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Abstract

Cosmic Background Radiation (CMB) has resulted in anomalies or deviations from the standard model
of cosmology. Consequently, we propose to study Bianchi spacetimes with cosmological constant by
applying the Arnowitt-Desser-Misnes (ADM) formalism of general relativity in the Hamiltonian version.
From the Lagrangian density .Z and with the use of the Legendre transformation we can calculate the
Hamiltonian density H and the Poisson parentheses. Subsequently, we present the equations of motion
for each of the Bianchi spacetimes. In addition, we discuss some theoretical consequences in these
equations when we take the limit {2 — —oo and the parameters S and S_ fixed, consequently, we find
that the dependent part of the gravitational potential of the Hamiltonian density tends to zero and from
the equations of motion we find the constant of motion, po = ps, = ps_ = constant. On the other
hand, Friedmann-Lemaitre-Robertson-Walker (FLRW) models can be generalized only to some Bianchi
models. The Bianchi type I and VII models are a generalization of the Euclidean FLRW model (k = 0),
the Bianchi type IX for the spherical FLRW model (k = 1) and the Bianchi types V and VII are for the
hyperbolic FLRW model (k = —1). The rest of the Bianchi models do not contain the FLRW models
as a particular case.
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Formalismo Hamiltoniano de los modelos de Bianchi con constante cosmoldgica

Resumen

La Radiacién Cosmica de Fondo (CMB) ha dado como resultado anomalias o desviaciones con respecto
al modelo estandar de la cosmologia. En consecuencia, proponemos estudiar los espacio-tiempo de
Bianchi con constante cosmologica aplicando el formalismo de Arnowitt-Deser-Misner (ADM) de rela-
tividad general en su version Hamiltoniana. A partir de la densidad Lagrangiana . y con el uso de
la transformacion de Legendre podemos calcular densidad Hamiltoniana H y los paréntesis de Pois-
son. Posteriormente, presentamos las ecuaciones de movimiento para cada uno de los espacio-tiempo
de Bianchi. Ademas, discutimos algunas consecuencias de caracter teorico en dichas ecuaciones cuando
tomamos el limite 2 — —oo y los parametros S+ y B— fijos, en consecuencia, encontramos que la parte
dependiente del potencial gravitacional de la densidad Hamiltoniana tiende a cero y de las ecuaciones
de movimiento encontramos la constante de movimiento, po = ps, = ps_ = constante. Por otro lado,
los modelos cosmologicos Friedmann-Lemaitre-Robertson-Walker (FLRW) se pueden generalizar soélo a
algunos modelos cosmolégicos de Bianchi. Los modelos Bianchi tipo I y VIIp son una generalizacion
del modelo FLRW Euclidiano (k = 0), el Bianchi tipo IX para el modelo cosmologico FLRW esférico
(k = 1) y los Bianchis tipo V y VII, lo son para el modelo FLRW hiperbélico (kK = —1). El resto de los
modelos de Bianchi no contiene a los modelos FLRW como un caso particular.
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1 Introduction

The homogeneity and isotropy of cosmological models are
related to the intrinsic symmetries of a variety. A very
viable way to classify the different cosmological mod-
els is through their symmetries. Symmetries or isome-
tries leave invariant to the metric tensor. The fields
that generate these symmetries are called Killing vector
fields [1-6]. These vector fields are defined as [7]:

Sng.V =0. (1)

Bianchi’s cosmological models are homogeneous,

therefore, these models have Killing vectors associated

with this symmetry. However, Killing vectors satisfy the
property:

[Xu, Xu] = C;,‘IJXA7

where Cﬁ‘z, are the structure constants. Bianchi models
are classified according to the structure constants [8-11].

In this article the ADM formalism [12-22] of general
relativity is applied to the different cases of the Bianchi
models type A and B. These cosmological models are an-
alyzed with cosmological constant. First, a general model
for Bianchi’s cosmological models is described; where we
deduced the Lagrangian density .. Subsequently, we
develop the Hamiltonian density H. Finally, the Hamil-
tonian density H is applied to deduce the dynamics of
the Bianchi models.

2 General model

In Misner’s notation, the metric of the Bianchi models
can be written as [23]

ds? = —N2qt? + XM 2Pi (1) 17 (2)
where N (t) is the lapse function, w’ called the differential
1-form, €**®) is the scale factor of the Universe and f;;
determines the anisotropic parameters 34 (¢) and S- (t)
as follows

B+ +V3B- 0 0
Bij = 0 By —V3B- 0 G))
0 0 —284

In this general model of the Bianchi models, the shift
function is not stipulated in the metric of equation (2),
therefore in the subsequent developments for the Bianchi
models that will be treated it will not appear as a dy-
namic variable. The term h;; = 22 eFii(t) of the sec-
ond term of equation (2) is compared with the term gqp
of the ADM formalism of general relativity and we in-
tuit that the dynamical variables for the Bianchis are
Q, B+, B—, since the lapse function with N = exp (392) is
the physical norm.
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The non-zero components of extrinsic curvature; us-
ing equations (2) and (3) and equation

A (ah,m

=

v — - NU_ UN7
= (% e - Vo)

are given by:

Ku:%(@+%+\/§%>exp[2(ﬂ+ﬂ++\/§ﬁ—)]7

dt dt dt
dQ  dp ag W
_ 1 (ar dby = _
K”‘N(dt’L a Va )eXP[Q(QJrﬁ* ‘/gﬁ*”’
o 5 (5)
1 (d dpy
The trace of the extrinsic curvature is given by

i 3 dQ

X T
K = h" K TR (7)

Given

det (hij) = exp [3Q (1)],
and inserting equations (4), (5), (6) and (7) into the
Einstein-Hilbert action of the ADM variables (see ap-
pendix A)
S[gabaN7Na] =

/dt/d%N\/det (hiz) (<3>R — K* + K, K" — A) . (8)

the Lagrangian density is expressed by

e () (%) ()]
N exp (3Q) (<3>R - A) (9)

