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Abstract

Experimental evidence so far suggests that there are only three generations of quarks and leptons. Before
electroweak symmetry breaking, the three families of quarks and leptons are indistinguishable, so they
are invariant under transformations of the S3 group. Using the symmetry S3 we have at our disposal 3
irreducible representations, 2, 15, 1,, where we can accommodate up to 4 Higgses doublets in a model
that occupies all the irreducible representations of the group Ss. This model with four Higgses doublets
(4HDM) is of great interest, thanks to the fact that we can take the fourth Higgs doublet as a stable
particle without interaction with fermions so that it becomes a candidate for dark matter, while with
the remaining three Higgses the properties obtained are maintained. An important condition for having
a viable dark matter candidate is its stability, i. e., it does not decay into Standard Model particles.
The simplest way to establish the stability of a particle is imposing a discrete symmetry Zs, so that all
the fields are transformed in the form ¥ — ¥, while the dark matter candidates are transformed as
X — —X, this way we make sure we don’t have terms denoting decays of x. This method will be used
in 4HDM. Another imposition required to propose the candidacy of a field of the doublet H,, is that
its corresponding Vacuum Expectation Value (VEV) is equal to zero, v, = 0.

Keywords: Four Higgses doublet model, flavor symmetry, dark matter candidate.

La simetria S3 en la materia oscura
Resumen

La evidencia experimental hasta ahora sugiere que so6lo existen tres generaciones de quarks y leptones.
Antes de que se rompa la simetria electrodébil, las tres familias de quarks y leptones son indistinguibles,
por lo que son invariantes ante transformaciones del grupo S3. Usando la simetria S3 tenemos a nuestra
disposicién 3 representaciones irreductibles, 2, 15, 1,, donde podemos acomodar hasta cuatro dobletes
de Higgs en un modelo que ocupa todas las representaciones irreductibles del grupo Ss. Este modelo con
cuatro dobletes de Higgs (4HDM) es de gran interés, gracias a que podemos tomar el cuarto doblete de
Higgs como una particula estable sin interaccion con los fermiones por lo que se convierte en candidato
a materia oscura, mientras que con los tres restantes las propiedades obtenidas se mantienen. Una
condicién importante para tener un candidato viable a materia oscura es su estabilidad, es decir, no se
desintegra en particulas del modelo estdndar. La forma mas sencilla de establecer la estabilidad de una
particula es imponiendo una simetria discreta Z2, de modo que todos los campos se transformen en la
forma W — W, mientras que las candidatas a materia oscura se transformen como xy — —Y, de esta
manera nos aseguramos de que no tengamos términos que denoten desintegraciones de . Este método
se utilizara en 4HDM. Otra imposicion requerida para proponer la candidatura de un campo del doblete
H,, es que su Valor de Espectacion del Vacio (VEV) correspondiente sea igual a cero, v, = 0.

Palabras clave: Modelo de cuatro dobletes de Higgs, simetria del sabor, candidato a materia oscura.
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1 Introduction

The symmetric group S, is the group of bijections of
{1,2,...,n} to itself, also called the permutation group of
n objects. It is a finite group of order n!, that is, there
are n! ways to swap n objects. The group that interests
us is S3.

The group Si, comprises the permutations of a sin-
gle object, and its only element is the identity {E}.
The group S> comprises the permutations of two ob-
jects f1 and fo. This group has 2! = 2 elements {E, A},
where E is the identity that produces the trivial trans-
formation, fo — f2 and A produces the transformation
A: fi — fa2, fo — f1. Note that the symmetry groups
are abelian.

The group S3 comprises the permutations of three
objects fi, fo and fs3. This group has 3! = 6 ele-
ments {E, A1, Aa, A3, As, A5}, where E as always, is the
identity, Ai, A2, A3 transform two elements and leave
one fixed (for example A, produce la transfomacion
A2 : f1 — f3,f2 — f27f3 — f1) and A4,A5 pro-
duce a permutation of all objects (for example A4 :
fi — fo,f2 — f3,fs — f1). Let us now note that
A1 A4 # AsAq, so the symmetry group S3 is non-abelian.
In fact, since a group Sy,, where m < n, is a subgroup of
Sr. The groups S, with n > 3 are non-abelian.

Experimental evidence so far suggests that there are
only three generations of quarks and leptons. Before elec-
troweak symmetry breaking, the three families of quarks
and leptons are indistinguishable, so they are invariant
under transformations of the Ss group. This tells us that
the S3 symmetry [1-17] is convenient. The fermions in
the irreducible representation of the doublet are denoted
as ¥p(r,r), Where

up(Lm)= (00 ) 2 )

and those found in the symmetric singlet representation
as

Ys(L,r) = Y3r,r) ~ Ls (2)
where 1, 2, 3 represent the index of each family of the
left (L) or right (R) fermionic field. For quarks we have:

1 2 3
E:<1 2 3)’ Al*(
1 2 3
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Y3, = (br,tr),
YL\ _ [ (ur,dr)
( Yo, ) B ( (cr,sL) )’ @
Y1,R [ ur
(1/)2,12 )w—u_< CR )7 (5)
V1R ([ dr
<¢2,R )wd_(sR)’ (6)
where (ur,dr) and (c,sr) are doublets SU (2),, while

