temperature, given by m, = 0.6eV (107GeV/fa).

Approximately it can be accepted that mqo ~ AQQCD/fa.

Taking mg; from formula (99) and considering that A; ~
Adep Ajep 4o <

(a); ~ fa, we find
3
fa Mp a ) ’\"fa

so we see that the relic axion density increases with f,.
A detailed calculation of these oscillations [52] yields an
axion density

o~ (%), ~ o (o),

To
Aocp

TsAgep
Mp

po ~

, (100)

) f 1.175 9
Qah” = Ca (m) 0:

where C, is a constant between 0.5 and 10.

Another source of non-thermal axion production is
the decay of topological defects. As seen above, the spon-
taneous breaking of a global symmetry gives rise to a
series of topological defects.

The last production mechanism to be discussed is
thermal processes [53]. Taking into account the inter-
actions of the axions with quarks and photons, in [54] it
is found that the axions were in thermal contact with the
photon bath if f, < 10'®GeV holds. As a conclusion, it
is found that in the early Universe there is thermal pro-
duction of axions if it is true that f, < 10'2GeV.

(101)

11 Conclusions

We can conclude, from the Lagrangian density with a
global symmetry, negative parameter m? = —p? and
breaking the symmetry of the vacuum states by choos-
ing a particular point among the states of symmetrically
degenerate vacuum, it was found that a massless par-
ticle (Goldstone boson) appeared. This mechanism is
called Goldstone’s theorem. In general, massless Gold-
stone bosons appear depending on symmetry properties
when a global symmetry is spontaneously broken.

Many examples of spontaneously broken global sym-
metries giving rise to Goldstone bosons can be found in
nature. One of them is family symmetry. Said symmetry
related to the number and properties of the families of
the standard model.

The spontaneous breaking of symmetry of many the-
ories predicts the existence of one or more types of topo-
logical defects. These objects are inherently nonpertur-
bative and probably cannot be produced in the high-
energy collisions that take place in terrestrial acceler-
ators. Instead, they can be produced in phase transi-
tions that occur in the early Universe. For this reason,



these defects are considered to be traces of the first mo-
ments of the Universe. Although they are not minimum
energy configurations, monopoles, strings, and domain
walls (boundary domain) are topologically stable and
their production is inevitable at transitions of cosmolog-
ical phases. One of the most important consequences of
these objects is that they crucially affect the evolution
of the Universe. The concrete effects vary depending on
the topological defect considered.

Finally, there are different mechanisms that cause the
production of axions, which we will group into thermal
and non-thermal mechanisms, the latter being the ones
that predominate. Among the non-thermal mechanisms
we can basically find two classes, those originated in the
oscillations of the axion field and those that are produced
from the decay of the topological defects generated in the
spontaneous breaking of the symmetry PQ.

Appendix A: Sigma model

The Lagrangian density of the linear sigma model con-
tains a set of N real scalar fields

N2 \ 2 \ 2

z=5 () + 30 () - 3[(@)]. 0o
where there is a sum at ¢ in each factor of (qbi)Q. The
Lagrangian density (102) is invariant under symmetry
¢t — R%(f}j, for any matrix Ry, orthogonal and N x N.
The group of transformations ¢' — R%qﬁj, is the group
of rotations in N dimensions, also called O (N), N-
dimensional orthogonal group.

The classical configuration of the field that represents
the ground state, ¢j, is the one that minimizes the po-

tential
V(o) =gt (6) 43 ](#)]. aoy

for any value ¢} that satisfies ¢}
(¢g)2 -~ "; (104)

This condition only fixes the length of the vector ¢, its
direction being arbitrary. Without losing generality, we
can choose that the vector ¢ points in the N-th direction

i LN
on) ﬁ) . (105)

(0,0,...,0,v) = (0,0, .0,

For N = 2, the potential V' (qbl) has the typical shape
of the Mexican hat, where the minimum can be found at
any point on a circle of radius v. It is convenient to re-
define the field ¢ (z), introducing the fields 7 (z) and

n ()

o' (@) = (7' (@), v+ 1),
where 1 =1,2,3,..., N — 1.

Introducing the change (106) in (102), the Lagrangian
density takes after spontaneous symmetry breaking

(106)

(2N2) 7)2 - ﬁmyS —
Bu)' =t ) =[]

(107)

Analyzing the new Lagrangian density (107), we ob-
serve that the spectrum consists of a massive 7 field
and a set of N — 1 massless fields 7‘. Symmetry O (N)
original is hidden, leaving the symmetry subgroup ex-
plicit O (N — 1), that transforms the fields 7, that is,
7' — RY¥m’. The massive field 7 describes oscillations
of the field ¢; in the radial direction, where the po-
tential has a non-zero second derivative. The massless
fields 7" describe oscillations of ¢° in the tangential di-
rections, along the valley of the potential. This valley
is a (N — 1)-dimensional surface, where all N — 1 direc-
tions have no slope and are equivalent, which shows the
symmetry O (N —1).

In the example used, initially we had N (N —1) /2
continuous symmetries, corresponding to the different
orthogonal axes about which a rotation can be per-
formed O(N), in N dimensions. After the sponta-
neous break, the subgroup remained O (N — 1), contain-
ing (N —1)(N —2)/2 continuous symmetries. Thus,
the difference N — 1 will be the number of symmetries
that have been broken. This is precisely the number of
massless particles that have appeared in theory, as pre-
dicted by Goldstone’s theorem.

In nature, one can find many examples of sponta-
neously broken global symmetries that give rise to Gold-
stone bosons. One of them is family symmetry. This
symmetry related to the number and properties of the
families of the standard model.
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