The conjugate moments for the dynamic variables
Q, B4, 8- are given by

L 0¢ 1249

po = 00 N ar &P (39), (10)
oz _ 1248,

Ppy = 35+ - N 4t exp(39)7 (11)
oz _12ap

pp_ = OB =N a &P (392). (12)

Using the Legendre transformation [24,25], equation
(9) and equations (10), (11) and (12); we calculate the
Hamiltonian density from the equation
_dQ dp+ dp—
H=pa gy ¥ o g Py ’
resulting
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N
H = ﬂexp( 3Q) (—p?z+p%+ +p%_) -

N exp (39) (<3>R - A) : (13)

where the three-dimensional curvature scalar is given
by [26-29]

YR = CjCrnhit "™ W™ + 203, CHRY + ACHCF, ™
(14

~

where C]’:k are the structure constants and hyj
£290(0) B (1)

Equation (13) constitutes a Hamiltonian constraint in
the ADM formalism of general relativity (see appendix
A). Therefore, H ~ 0 reproduces Einstein’s field equa-
tions. The shift function N does not appear in equa-
tion (2), therefore, the equation —2he.N°Dym® = N°H,
will not be considered, then there are not diffeomorphism
constraints for the Bianchi models.

The classical Poisson brackets for the dynamic vari-
ables considered are

{xiaxj} = 07
{pi,p;} =0, (15)
{@i,pj} = dij,

where z; = Q,84,6- and p; = pa,ps, ps_ with i =
1,2,3.

Next, we develop the formalism of the Bianchi models
A and B.

3 Class A

Bianchi I

The constants of the Bianchi I are null, that is, C;k =0
[9]: Therefore; from equation (13) and using equation
(14), the Hamiltonian density is expressed by the equa-
tion

1
M=o (-ph+ph, +p5_) +Aexp(6Q),  (16)

where N = exp (3Q).
equations of motion

From equation (16) we find the

“_ _0OH, oM 02 _ 1

ot - O = 50 G, T o0 apn — 127 (17

%_ 0By OMi  OMs 0Bs 1
e M = o8 Ops, ~ 0B Bpa, 127

(18)

31
d _ 8 - OH; OH 8 _ 1
(19)
@_ Opo OM1_OHi0po _ _
{pa,Hi} = 90 Opn 99 Ipo 6A exp (392),
(20)
dpﬂ+ _ o ap/3+ OHr OHr1 ap/nr _
i M = G G 0B opa,
(21)
dpﬁ, apﬁ OMHr  OHr Ops_
=M = G oy 0B s
(22)

Integrating the ordinary differential equations (21)

and (22), we obtain the results
Ps, = pop, = constante, (23)
pg_ = pos_ = constante, (24)

and from equations (18) and (19)

1
Bt = oposst+ o+, (25)
B = pos_t+ 4 (26)
- T et
To integrate equations (17) and (20), we note that
dpa 2 1,
— i 2
dt 4A 4pQ7 ( 7)

where A is a constant. The integration of equation (27)
depends on the sign of the cosmological constant. If
A > 0, then from equation (20) we have C%Q < 0. The
integration of the differential equation (27) gives

4A+pa\
then pq is
pa = 4Atanh [A (t + to)] . (28)

The integration of equations (17) and (20) generates

Q(t) = é In { 2§A [1- tanh® A (t + to)]} . (29)

If A < 0, then from equation (20) we have %22 > 0.

The integration of the differential equation (27) gener-
ates

pa = 4Acoth [A (¢ + to)] . (30)
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The integration of equations (17) and (20) leads to
2

Q) = %m{% [cothQA(t+to)—1]}. (31)

Finally, for the Bianchi I with null cosmological con-

stant, A = 0, we have that ‘%ﬂ = 0 and the equation of

motion for 2 is similar to S4 and S_
pa =poa, Q(t) =—5poat + Qo. (32)

For a non-zero cosmological constant, A # 0, these so-
lutions contain a singularity in 2 — —oo (em — 0) as
t — 0.

Bianchi II

The structure constants of the Bianchi II are [9]

Oz = —Cg = L.

Using the structure constants and equation (14), the
curvature scalar is determined by
@ Ry = —2exp (-29 + 484 + 4\/§B_) . (33)

Introducing equation (14) into equation (13), the
Hamiltonian density for the Bianchi IT model is

1
Hir = BV (—pd, -i—p%+ +p5 )+
2exp (49 4B, + 4\/55_) FAexp(69),  (34)

where N = exp (3Q2).
From equation (34), we can obtain the equations of
motion

% — (O, M) = 387;;1 - *%pn, (35)

% ={B+ Hu} = ZZZ = %pﬁw (36)

Ty = = )
PO (o, Hiry = ~8exp (10 + 45, +4v35-) -

6A exp (692), (38)

dp,@+
dt

OHir _
0B+
8exp (49 + 484 + 4\/557) , (39)

= {p5+,7-l11} =-
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dps_ OH
le = {ML»'HH} = - Bﬁil = -
8v/3 exp (49 484 + 4\/55,) . (40)

The dynamics of the Bianchi II are considered below.
Assuming fixed anisotropic parameters S+ and S_, Con-
sequently, the term exp (Q + 454 +4\/§,8_) — 0 con-
forming 2 — —oo. From the preceding consideration
and from equations (38), (39), and (40) taking into ac-
count that {2 — —oo, it results that each conjugate mo-
ment is constant. Additionally, let us observe the term
that contains the cosmological constant tends to zero if
Q — —oo0.