UR, CR, dr ¥ Sr are singlets SU (2); .
The Higgs fields are then denoted as:

Y3,r =tr, Y3,r =Dbr (3)

HD;<H1)~2, Hy~1s, Hy~1,. (7)
Ho

We accommodate four SU (2) doublets into the irre-
ducible representations of the permutation group Ss, de-
noting the symmetric and antisymmetric scalars by H,
and H, respectively, while the remaining two doublet H;
and H; are arranged in a column vector conforming the
S3 doublet, i. e.

he _ hg
HS_(h?+vo+ih€) H“_<h2+va+ih§)
le(

hS o hs
T4 vy 4 ik 2T\ nE 44k )
2 The symmetry group S3

The group S3 is defined as the group of permutations
of three objects [18]. This is a non-abelian group and
is formed by three even and three odd permutations of
three objects, which can be labeled as follows (f1, f2, f3).
The elements of the group are

Ss = {E, Ay, Aa, As, As, A5} (8)

where E is the identity element of the group and the A;,
with i = 1,2,3,4,5, label the permutations as follows

2 3 1 2 3

1 3)’ A2*<3 2 1)’ )
2 3 a1 23

31 ) 7 \3 1 2)

The notation used refers to the exchange of the sub-

scripts of f1, f2, f3, for example A; acts as follows:
fi—f2

fo—f1.
fs—f3
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In general, for the permutation group S, the prod-
uct between two of its elements is simply their successive
application and this product is not commutative. Thus,
for example, by multiplying As with As we obtain that:

1 2 3
A2A5:(3 2 1)
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in terms of f1, fo and f3

fi — fs — fu,
f2 —>f1 —)fg,
f3 —>f2 —>f2.

The products between the remaining elements of
group Ss are carried out in an analogous manner to the
previous example. Thus, the multiplication table of the

3 (1 2 3\ 4., Broup is given in table 2.
2 - 3 2 = 43,

1 Now in general, if
A= (12 "leS,=aAat=( " © ") €S,
1 12 in 1 2 n

where A™! is the inverse element. Therefore, the condi-
tion is satisfied

A'A=AA"T=E.

As a particular example in the case of S3, the inverse
of Ay is

(21 3\_ (12 3)_
Al_(123)_<213>_A1’

analogously, we have the inverses of the other elements

E-! =F, Al_l = A, A2_1:A2,
Al = A3, A7l = A5, AT = Ay

[ Elements | E [ Ay [ Ao [ A3 | Ay [ A5 |

E E | A1 | As | As | As | As
Aq Al | E | As | Ay | As | As
Ao Ay | Ay | E | As | A1 | As
A3 Ag As A4 E AQ Al
Ay As | A As A As E
As As | As | A1 | As E Ay

Table 1: Multiplication table of group Ss.

2.1 Conjugate Classes
A conjugate class for a group G of order g is defined as
(a) = {a, b/u"bu = a,u € G}.

The identity element E by itself forms a conjugate
class, the remaining classes are determined with the help
of the multiplication table of the group (see table 1).
Thus, for the conjugate class whose representative is A;
and which is denoted as ki1, we have:

A7YAI AL = A7 A = Ay

AT Az Ay = A7 AL = Ay

AZT Az A3 = A7 A5 = Ay
Denoting with k2 the conjugate class with representative
Ay, for this we have

A A4As = AJ'E = A,

AT A5 AL = AT A3 = Ayl
Therefore, the group Sz has three conjugate classes that
are denoted as F, k1 and k2, and have the form:

E={E}, ki={A1,A2,As}, ko ={A4As}.
(10)

The conjugate classes of the group are useful for con-

structing the so-called class operators and in turn con-

structing the projectors of the group.

2.2 Representations of S

In this section we will construct a pair of matrix repre-
sentations of the group S3, we will begin by considering
the three-dimensional vector space generated by the ba-
sis vectors
{ @1=(100), @>=(0,1,0), €5=(0,0,1) }.
(11)
The way in which the element F acts on the base vec-
tors is evident, so we are tempted to represent element
in matrix form in the following form

100
DE)=[0 1 0
00 1

For a more illustrative example, we analyze the effect of
applying As to the basis vectors,

A5€)1 = E)37

A5€>2 - €>].7

A5E 3 =s,

thus the matrix representation of As is

00 1
DAs)=( 1 0 0 |,
010

analogously for the other elements of the group Ss, we
then obtain the so-called representation Ss
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1 0 0 0 1 0 0 0 1
DE)y=(0 1 0|, DA)=1 0 0|, D(A)=]1 0 1 0 |,
0 0 1 0 1 0 1 0 0
1 0 0 01 0 0 0 1 (12)
DA )= 0 0 1 |, DAY= 0 0 1 |, D(As)= 1 0 0
0 1 0 1 0 0 0 1 0
The real representation is a three-dimensional repre-
sentation.
A1?1 = COS (2%) ?1 + sin 2%) ?2 = —%?1 4+ ??2
- _ so(2m = 2\ = _ _ V3> 1—
We will now construct one more representation, tak- Ay7€s = —sin () @ i4+ cos (7_) €2="75 €17 3¢€
4 €3 = €3,

ing advantage of the fact that the group S3 is isomorphic
to the symmetry group of a rectangle triangle [19], ele-
ments A;, A2 and As are associated with reflections on
the indicated axes of symmetry and elements A4 and As
with rotations corresponding to angles of 27/3 and 47 /3
respectively, around the z axis. Let us consider again
the three-dimensional vector space generated by the base
vectors (11), as an example, let’s see how A4 (rotation
by 27/3 around z) acts on the base vectors,