Bianchi VI,

The Bianchi VI has the structure constants [26]
0213 = 70%2 = 13
Ch = —Chy = -1,

With the previous structure constants and using
equation (14) the curvature scalar is

(S)RVIO = —dexp(—2Q+484) [cosh (4\/§ﬁ7> + 1} .
(41)
If we use equation (41), equation (13) becomes

1
Hyiy = 57 (—ph +Phy +P5) +dexp (42 +461) x

[cosh (4\/§,3_) + 1] + Aexp (69). (42)

With this Hamiltonian density we can write the equa-
tions of motion

aQ _OHy,, 1
i = {Q,HVI()} = 8p§2 - 12?0» (43)
By _OHvy, _ 1
dt {/8-‘-7%\/10} = 8p£+ = 12p5+7 (44)
ag- _ O0Hvi, i
W - {ﬁ*?HVIO} - aPB* - 12p577 (45)
dpa
W — {pQ,HVIU} = —16exp (4Q —|—4ﬂ+) X
[cosh (4\/§,3_) + 1} — 6A exp (692), (46)
dp5+ _ { H } _ _aHVIO _
ar WA VI = T =
—16exp (4Q + 4534) [cosh (4\/557) + 1} ) (47)
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dps._ oMy 1,
%& ={ps Hvn} = aﬁvf -
—16v/3 exp (42 + 46, ) sinh (4\/§ﬁ,) . (48)

Assuming the anisotropic parameters 4 and S_ are
fixed in the second term of equation (42), consequently,
the last term of equation (42) tends to 0, according to
) — —oo, where each conjugate moment is constant,
therefore po = pg, = ps_ = constant. Just as the
term containing the cosmological constant tends to zero
if Q@ - —o0.

Bianchi VII,

The Bianchi VIIj has structure constants given by [9,26]:
Cy3 = —C3o = —1,
Ch = —Ch =1

With the previous structure constants and equation (14),
we found that the curvature scalar is expressed by:

<3)Rv110 = —4dexp (—2Q 4+ 454) [cosh (4\/557) — 1} .
49)

If we use equation (49), equation (13) becomes

1
Hvir, = 2 (—p; +p%+ + ) +4exp (42 + 4B4) X

[cosh (4\/5,@,) - 1] + Aexp (69) . (50)

With this Hamiltonian density; that is, equation (43),
we can write the equations of motion

dQ OHvrr, 1

dat (@ Ay} = Opa IS TL 5D
dg% ={B+,Hvir} = %HT‘ZIO = T12p5+7 (52)
% ={B-,Hvir} = %%T‘Zm = %Pm: (53)

% = {pa,Hvrii,} = —16exp (2 + 464) X
[cosh (4V38-) 1] — Aexp (69),  (54)

—16exp (2 +46+) [cosh (4\/§57) — 1] , (55)

33
dps_ OH

T = e Hviny = =5 =
—16v/3exp (Q + 484 ) sinh (4\/§ﬁ,) . (56)

In this model we assume the anisotropic parameters
B+ and [ are fixed, consequently, equation (50) tends
to 0, according to 2 — —oo and each conjugate moment
is constant po = pg, = pp_ = constant.

Bianchi VIII

For this model the structure constants are [9,26]

Cy3 = —C3y = —1,
C3 = —Ch3 = —1,
C?Q = ngl =1.
Using these structure constants and inserting them
into equation (14), the scalar of curvature is given by the
scalar equation

CORyir=—4 exp (—2Q + 434 ) cosh (4\/§ﬁ+) —
2exp (—2Q — 8084+) —dexp (-2 4+ 484) +
8exp (—2Q — 234 ) cosh (2\/55,) ,

(57)
and the Hamiltonian density is
1
Hvriir = 21 (*p% +p%3+ er%;f) +
exp (4Q2) [W (B4, f-) — 1] + Aexp (692) (58)

where

W (By,8-) = 1+ 4e**+ cosh (4\/§B+) + 2¢ 80+ —

8¢ 2+ cosh (2\/§ﬁ,> + 4¢P+,

From equation (58) we find that the equations of mo-
tion are:

aQ _OHvir 1
i {Q, v} = g~ 1P (59)
By _ OHyrr 1
o = W Hviny = “ops, T3Po+ (60)
ag— _ _ OHvrr _ 1
g = B Hvin} = “ops 12V (61)
d
% = {pa, Hviir} = —dexp (4Q) [W (B+,-) — 1]
—6A exp (6£2), (62)
dpg, OHvirr ow
= {ps, ., M = — —dexp (40) 2
i IR 9B+ =P (4 55
(63)
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dps_ _ _ OHvrrr _ oW

Tat {vaHwH} = - 95 —4 exp (49) ﬁ
(64)

The dynamics of the Bianchi VIII cosmological model
can be seen as the dynamics of a particle in a time-
dependent potential. The simplest movements are ob-
tained by assuming the anisotropic parameters 54 and
B fixed, thus the last term of equation (58) that contains
W (B+, ) tends to zero in the limit Q& — —oo, as well
as the term containing the cosmological constant. From
the preceding consideration and equations (62), (63) and
(64) we follows that each conjugate moment is constant,
i.e. po = pg, = ps_ = constant.

For large values of 3 of W (84, 8-), we can find that
in the limit Sy — —oo the value of W (84, 5-) of equa-
tion (58) behaves as

W (B4 — —o0,8-) ~ 2exp (—88+)
—8exp (—284+) cosh (2\/?:ﬂ7) ,
and for the limit 8 — 400 taking into account f_ < 1,

the anisotropic potential behaves in the way

W (B+ — +00,8-) ~ 144 (2 + 245 ) exp (48+) .

Bianchi IX

This model has the structure constants [9,26,30]

Ci3 = —Cs =1,
C??l = 70123 = 17
C?Q = _0231 =1.

If we substitute these structure constants into equa-
tion (14) we obtain the three-dimensional curvature
scalar

G Rix = —2exp (=202 —884)+
8exp (—2Q — 2B4) cosh (2v/35-) (65)
—4exp (—2Q +48+) [cosh (4\@/6’+) + 1]

and then we substitute equation (65) into (13) to obtain

1
Hix = BV (—p?z-i-pfaJr +p5 )+

exp (4Q) [V (B4, B-) — 1] + Aexp (62), (66)
where

V (By,B-) =1+ 2e %+ — 8¢ 2+ cosh (2\/§B_> +

4¢P+ [cosh (4@5,) + 1] .

Rev. Inv. Fis. 28(1), (2025)

With equation (66) we can write the equations of mo-
tion as:

aQ _ OHix _i
o = @ Hix}= ope | 12P% (67)
dﬂ+ - o QHIX o i
T {8+, Hix} = s, 15P8+ (68)
ag- _OHix 1
g = - Hixt = ops 130 (69)
d OH
% = {pa, Hix} = — ag;X —
—dexp (4Q) [V (B4, 6-) — 1] — Aexp (6Q), (70)
dpﬁ+ . o OH . ov
a {pﬁ+7H1X} = —ﬁ = —4exp (4Q) B
(71)
dps_ _ OH ov
7 = {pﬁf,HIX} = —ﬂ = —4€Xp (Q) ﬂ (72)

The dynamics of the Bianchi IX model can be seen as
that of a particle in a time-dependent potential. The sim-
ple movements are obtained by assuming the anisotropic
parameters S+ and S_ fixed and the last term of equa-
tion (66) containing the anisotropic potential V (84, 5-)
is negligible, according to 2 — —oo, where it turns out
that each conjugate moment is constant.

From the preceding limit in the Hamiltonian constric-
tion (66) we find that the conjugate moments are con-
stant. Another viable way to verify such a statement, we
take the limit when Q — —oo in equations (70), (71) and
(72), and consequently po = ps, = ps_ = constant.

For the asymptotic description; That is, for large £,
we can be found that in the limit 8+ — —oo the value of
the anisotropic potential of equation (66) behaves as

V(s — —o0, f-) ~ 2exp (—864) —

8 exp (—284) cosh (2\/§ﬂ,> ,

and finally for the opposite case, in addition to f_ < 1,
the anisotropic potential behaves as

V (Bs — +00, B-) ~ 1+ 9662 exp (464) .
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4 Class B
Bianchi III
In the Bianchi ITI model we have [9,31]
Cis = —Cg = L.

Using these structure constants and equation (14),
the curvature scalar is determined by
@ Rirr = 201305, hinh** WM 4203, C3 W +4C3,CF, ™
and we find

O Rrrr =4exp (—2Q+48,). (73)

If we take equation (73) and substitute it into equation
(13), we find the Hamiltonian density

1
Hirr = 21 (*p% er%+ +p%7) —
dexp (4Q+464) + Aexp (692) . (74)

With this Hamiltonian density we can write the equa-
tions of motion:

dQ OHrir 1
={Q,Hii} = opo BTl (75)
d,@+ B M1
— =A{B+, Hrr} = pa, aPees  (76)
dp— OH 1
i ={B-, Hi} = % = pps-,  (77)
%" = —87;;2” = 16exp (40 + 484 ) — 6A exp (69) ,
(78)
d, 0
Z"* ={ps, M1} = — ;iﬁi” = 16exp (42 +48),
(79)
dpgs_ OH
pﬁ ={ps_, Hur}=— 851_11 =0. (80)

Assuming the anisotropic parameters S+ and (-
fixed, consequently, the last term of equation (74) tends
to zero, according to 2 — —oco. From the above it follows
that each conjugate moment is constant. Since equations
(78), (79) and (80) tend to zero as Q2 — —oo, therefore
pa = pp, = ps_ = constant [32].

35

Bianchi IV

This cosmological model has the structure constants
[9,31]

Ciz = —C3 =1,
CV213 = _C§2 = 17
O35 = —C3 = 1.

Using equation (14) we obtain
@ Rpy = 2033C52h1 h** 1% + 4C5.C, B
where the scalar of intrinsic curvature is given by
@ Ry = —2exp (—29 48, + 4\/§ﬁ_)+8 exp (=29 + 48,) .
(81)

Using equations (81) and (13), we find the Hamilto-
nian density

Hiv = pQer/ngerB )Jr

1
24 (
2 exp (4Q + 48+ + 4\/§ﬁ7> —
8exp (402 + 45+ ) + Aexp (69) (82)

From equation (82), we can write the equations of
motion

dQ) _ OHrv _ i
o =M} = ope — 12P% (83)
d5+ . OHiv i
e {ﬁ+,7‘[[v} = apm = 12p5+7 (84)
dB— OH 1
i — (k= G~ e ()

@ = {pa,Hiv} = _378{év =-8 [exp (4\/55_) - 4]

x exp (2 +46+) — Aexp (692) (86)

d OH
ZiJr = {p5+7H1V} = - aﬂiv
-8 [exp (4\/§ﬁ7) — 4} exp (2 +484), (87)
dps_ 9
pﬁ ={ps_, Hiv}= ;;iv =
78\/3 exp (Q 148, + 4\/§ﬁ_) . (88)

Assuming the anisotropic parameters [; and [_
fixed, consequently, the last two terms of equation (82)
tend to zero as ) — —oo; in other words, the last
two terms of equation (82) become very small if Q be-
comes very large. Taking into consideration the pre-
vious analysis, from equations (86), (87) and (88) we

dp dp
find that dfi’tg = di* = dﬂ; =0as Q - —o0; so

po = pp, = pa_ = constant.
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Bianchi V

This cosmological model is characterized by the structure
constants [9,31]

0113 = _Cgl = 17
0223 = —Cg?g =1.
Using equation (14), we find
@Ry =8exp (—20Q +454). (89)

If we substitute equation (89) into equation (13) we find
the Hamiltonian density

1
Hy = o (=pa + 05, +95.)

—8exp (42 + 48+ ) + Aexp (69) . (90)
Using equation (90), we find
dQ) B aHV _ 1
a ={QHv}= = —1gPe (91)
ap+ 3Hv _ 1
dar {5+’HV} - B+ - 12pﬁ+a (92)
ap- 37-[V _ 1
dp” = {pa, Hv} = —32exp (4Q + 48, ) — 6A exp (69) ,
(94)
d OH
p6+ ={ps, Hv} = W—a‘-f = —32exp (4Q +48+),
(95)
dps_ _ _OHv _
7—{106_7/HV}——W—0. (96)

Assuming the anisotropic parameter 84 fixed, conse-
quently, the second term of equation (90) tends to zero,
according to 2 — —oo. Since equations (94), (95) and
(96) tend to zero as 2 — —oo, then we have the result
paQ = pp, = pp_ = constant.