1 0 0 :
DE)=(0 1 0|, D(A)=| -&
0 0 1 0
L V3 _1
2 2 2
D(As)=| 2 -1 o |, DA)=| -8
0 -1 0

_1 3 g

3 2
D(As)=| - -1 o
0 1

Proceeding in a similar way with the other elements

-4 1.0 0
-2 0 |, D(A)=| 0 1 0 [,
0o -1 0 0 -1
V3 1 V3 (13)
%y 2 7,
-2 0], DM@s)=| £ -1 o0
1 0o 0 1

The matrices of this representation are unitary, there-
fore the representation we have just constructed is a uni-
tary representation. From now on we will work specifi-
cally on this representation.

Now, from group theory, we know that the number
of non-equivalent irreducible representations of a group
G of order g is equal to the number of conjugate classes
in the group, so in our case, because the number of con-
jugate classes of Ss is 3, we can say that the number of
irreducible representations of Ss is 3. On the other hand,
we can also determine the dimensions of the irreducible
representations of S3 by the following relation

3

2 2 2 2
E nV:n1+n2+n3:6
n=1

by simple inspection we can notice that the values for
which this equation holds are n; = ng = 1 and n3 = 2,
so the irreducible representations of S3 have dimensions
1 and 2 respectively; that is, we can decompose the group
into two singlets and a doublet.

We see that all the matrices in the representation (13)
have a block structure, so it is evident that they are re-
ducible and therefore we can decompose them into two
matrices of dimensions (2 x 2) and (1 x 1), but we also
know that there exists a trivial irreducible representation
for each group, called the identical representation and
which is characterized by DV (R;) = 1, for all R; € G.
All this is summarized in Table 2.

Using the equation to obtain the characters of a group
[19]

(14)

and using table 2 we can build the respective character
table 3 for Ss.
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Element | D | D@ | DO ‘

1 0
s ] (50)
1 _ V3
Aq 1 -1 72£ 75
2 2
-1 0
A (00
1 V3
As 1 -1 é _21
2 2
_1 V3
Ay 1 1 7& jl
2 2
1 V3
As -1 1 \é _i
2 2

Table 2: Representations of the elements of
S3. DW and D® correspond to one-
dimensional representations, while D is
a two-dimensional representation.

| Classes/Representation | E [ Ki [ K3 |

DM 1] 1 1
D® 1] -1 1
D® 21 0 -1

Table 3: Characters of Sz, where k! (i = 1,2)
corresponds to the ith class of the group
and the superscript [ indicates the num-
ber of elements in the class.

We can express the representations in terms of their ir-
reducible components, that is
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where @ denotes the direct sum and the a, can be de-
termined according to the equation

v 1 Uk
a = ; ZCiXi Xis (16)
i=1

where g is the order of the group, ¢; is the number of
elements of class K, XEV) is the primitive character of
class K;, and x; is the composite character of the class
K;. We compute a1

(1)

1
a; = — |:61X1 (L
g

X1+ c2Xs M

X2 + ¢c3x3 X3]

consequently a; = 0, similarly, we find that

a1:0, agzl, a3:1,
which means that the representation D® and D® are
included in D, but DW is not here.

The matrix representation of equation (13) in terms
of its irreducible components is expressed as the direct
sum of a single singlet and a doublet, that is,

D=D®aD®. (17)

We can obtain a representation of S3 by direct prod-
uct of the irreducible representations, in particular we
construct the direct product of each element of S3 with

D=aDV ®a;D? & a3D(3), (15) itself in the representation D this is:
E 0 14, -84
sore(58) men=( 4, 90
—Ay 0 14, LBy,
A2®A2:( 0 A2)7 A3®A3:(Z§A3 _2%143 ; (18)
1 V3 1 V3
—zAy Y2 Ay **As **AS
As @ Ay = 2 2 . A5 @ A5 = 2 2 7
< — A LA > T ( PAs 34
then we get jectors we use the equation
v ny v
D® g D® = pM g p® g p® (19) Pr==> xi"Ci (20)
i=1

which is the direct sum of a pair of singlets and a doublet.

2.3 Projectors

The projectors of the group we can obtain the functions
adapted to the S3 symmetry (invariants). For the pro-

where C; are the class operators, obtained from the di-
rect product of each representation element D; this
is,

Co=EQFE, (Ci=A® A,
Co=A20 Az, (C3=A3® Az,
Ci=A10As Cs5=A5Q As

(21)
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Then, the form of the projection operator on the sym-
metric singlet is given by:

1
Py = 5 [1Co+1(Ci+C2+C3)+1(Cs+ C5)]

P, _1 E—As+ 3 (A1 + As — Ay — A5) _g(Al_AB_AAL‘FAS)
56 —?(Al—A3+A4—A5) E+ A1 — 1 (A1 + As+ Ay + As)

1
0
o |
1

Similarly, we find Pi,, the projector on the antisymmetric singlet (Pz)

_ o O
[en R en s N an)
o O OO

1
P1A:6[1C0—1(C1+CQ+C3)+1(C4+C5)]P1A
P L[ Bt A= 3 (ALt Ast As) —3 (A; — As + Ay — As)
46 _§(A1_A3_A4+A5) E—A;— 3 (A1 + As — Ay — A5)

0 0 O

1 0o 1 -1 0

Pa=5l0 -1 1 o

0 O 0 O

And finally we find P>, the projector on the doublet (P?’)7

2
Py = 6[200—0(01+02+C3)—1(C4+C5)}PA
P2 =1T4x4 —P1g —P1,

—1

—= = O
—= o O

0

The projector P> can be decomposed into two terms, each of which is a tensor of rank one, that is,

P, =P + PP,

where
1 0 0 -1 1
a 1 0 0 0 O _ 1 0 1 B
e 0 0 0 O V2 0 \/5(1 00 1)’
-1 0 0 1 -1
and
0 0 0 O 0
m_1{0 1 1 0 _ 1 1 1
Rr=3101 1 0 V2|l \/5(0110)
0 0 0 O 0

The eigenvalues of the elementary projectors will allow the construction of the matrices ¢ that diagonalize the product
by blocks D (R) x D (R).

With the help of the projectors, the direct product X®Y is decomposed into a direct sum of singlets and doublets.
Then, applying each of the projectors obtained previously to said direct product, we obtain:
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1 0 0 1 T1Y1 T1Y1 + T2y2
_1p 0 0 0 O Tiye | _ 1 0
PsXoY)=510 0 0 o zayr | 2 0 ’ (22)
10 0 1 ZT2Y2 Z1Y1 + T2y2
0 O 0 O 11 0
1 0O 1 -1 0 T1Y2 1 T1Y2 — T2Y1
P, (X®Y)=> == 23
14 (X@Y) 21 0 -1 1 O Toy1 2 —z1y2 +22y1 |’ 23)
0 0 0 0 T2y2 0
1 0 0 -1 T1Y1 T1Y1 + T2Y2
1 0 1 1 0 T1Y2 1 T1Y2 + T2Y1
P2 (XQRY)=—- - = 24
2 (X@Y) 2 0 1 1 0 T2Yy1 2 T1Y2 + T2y1 @4
-1 0 O 1 T2Y2 —T1Y1 + T2Y2
Or
1
1 1 0
P, (X®Y)= ﬁ (z1y1 + x2y2) ﬁ 0 , (25)
1
0
1 1 1
P, (X®Y)= 7 (z1y2 — T291) AREE (26)
0
1 0
1 1 0 1 1 1
Py (X ® Y) = ﬁ (m1y1 — I2y2) ﬁ 0 + ﬁ (3311/2 + J32y1) % 1 (27)
-1 0
The coefficients of the eigenvectors are the functions e A doublet whose components are:
adapted to symmetry. If (z1,z2) and (yi1,y2) are the
components of two doublets of S3, the Kronecker prod- (L (191 — T2y2) L (z1y2 + $2y1)) .
uct (z1,z2) ® (y1,y2) contains the following components: V2 V2
e A symmetrical singlet: 3  Mass matrices
1
ﬁ (T1y1 + T2Y2) , The Yukawa Lagrangian density for three families of

quarks and leptons is written as follows

which is invariant under the group Ss. 3 5 (= sugrlio o
Ly = Zi:l Z]’:l {Qz]YzJH 2 2Qs + QzYwH 2 SQJ}

e An antisymmetric singlet: n 2?21 2321 {ZL'LY;;;H 1+203 lrj + ZLz‘Yile 1—203 le} ,
1 (28)
ﬁ (T1y2 — T291) , where ); and L; denote the weak isospin doublets of
quarks and leptons, respectively; H is the Higgs field.
which is not invariant under the group Ss. The weak isospin doublets are expressed as follows:

aw=(50)= (40 ) vo=(8)=(48)
a@=( 50 )=(m ) so=(20 )= ). 29
a@=(30) )= (4n ) vo=(70 ) -0 )



44

Rev. Inv. Fis. 27(2), (2024)

It is convenient to rearrange the terms of equation (28) and write the Lagrangian density .Zy as a function of the
spinors 17 and 1!, whose components are defined in the space of families like:

u (@) i (@) ve (x) v (a)
@ ={ @ |={ @@ |, v@={ we |=| W@ |
t () e vr () e (30)
d() v () e (x) o)
vi= | s@ | = v@ |, VY@= u@ | = @
b(x) 04 (2) 7 (x) v (2)

The Yukawa Lagrangian density in family notation,
equation (28), is

o u u —d
Ly =37, 23:1 {d’LiYij Hyg; + d)RjYil]i'Hl/)%i}
—, v v —1
+ Y0 S { BV HR, + O, Y YL
(31)
Before the breaking of gauge symmetry, quarks and
leptons have no mass and the theory is chiral. Therefore,

the left and right spinors transform independently, that
is:

with ¢ = u,d and [ = 14,l; where g € S31, acts on the
left spinors, and g € S3gr on the right spinors.