Bianchi VI,
In the Bianchi VI, [9,31]

0213 = _C%Q = ]-a
Ciz = —Cs =1,

C4 =—Cis = -1
0223 = —O§2 - h

With the previous structure constants substituting
them into equation (14), we find
G Ry 1, = 2035C03:h11h*3h*2 + 203502 hooh™ A3+
ACKCRH® +4[(Ch)* + (C)” + 205Ch | 1,
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or

(S)RVI}L = —dexp(—2Q+484) [cosh (4\/557) — 1}
+4 (14 h)%exp (=2 +48+) (9

From equation (96), we find the Hamiltonian density

Hvi, = i (—p?z 4—1)?;+ +p%_) +
dexp (402 4+ 454) [cosh (4\/?:ﬁ,) — 1] — (98)
4 (14 h)?exp (4Q + 461) + Aexp (69) .

With this Hamiltonian density, we can write the equa-
tions of motion

dQ _ . OHvr, . 7i
— ={Q,Hv1,} = ope P (99)
8, _ v, _ 1
{ﬂ+aHVIh} 3p6+ - 12p/3+7 (100)
dﬁ_ _OHvr, 1
— ={B-Hv,} = Ops. 120 (101)
dm = P —6A exp (62) —
16 exp (49 + 45+ ) cosh g4\[ﬁ )
+16exp (4Q +46+) + 16 (1 + h)“ exp (4Q + 4584),
(102)

dp5+ _ 8PHVIh _
TR TN = —16exp (2 +46+) X

[Cosh (4\/?75,) - 1] £16/(1 4+ h)2exp (40 + 454 (103)

dpﬁf OHvr,
o8-

—16\/5 exp (4Q + 464 ) sinh (4\/55,) .

={ps_, Hvr, } = —

(104)

If we assume the anisotropic parameters S+ and S_
fixed, consequently, the last two terms of equation (98)
tend to zero as 2 — —oo. Furthermore, from equa-

d
tions (102), (103) and (104) we find that dg—t“ =2 =

dt
dp .
:t* = 0 according to 2 — —oo; therefore, we conclude

that pa = pg, = ps_ = constant.

7)



Rev. Inv. Fis. 28(1), (2025)

Bianchi VII,

In the Bianchi VII, [33]
Ci3=—Ci=-1, Ch=-Cl=-1
Cis=—-C51=h, Ci3=-ChH=h.

Applying the structure constants to equation (14), we
find the intrinsic curvature scalar

G Ry 11, = 2C33C5h11h*3h?% 4 2035C3 hao h* A>3 +
ACHLCHR® +4[(Cls)* + (C3)* + 20103 ™,
or
G Ry, = —dexp (—2Q + 484) x
[cosh (4\/55,) + 1] +4h%exp (—2Q +4B,)  (105)

From equations (14) and equation (105), we find the
Hamiltonian density expressed by

Hvin, = 55 (—pé + 5, + p%_) + dexp (42 +484) x
[cosh (4\/§B,) + 1] — 4h%exp (42 + 484) .
(106)
With equation (106), we can calculate the equations
of motion

dQ2 _ _ OHVHh _ 1

o & Hvin, = op 127 (107)
dB+ OHvrr, 1

—_ = = —_— = 1

dt {5+7HVII}L} apﬂ+ 12pﬁ+7 ( 08)
ag- _OHvi, 1
g = B Hvin = aps 12 (109)

9
% = {po, Hyir) = — 550 = —6Aexp (60)
—16 exp (49 + 45, ) cosh (4v/38_)

—16exp (4Q +484) + 4h% exp (4Q + 4534,

(110)
dbs OHvrr
dt+ = {pﬁJr,HVUH} = _W _
—16exp (42 +484) [cosh (4\/557) I 1] n
16” exp (42 +461),  (111)
db- OHvir,
g = pe vy = - =
16v/3 exp (49 + 46, ) sinh (4\/@;_) )

We set the anisotropic parameters S+ and S_, conse-
quently, the last two terms of equation (106) tend to
zero as @ — —oo. From equations (110), (111) and

d d
(112) we find that ‘%ﬂ = Zi* = det* = 0 according to

2 — —oo, therefore po = ps, = ps_ = constant.
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5 Concluding remarks

We study Bianchi spacetimes with cosmological constant
by applying the ADM formalism of general relativity
in the Hamiltonian version. From the Lagrangian den-
sity .2 and with the use of the Legendre transformation
we calculate the Hamiltonian density H and the Pois-
son parentheses. Then, we develop the dynamics of the
Bianchi models from the Hamiltonian constriction ‘H and
not from the moment constriction H,. Starting from H
we study the dynamics of each of the Bianchi models
with the calculation of each of the Poisson brackets of
each canonical variable, and through which we conclude
that in the limit when 2 — —oo we interpret each Hamil-
tonian constriction as a time-dependent gravitational po-
tential. We present the way to construct the Lagrangian
density and the Hamiltonian density for each Bianchi
with a cosmological constant without a scalar field. How-
ever, it has not been mentioned that the curvature scalar
®R depends on the structure constants C;‘,, The struc-
ture constants are important in this article.

We further conclude that the FLRW cosmological
models [34-37] can be generalized only to some Bianchi
cosmological models. The Bianchi type I and VIIj cos-
mological models are a generalization of the Euclidean
FLRW model (k = 0), the Bianchi type IX for the spher-
ical FLRW cosmological model (k = 1) and the Bianchi
type V and VII; are for the hyperbolic FLRW model
(k = —1). The rest of the Bianchi models do not contain
the FLRW models as a particular case.

6 Appendix A: ADM formalism of gen-
eral relativity

6.1 Decomposition of space-time

Suppose we have been given a hypersurface in a four-
dimensional Riemann space that can be imagined as an
element of a family of surfaces; the normal vectors n® for
this family of surfaces would be:

B
nun' = —1.