When the gauge symmetry is spontaneously broken,
the fermions acquire mass. Therefore, the fields of quarks
are transformed as follows:

ng () 7/’(1112 ()
Vi(2) 29 (2) =g | 3. (x) | +8| ¥ig(2)
Y3r, (%) Y3g (2)

(36)
In the same way, the fields of charged leptons and
neutrinos transform as:

q »d — fllL <x) 32
soovie-s( e | o ) o)
l Pi(x) > (z) =g ¢%L (z) | +8 '¢'j2R (z)
. . 1z (z) V31, (2) Y3 (%)
YL (z) L (z) =g or () | s (33) (37)
Lo () The left and right chirality components of the same
q field are transformed with the same group element. The
q q ~ 1B () flavor symmetry group of the bilinear forms in equations
Vi (@) > Vg (z) =8 iR (@) ] (34) (36) and (37) is the group S5°*Y whose elements are the
5r (7) pairs (g,g), with g € S5z, and g € Szgr and g = g’
Ir(z) Clearly, S§"*9 C S31, x Ssr.
O (z) = vk (z) =8 br(z) |- (35) The mass term from the Yukawa coupling is trans-
. (z) formed as follows:
Ly = Ly =My + PR Maty + §7 My ! + My + hc., (38)

substituting the expressions for 1?99, ¢! 4!, we obtain

Ly = Pig" Mugih + Uhe" Mag? + 07 8" My, gy + Vg’ Mg, + hoc.. (39)

Therefore, under the action of the flavor group S99,
the mass matrices My and M; are transformed according
to the following rule:

M, = gTTMug,
Mq=g Mg,

40
M, = gTMl,lg, (40)
M, = g™ Mg.

If the Yukawa sector is invariant to the family group

549 it must be true that
My = M,

M; = M, (41)

The Yukawa sector of the Standard Model has family
symmetry if the mass matrix commutes with all elements
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of the group S3, that is

[Mu,Sv g] =0,
[Md,S, g] - 01
[MVl»Sa g] = Oa (42)
[MZ,S, g] =0

4 Model with 4 Higgs doublets and sym-
metry S

Using the symmetry S3 we have at our disposal 3 irre-
ducible representations, 2, 15, 1,, where we can accom-
modate up to 4 Higgses in a model that occupies all the
irreducible representations of the group S3. This model
Ss — 4H is of great interest, thanks to the fact that we
can take the fourth Higgs as a stable particle without

1 ®1s ® 15 ® 15,
1 ®1s ® 14 ® 14,
1L.®1l.®2®2],,
2®2,©2e2,,

1. ®1a ® 12 ® 14,
Lele2®2],
1.®[202®2],]_,
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interaction with fermions so that it becomes a candidate
for dark matter, while with the remaining three Higgses
the properties obtained are maintained. in a model with
four doublets. It is worth mentioning that the possibility
of obtaining dark matter candidates with only three dou-
blets was explored [20-22], but no way was found without
altering the results obtained for this model.

The Higgs potential has quadratic and quartic terms.
This means that we need to find the invariants of S3
made with two and four fields that are irreducible repre-
sentations of S3. The invariants of S3 for the quadratic
and quartic tensor product are, respectively,

For the construction of the terms in the potential, we
need to consider the weak index of the fields. We make
the corresponding projections to generate the invariants
of S3 and for this purpose we use the projections of the
four-dimensional real basis of S3.

e Invariants with two fields:

(a)
H! @ H,
(b)
H} @ H,
(b)
(#l e m)w, (1)@ Hp) =
(c)

1
Ws(HLH, @ HIHp) + h.c. = 7

S

1.®1s, 1la®1ls, [2®2]
and
[2®2]s®[2®2}s7
L.®la®[2®2],
lL.®[20[212],] ,
(202, ®2e2,],.
(c)
;
: B H Hy \ _
WS(HD®HD)—WS( H) )@( o )—
HlH,
H{Hy | _ ( f i
| | = ()
HIH,

e Invariants with four fields:

Hp + H, :
(a)

(#leon)e (aleH,)

(e m.) (Bl + ) 1)

[(H§H1)2 ¥ (H§H2)2 + (HIHS)2 + (HJHS)Q] 1)
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Wa(HL Hy  HIHp) = % (st (mim) + (mfm.) (ries )| o)
(e)
W, [H;HD ® W, (H); ®HD)] +he.= 2w, {(HSTHD) ® ( g%g?fggg; )} Yhe
=3 [(mim + i n) (HUH + 5L + (BU + HYH) (HUH - B )] 1)
()
w. W, (#h @ Hp) @ W, (Hf @ Hp )| = 2w K Zijgﬁ J_rggg; > ® ( Ilﬁgf i %Z; )]
= ok |(#lHa + Hym) (L Hy + Hy ) + (HUH - B (HUH - ) | 1)
(8)
W (H}, @ Hp) @ W, (H], @ Hp)
—1 {(HITHQ + H;Hl)2 + (mlH - H%Hg)z} 1)
(h)
Wa (H) @ Hp) & Wa (H, @ Hp)

=1 (HIH1 - H§H2)2 1)
Hp + H, + H, :
(a)

(#lem)e (Bl eH,)
(b)

(o H.) o (Hl @ M)
(c)

(#len.)e (oo H,)
(d)

(#ioH.) e (H @ 1) +he
(e)
(H; ® Ha) W, (H]T7 ® HD) = % (HlHa) (HIHl + H§H2) |1s)

()

—~HIH, ~H}H,
+ t . RSN 2°7a
W, (HDHa ® HDHa) +he =W, K iy ) ® ( iy )] +he

= 35 (o) + ()" + o) + (ot )
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—HIH, —H!H.
i i _ 24ta atl2
W, (HDHQ®HGHD) - W, K iy ) ® ( Hi, )} T he.

- [(HIHG) (HIH:) + (HgHa) (HZHQ)} 1)

(h)
(71 @ H.) Wa () @ Hp ) +hee. = % (. — mim) (mim - mm) L)
(i)
W (HLHy @ HHa ) + he. = W, —Ig;f ) ®< _}ggf )}
= & [(ndn) (nima) = (la) (HIH) +he] 1)
@)
W (HLH, @ HiHp) + h.e. = W, K —Iggf )®< _}ggg )}
= % [(HQTHS) (HiHy) — (HIHS) (HIHz) + h,c,} I1.)
(k)

—HIH HIH, + HIH
t t 1 all2 1412 2411
W, [HGHD ®Wo (HD ®HD)] +he =W, [( ey ) ® ( i S )}

=4 [~ (it + BA,) (HUHy + BUH) + (HUHy + HUHL) (HUH — HYE) ] 10).

To simplify the calculations, we introduce the following variables as in [23,24]

@1 = H{H, xs=R(H}H,), xQ:H(HgHS), ya =R (HIH,),
©o=HJH,, xz¢=R(HIH,), y1 = HIH,, ys =1(HIH,),
ws = HiH,,  ar=1(HH), yzzR(HIHa), vo =1(HiH,),
vy =R(H1Hs), as=1(H{H,), ys=R(H:H,), yr=1(HIH,).

(43)

Using the above and taking the assignment of the self-coupling coefficients in the order in which the constructed
invariant terms are listed, we obtain:

Van = Vu,on, + Vi,, (44)

where
Vi, oH, = pgxs + pf (z1 + x2) + azd + bas (z1 4 x2) + 2c (23 4 25 — 23 — 23)
+d (23 + 2§ + 28 + 23) + 2e (1 — 22) 5 + 2wa26] + f [(21 — x2)” + 4] (45)
+9 (z1 + w2)? — 4haf,

Vi, = p3y1 + oaxsys + ooyl + as (yi +y3) + 204 gyf —y3) + asyr (z1 + x2)
+2a6 (5 + 45 — 3 —¥3) + a7 (v3 + ¥3 +y5 + v§) — daszryr
+2a9 (T5Yy2 + T3Ys — TeY3z — Toys) + 2a10 (Tsy2 — TsYs — TeY3 + Toys)
+2au1 [y2 (1 — x2) — 2x4y3] -

(46)

At the normal minimum, the VEV’s of the Higgs fields are considered real. So, once the fields acquire VEV's, we
can relate them to the new variables (43) like

(x1) =vf,  (x2) =3, (z3) =3, (Ta) = v1v2,
(w5) = v2vs, (@6) = v1vs, (T7) = (38) = (W9) =0, (1) = vz, (47)
(Y2) = v1va, (y3) = V2va, (ya) = vsva, (ys) = (ye) = (y7) = 0.



48 Rev. Inv. Fis. 27(2), (2024)

4.1 Normal minimum

The minimization equations of potential are defined as:

OVi _ Vi da;

6’Ui o (%j 81},- -

withi=1,2,3 and j = 1,2, ...15.
First of all, we calculate the different terms individually

%01 —guy, G, %oy, 2oy, y 25 =0, for the rest.
%2 =9y, W=y, %oy, W=y, y 2% =0, for the rest.
giui = v, gz: = Vg, g%j =, g—g‘i =v, ¥y givz =0, for the rest.
gTyi = 20,4, gizz =, gTyi = vg, gzi =vs ¥y g:i =0, for the rest.
After oV
Fr U3+ bas + 2exs + 2f (1 — x2) + 29 (21 + x2) + asy1 + 2a11Y2,
1
ov
Ors pi + bas — 2ews — 2f (21 — x2) + 29 (21 + x2) + asyL — 2a11y2,
ov
= =%+ 2az3 +b(x1 + x2) + a1y,
81'3
ov
— =dexs + 8fra — 4113,
81'4
ov
Do = 2(2c+d)xs +2e(x1 — x2) + 2 (a9 + @10) Yo,
5
ov
— =2(2c+d) ze + 4dexs — 2 (a9 + 10) Y3,
8x6
oV = —8hx7 — 4asyr,
8587
% =—-2(2c—d)zs + 2 (a9 — a10) ¥s,
g—:g =-22c—d)we + 2 (a9 — a10) Y5,
ov 2
— = ps + ouxs + 2a2y1 + as (z1 + z2),
oy1
ov
87!/2 =226 + a7) Y2 + 2 (a9 + a10) o5 + 2011 (21 — x2)
ov
-— =2(20a6 + a7) y3 — 2 (a9 + o) w6 — do124,
8y3
ov
8721/4 =2 (053 + 2054) Y4,
ov
— =2 (a7 — 2a6) Y5 + 2 (10 — av9) o,
8y5
ov
— =2 (a7 — 2a6) Y6 + 2 (g — v10) s,
aya

ov

67y7 =2 (as — 2014) y7 — dagxr.