This equation, geometrically, we can interpret as the non-
zero product of the normal vector n* to the hypersurface.

Now let us take these surfaces as the coordinate sur-
faces o = constant (space-time is being cut into slices,
that is, into foliations) of a coordinate system that is not
necessarily orthogonal and we denote the components of
the normal vectors by

Ny = (7N70a070)7

1 N°
e
= (%)

(113)

(114)
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where p,v =0,1,2,3y a,b=1,2,3.

Geometrically, equation (113) represents only the ra-
tio of the proper time flow 7 with respect to the function ¢
in the opposite direction, as the movement normal to the
hypersurface is carried out, we have as a consequence of
the fact that the other components of the vector are null.
In equation (114), the contravariant vector n* to the hy-
persurface, not necessarily orthogonal to n,, measures
in it is last three components the amount of tangential
displacement.

Let us start an analysis to describe some quantities
on the hypersurface. Let us consider a vector flow t*,
which we decompose into its normal and tangential part
to the hypersurface as

t" = Nn* + N*, (115)

where n' is a unit vector to the hypersurface and N* a
tangent vector. The scalar IV is called the “lapse” func-
tion, and the function N* is called the “shift” function.
These quantities, together with the metric gq, constitute
the so-called ADM variables. The lapse function repre-
sents how far one hypersurface is separated from another,
in other words, it measures the ratio of the flow of proper
time with respect to the function ¢, as the movement nor-
mal to the hypersurface is carried out, and therefore we
have dr = Ndt. On the other hand, the spatial part of
the shift function measures the amount of tangential dis-
placement for the hypersurface contained in the vector
field t*.

Figure 1: 3 + 1 decomposition of the manifold, with lapse
function N, and shift vector N*.

Geometrically, the vector flow ¢*, using equation
(115), can be interpreted in the following way: let us
consider two infinitesimally close hypersurfaces, the term
Nn* tells us how much we move perpendicular to the hy-
persurface, on the other hand, with the vector N* we can
affirm that it tells us how far we move tangentially to the
hypersurface. In general, we know that the vector field
t" is not perpendicular or tangential at a point on the
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hypersurface, therefore, we conclude from equation (115)
that the vector field t* can be in a arbitrary direction,
in addition we can decompose this vector field into two
vectors; one perpendicular Nn* and the other parallel to
the hypersurface N*.

The metric tensor gqp of the hypersurface

®ds® = gapdz®da®,
and the metric tensor space-time is related by
ds® = gﬁwdm“dxu = — (Ndl:o)2 +

Gav (dz® + N*da®) (dmb + Nbdmo) , (116)
where (dz® 4+ N®dz®) is the displacement on the base hy-
persurface and Ndt is the proper time between them, or,
rearranging terms

ds? = (N°N, — N?) (da®)® + 2Nada®da® + gapda®da®,

where we have taken space-time with the signature
(=, +,+,+). From the last equation we can see that the
components of the metric tensor are given by

( NoN¢ = N? N, )
Guv = 5

117
Na Gab ( )

where g,» denotes the spatial metric tensor. The con-
travariant components of the metric tensor are found by
inverting the matrix g,., so we have

—1/N? Nt /N?
uy
g - ( Na/N2 Gab — NaNb/NZ (118)
With the help of the tensor
R = g"" +nfn", (119)

which has the properties

h#“’hg = hufﬂ hHV’n‘H = 07 hab = Yab, hab = gabz hg
We can decompose each tensor into its parallel or per-

pendicular components for the surface normal vector.

6.2 Extrinsic curvature

We construct for an arbitrary vector u, at a point p
belonging to the hypersurface a covariant derivative D
associated with the metric tensor h*" by

Dyt = KohSV yug = hOhS (azf’ - rgaux> :

Dy = hih)V pue. (120)

and we extend it for arbitrary tensors by linearity and
Leibniz’s rule. Here V, denotes the covariant deriva-
tive associated with g,,, that is, the equation V,u, =
Ouuy — I, u,. Taking into account equation (120), we
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can see that the covariant derivative D, obeys the fol-
lowing conditions

Dyhu, =0,

(D, D) f = 0. (121)

A consequence of the tensor h,, is define an intrinsic
curvature (S)RZVP, but however, this tensor of intrinsic
curvature defined in the hypersurface is not sufficient in
the sense that it is necessary to describe an extrinsic
curvature that gives us information about how this hy-

persurface curves, this extrinsic curvature is given by
Ky = BRIV png. (122)

Geometrically, the K, tensor describes like the vec-
tors normal to the hypersurface converge or diverge, de-
termining the geometry of an infinitesimal parallel sur-
face.

Taking into account the result V,(n,n”) =
2n"V n, = 0 we have the following important quantities
in terms of extrinsic curvature

K= h#VK,uu = VHTL'U‘,

K"K = (Vun”) (Vont). (123)

Another identity that we will consider here is ob-
tained by considering the generalization of the Lie deriva-
tive £ [38] to a tensor of the type T/t /'™ is given by

LUp

n

HUlefbpn SR 2: SR [eY

SuTul.“un" =u vaTul...l/nm + Tvl...aﬁlunvl/ju
Jj=1

- Z TR F Y i (124)
=1
where T/ /™ is an arbitrary tensor, and the Lie
derivative is taken with respect to u®. If we use equation
(124) we take the Lie derivative of the tensor g,. and the
tensor h,, with respect to the vector n® we obtain the
results

Lnguw =1V pguv + g Vun” + gpuVun?,
thuu = v,unu + VVnp, + n,u,anpny + nynpvpnu.
(125)
Multiplying £,h,. by the mixed tensors hl; h;, we have

K, — %thw. (126)

Taking the second of equations (125) and substituting
equation (115) in this last equation we arrive at the re-
sult