(48)
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Evaluating all partial derivatives at the minimum:

ov
871:1 = ,u? + bvi + 2evovs + 2f (v% — v%) + 2g (v% + v%) + 065112 + 2001101 Va,
min
oV B SP 9 2 2 9 2 2 2 _ o
el ui + bvg — 2evqvs — 2f (1)1 - ’UQ) + 29 (111 +U2) + 05V, — 2011101V,
101%
— :Mf—|—2ax3+b(oc1 + z2) + c1y1,
8333 min
a—v = 4dev1vs + 8fvive — 41120,
01’4 min
a—v =2(2c+ d) vavs + 2e (vffvg) + 2 (a9 + @10) V10a,
6335 min
o = 2(2¢c+ d) vivs + deviva — 2 (g + @10) V2V,
8I6 min
ov
had =0,
8‘7:7 min
ov
had =0,
81’8 min
1917
had =0,
axg min
121%
—_— :u%—l—aw? +2a2v§+a5 (Uf—kv%) R
ayl min
5d%
£ =2 (206 + ar) v1va + 2 (a0 + 10) v2vs + 2011 (V7 —v3)
2 lmin
STV =2 (2a6 + a7) v2va — 2 (a9 + a10) V1vs — da11V10V2,
3 lmin
A =2 (a3 + 204) VsVa,
8y4 min
oV —0,
ays min
vl
8:’-}6 min
AR —
ay? min

Then, we can write the system of equations of the minimum:

1 [/ﬁ +(b+d+2c) vf + (a5 + a7 + 2as) vi +2(f+9) (vf + vg) + 661}21}5} = 30114 (v — v?) ,

2
2
Vg [u? + (b+d+2¢) vf + (a5 + a7 + 2as) vg +2(f+9) (v% + v%) - 6auvlva] = 3evs (v§ - Uf) ,
Vs [ug +2av2 + (o1 + a3 + 204) V2 + 2 (b + d + 2¢) (Uf + vg)] = evs (vg — 31)%) ,
Va (3 + 20207 + (@1 + as + 204) V7 + 2 (@5 + a7 + 2a6) (vi +03)] = avr (3v5 — 7).
Using the potential (54), the equations of the minimum are

o1 [1F + (A5 + Ae + 207) v2 + (Ao + A2 + 2h15) vz + 2 (A1 + A2) (v] + v3) + 6Aavavs] = 3Aova (v — v7),

V2 [M? + (A5 + X6 + 2X7) V2 + (Ao + A1z + 2X15) i 42 (A1 + A2) (U% + Ug) - 6)\91)11)5] = 3400 (Ug - Uf) )
s (16 + 20807 + A1avl + 2 (X5 + As + 2X07) (v +v3)] = Agv2 (v3 — 307),
Va (15 + 221307 + A1av? + (A0 + A1z + 2X15) (v] +03)] = Xovs (305 — v7).
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Furthermore, we obtain the equation 4.2 4HDM Model
The scalar potential (symmetry invariant and renormal-
v = V3v2. (53) izable SU (3), ® SU (2), ® U (1), ® S3) is a mixture
of the potentials known from studies of the three Higgs
In this way we can describe the mass matrices in a sim- model with permutation symmetry, and can be written
pler way. as:

Va= pdHUH, + it (H]Hy + HYHy ) + pdHLH,
2 2
o (HIH + H;HQ) TPV (HIH2 - H;le)
s (H{H1 - HQTHQ)2 n (H{H2 n Hngﬂ
o [(HEH) (B Ha + HH) + (H ) (H]H - B + he
s (HUH,) (HIHy + HYHy ) + X (HIHL)®
X [(HIH) (BIH) + (HH) (HIHL)]
+X7 [(HIHY) (HIHy) + (HIH2) (HIH2) + h.c.]
o [(HEH) (HHz + HYHy ) — (HUH) (HEHy - HYH) + hee)
+ho (HLH.) (H{Hy + HH:)
+hu [(HLH:) gHIHa) + (1) (HIH)]
+A12 [(HIHy) (HIHY) + (HIH») (HIHs) + h.c]
s (HIH,)? + M (HIHL HYH,)
+his [(HIHa ) (HIH.) + hee] .

The most general Ss-invariant Yukawa Lagrangian density for the coupling of 4-Higgs coupled Dirac fermions (see
table 4), where both components of the third family are assigned to the symmetric singlet of S3 is:

_"gyf =" (ESvaSvRHS) + %)/2 (El,Lwl,R + EQYsz,R) H,
+%Y3 (1, He +E2,LH1) V1,r+ (VL Hi — 2, .Ha) Y2, R
"‘%}/4 (1, %2, — g 1¥1,R) Ha (55)
+%Y5 (al’LHl +E1,LH1 +E2,LH2) Ys,rR
+%Y6ES‘,L (H1y1,r + H2v2,R) + h.c.