Lnhyw = % (Lthy — N°Vohyw — hpo VN — by VNP |

(127)
consequently, the extrinsic curvature can be represented
by the equation

1
K = g3z (Sehyw = NVl — hpy VuN’ = hyp VN7
(128)
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Finally, if we consider the definition of the covari-
ant derivative on the hypersurface D, given in equation
(120) and the covariant derivative of a first-rank covari-
ant vector

Ko = WohSV g = BORS (‘;% - ;;,nT> ,
we have, using equation (113)
K, = hOhNT,,
with the help of the symmetric tensor
K = hihy (Ng™Topo + Ng*Tepo )

where ¢ = 1,2,3, and with the help of equation (118)
in addition to considering the Christoffel symbols of the
first kind

1 8900 ag 0 89 o
K, = ——h%h; [2NTy,0 — =2 .
wo = ol [ r (awp e T aad

Rearranging the previous equation

_ 1 s
Ky = 5zhlih]

6990_ 8900_ a o 89;10_ a
[axo (&r” B

and considering equation (117), we can alternatively
write the extrinsic curvature as

1 o [ Ohpe
Ky = gphishs ( ot

—V,No — V(,NP) ,

or

(129)

1 [Oh
K = 35 ( o = DulN - DVNH> .

Note that K. does not depend on the derivatives with
respect to t de N*.

6.3 Curvature scalar

The Riemann tensor is defined by

Vi, Vilu, = Rzupuov (130)

and the scalar of curvature is given by

pp Vo

R = Rup09""g

Using equation (119) in the curvature scalar and cal-
culating the corresponding products we arrive at

vo vo v o
R =h""h"" Ruvpo — Ruvpoh”"ntn? — Ry peh*Pn’n’+

Ryvpont'n’n’n?,
furthermore using the symmetry of the Riemann tensor,

the last term is zero, so the above equation reduces to
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R = Ryuvpoh""h*% — 20" 0" Ryypom”,

if we now take into account equation (130), the scalar of
curvature takes the form

R = Ryuupoeh""h"% — 20"°0" hy, [V, V] 07,

or

R = Ruvpoeh""h"7 — 20" [V, V. ] n*. (131)

Now, our objective is transform the second term of
equation (131), that is, we will transform the equation

n" [Vu, Von' =n"V, (Von!) —=n"V, (Vun"),
and for this we take into account these small tricks
n’ [V, Vo] =n"V, (Vun) = n"V, (V,un") -
(Vun") (Von®) + (Vun”) (Vun®)
+(Von?) (V) = (V) (Vo)
to arrive at the equation
n" [V, Von' =V, (n"V,n") =V, (n"Vun") —
(Vun") (Vun®) + (Von”) (Vun")
which is equivalent to
n" [V, Vo]n' =V, 0"Vt —n*V,n") —
(Vn”) (Vor) + (Von®) (V).

From this last equation when considering equations (123)
it is transformed into

n’ [V, V| n" =V, (n"V,n" —n'V,n")—K" K,,+K,
and consequently the scalar of curvature is given by

R = Ryupoh""h’" — 2 x
[K? — K" Ky + V, (n"Von* —n#V,n")]  (132)

Next, we want to find the Riemann curvature tensor
on the hypersurface related to the covariant derivative
D,, which is expressed in equation (120) by the equa-
tions

[Dy, D] u, =® RS, u0. (133)

Using equation (120) we can write
D.Dyu, = D, (hz/h,f;”v,/u,,/) :
and equation (120) again,
DyDyuy = W B g (b )
then after applying Leibniz’s rule twice

DHDyup _ hﬁ/hzuhgl’ (h,’j:/ h’Z:’ VH/ Vulup/) —+
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h e he he, (V#/hZ:,) Vot
+hf b 0 (Vb ) R
and with the help of the result
B YN b = W B N (g% + nny) = Kpun®,
we get the equation
DDy, = B hY BN 0V +
B Kupn? Vot + e Kpun” Vo, . (134)
Transforming the second term of equation (134)
DuDyuy = he WY BN iV iy — hY K V,m?
+hZIKWn"/Vl,/u,J/
or
DuDyu, = W b BN WV iy — Ko KLy +
e Kown” Vo, (135)

We have, by exchanging indices in equation (135) and
subtracting the resulting equation from this

[Dys Do)ty = s BB [0, V] =
KupKE wy + Koy K2 u,
and with the help of equations (130) and (133)
G RT, s = B BY B ROt g+

(—KWK,’,’/ + KV,,K;{) Uy
or
(3)RZVPUU —_

(Pt B2 1 1 B — Kup K+ KupKT ) wo (136)
equation that expresses the Riemann tensor on the hy-
persurface in terms of the Riemann tensor in spacetime
and the extrinsic curvature. This equation is called the
Gauss-Codazzi equation [39].

Finally we will obtain the spatial curvature scalar
from the equation

(O - C) Rw,poh"”h”“, (137)

which when using equation (136) is written as
R = h" K’ Ryppe — K* + K K",

and when taking into account equation (132)

G R=R+K?— K, K" 42V, (n"V,n" —n"V,n"),
(138)
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or we also write it in the form

B R =R+ K* - K, K" +2V, (A"),

where A* = n"V,n" — n*V,n". The last term of this
equation is the covariant derivative of the term A¥ and
when introduced into the action, through the divergence
theorem it has not dynamic information and we can ne-
glect it.

Equation (138) is called the Codazzi equation and
shows the relationship between the scalar of curvature
of the hypersurface and the scalar of curvature of space-
time.

6.4 Hamiltonian Formalism
From equation (117) we see that the volume element is
given by ]
V—gd*z = N+/det (h)dtd*z,
from where it can be found by comparison /—g =

N /det (h).

Taking into account the Codazzi equation we can
rewrite the action for the gravitational field in the form

S(gap, N, N = /dt/d%N\/Mx

((3)R K%+ K K" — A) . (139)

where
L = Ny/det (h) ((3)R K%+ K K" — A) . (140)

So far we have rewritten the action of the gravita-
tional field so that we can find the field equations with
cosmological constant, taking the variation of the action
and setting it equal to zero (65 = 0)

0—/dt/d3 (‘MG ab + 5"%51\7“ —‘wcw)

ON ON

from where the conjugated moments are

b 0Le _ Jdet (h) (Kab _ anb) 7

6hab
« 0Zc
™ = 0
0N,
0La

SN

(141)

=0, (142)

(143)

S[g(lbaN7Na]:
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In equations (141), (142) and (143) we have taken into
account that the action (139) depends on aggb = hap and
not from N, N°.

Equations (141), (142) and (143) describe a singular
system with the primary constraints

Co=ma=~0, C=n=0.

Now we are able to write the Hamiltonian, using the
Legendre transformation. Constructing a Hamiltonian
for a system with constraints [40,41] such as our case
H + M C; and introducing the Lagrange multipliers \ y
A% and with the help of the transformation from Legen-
dre and the action for the gravitational field [42-51] we
write the canonical form of the action

S[gab,N,Na]:—/dt/d3l‘

[hubw“b +AC + A*Cy — No/det (h) (<3>R K K"K — A)]

+/dt/d3x (habﬁab+Na7ra+Nﬂ).

We have, by taking the Lie derivative of the project-
ing tensor hgp in the direction of N
LCNhap = NV, hap + hep Va N°¢ + hachNC

and with the help of equation (115)

»QNhab = »chab - Nsnhab. (144)
Let us introduce the equation
1
T o — 5 (72)? = det (h) (KabKab - K2) . (145)

equation in which we show the relationship between the
conjugate moments 7%° and the extrinsic curvature K.

From equation (144) and considering equation (126)
the result is obtained

habﬂab = Sthabﬂ'ab = SNhabﬂ'ab —+ QNWQbKEb,

which, when taking into account equation (141), becomes

Lihapm™ = Cxhapm™ + 2N /det (h) (K“bKab - K2)

(146)
With the results (144) and (145) we transform the canon-
ical form of the action to the equation:

/ dt / P (habw“b N 4+ N7 — AC — \°Cly — £Nhab7r“b)

/dt/d%z\f[ det (h )(<3>R A)

gy (e 3 07)]
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Once again we use the Lie derivative to find the equa-
tion
LExhapm® = 2hay Vy N,

if we partially integrate this equation by parts

/dt/d%sNhM“b = Q/dt/de

[Db (haeN®) 7 — hachDmr“b]
and using Gauss’s theorem, we arrive at
Enhapt™ = —2hae N Dy, (147)

Therefore the action is expressed by

S[gap, N,N*] = /dt/d%

{habw“b + N + Nt — AC = A*Cl — N"Hq — N?—L}(148)

where

H = o (Wabwab — % (7TZ)2)7\/M ((B)Rf A) ,

det (h) (149)
(150)

We can then write the first order Lagrangian density
from equation (148)

K% (hab7 ahab’ﬂ_ab7 N7 Na) _ ﬂ_ab 6h’ab

Ha = —2hae Dy,

ot ot

N+ N7 —AC — A°Coq — NH — N*H,.

The action integral from this Lagrangian density will
be functional of the metric hqy as well as the moments
m, 7% and 7°° and the functions N, N®. It is important
to note that in this Lagrangian density the functions N*
could play the role of Lagrange multipliers and the action
is no longer written in parameterized form, that is, the
Lagrangian density is in canonical form. The analysis
of each Bianchi model presented in this article, in ac-
cordance with the formalism presented in this appendix,
can be extended to the case where matter, cosmological
constant and a scalar field are considered (to analysis of
some Bianchi’s models, see [52-60].

For arbitrary functions, we can write the functions

C(f) :/d%fc, (151)
c(p= [ darc., (152)
H(f) :/d3xf7-1,, (153)
H(f) :/d%f“m, (154)
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and therefore the Hamiltonian takes the form

H=CMN+CA\")+H(N)+H(N). (155)

The consideration of the previous integrals has been
carried out as a consequence of having the principle of
gravitational action in the ADM variables, that is, equa-
tion (148) and with this we would avoid working with
the Hamiltonian densities H,H, and the primary con-
straints C,C,, but we would work with the Hamilto-
nian of equation (155) and consequently, we can note
that the Lagrangian function can be defined in terms of
the Hamiltonian of the equation (155) using the Legen-
dre transformation as in Classical Mechanics when the
Hamilton principle is defined and one wants to change
from the Lagrangian to the Hamiltonian formalism and
viceversa.

The phase space is structured by the local configura-
tions of the fields (hqp, w, 7%, 7, N, N) for ¢ fixed and
Poisson brackets

{has (t, ), 7 (t,2")} = 0568 (x — 2,

{Na (twr)?ﬂ_b (t,.’E)} :5g§(x_$l)a
{N(t,z),m(t,z)} =6(xz — ).

(156)

Intuitively, the constraints C = 7 =~ 0 and C, = 7, =
0 are preserved under the evolution of the system, and
therefore we impose consistency conditions

LN =0={HCNI=H(),  (157)
Togm=o=tmoynn=nyy, @)

where the total derivatives are derivatives with respect
to the parameter ¢ (proper time), and since these rela-
tions cancel out independently of the values of the fields
f and f* we obtain the secondary counstraints
H~0; Hqo=x0. (159)
The constriction H, results from the arbitrariness in
the way we slice our space-time into hypersurfaces.
The Poisson parentheses that satisfy the Hamiltonian
and the secondary constraints satisfy the Dirac algebra:

{Ho (t,x), Hp (t,2")} = Ho (L, ) aaa §(x—a)
(M (t,2), 1 (t,2)} = g"Ha (t,2) 520 (z — '),
{Ho (t,x), H(t,z")} = H(t,x) 5oa0 (z — x').
(160)
The structure of this algebra together with the equa-
tions C' = 7 =~ 0 and C, = 7w, =~ 0, guarantees that the
evolution of the canonical coordinates in the phase space
assigned to equations (157) and ( 158) is independent of
how the spatial hypersurface is deformed and the coordi-
nates of the initial and final configurations for the lapse
and shift functions.
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