| Particles | SU(3), x SU(2), xU(1)y [ S35 | Z> |
Q1,Q2 (3,2,1/3) 2 | +1
Qs (3,2,1/3) 1 | +1
ULR, U2R (3,1,4/3) 2 +1
U3R (3,1,4/3) 1 | +1
dir,d2r (3,1,—2/3) 2 +1
dsr (3,1,—-2/3) 1 | +1
Lqi,Lo (1,2,-1) 2 | +1
Ls (1,2,-1) 1 | +1
€1R, E2R (1,1,72) 2 +1
esr (1,1,-2) 1 | +1
H,, H, (0,2,1) 2 | +1
H, (0,2,1) 1 | +1
H, (0,2,1) 1| -1

Table 4: Particle spectrum of SM group and S3 ® Zs.
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where Y; are complex Yukawa couplings. When writing the Yukawa Lagrangian density, for up-type quarks or Dirac
neutrinos, the Higgs field must be replaced by the conjugate Higgs field Hi — io2Hyy, @ = 1, 2.
After symmetry breaking [25], the Higgs doublets SU (2); acquire expectation values in a vacuum, which we

choose real.

U1
Vs

<O| H1 |0> V2

(0| Hs |0)

(0] H2 |0)

ve = (0] Ha |0),

(56)

In this communication, the Yukawa interactions yield mass matrices, for all fermions in the theory, starting by %y,

1 d mé+md méd+mé md
fyD:§(d 3 b)MyD s :i(d 3 b) md —mg mé—md mé
d d
b mg mg ms
ot d d d d d
mi +mga my+ms Mg
_ d d d d d
My, = mg —mg mi—ms mz
mig mg  m§

d
s (57)
b

(58)

giving mass to the fermions of the Standard Model. The eigenvalues are m¢, i =1,2,3. It is convenient to define the

notation

mé =2V, mé =2Yiv,, mé =2Y{,
m$ = 2Ysv, mé =2Y7 v, md =2V,
md = 2Yv,, md =2Ydu1  md = 2V,

(59)

The rest of the matrices (and in particular My, ) have the same structure, changing only the Yukawa coupling terms,

i. e,
u u u u u
1 mi +mg Mg +mg Mg U
—_ — I u u u u u
«iﬂYU:i(u c t) m§ —ms my —ms my c |,
u u u
mg mg ms t
1 m§ +ms5 m§+mg m§ e
_ = = = e e e e e
ny—i(e I 7‘) m§g—ms mi—m5 ms 7
mg mg ms T
1 my +ms my+mE mg Ve
—_ — _— v 1% v 14 14
ng, = 5 ( Ve Uy Vr ) my — Mg mi — My mr Vu )
v v 14
ms mg ms Vr
with the mass matrices
my + ms V3m¥ + mé
— u u u u
mY + my  my + my my MYU = \/gmg — MmMs mi — Moy
1 2 4 5 6 V3my u
u u u u u mg mg
MYU = my — Ms my — My mr 5 (63)
mg mg my
d d d d
e e e e e mi + ma \/§m2 + ms
mi—+ms My +ms Mg M _ \/3 d d d d
— e e e e e Yp = mo — My mi — Mo
My, =| mig—ms mi—m5 my; |, (64) V3md d
me me me 3m9 mg
8 9 3
my +ms my +ms mg
e e € e
My, = mi—m§ mi—m5 m¥ (65) mi +mg V3ms +m§
p— e e e €
m§ m§ mh My, = | V3m§—m¢ m§—m§
V3m§ m§

If we use equation (53), we obtain

(60)
(61)
(62)
V3m¥
" (66)
V3m$
i
(67)
V3mé
m; b
ms5
(68)
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my +mb V3ms +m¥  V/3mb
My, = V3ms —m¥ my —my my
V3my mg mj

(69)

Models with three Higgs doublets can be obtained as

special cases of models with 4 Higgs doublets; e.g. to

obtain the mass matrix of a 3HDM [26-40] and the third

fermion family in the singlet representation asymmetric,
it is enough to take the limit when H, — 0

—}Rigoifyf =" (?S,LwS,RHS) +
%)/2 (7/11,L¢’1,R +7/}2,L¢’2,R) H.+

V2 1 -
%Y37[(¢1,LH2 + 9y H1) Y1, r+
(1, Hi = 2,. Ha) 2. R . (70)
+ 5 Ya (Vg
+%Y T H1 + 9, Hi + 9, H2) Ys,r

“F%%J&L (H1iy1,r + H2v2,R) + h.c.

then, the mass matrices are given by:

d d d
my —+ mo my meg
d d d d
MYD = my

mg m§ mf

ms mg ms

e e
mi + ma my mg
e
MYE = my
mg m§ ms
my +my my mg
v
MY,, = my
mg My m3

my +ms my meg
My, = my my —ms my |, (72)

4.3 4HDM with Z,

This model has a dark matter candidate from a model
with S3 symmetry without interfering with the positive
results obtained in [26-32].

An important condition for having a viable dark mat-
ter candidate is its stability. That is, it does not de-
cay into Standard Model particles. The simplest way to
establish the stability of a particle in a model beyond
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the standard, is imposing a discrete symmetry Zs, so
that all the fields are transformed in the form ¥ — W,
while the two dark matter candidates are transformed as
X — —X, this way we make sure we don’t have terms
denoting decays of x. This method has been used in nu-
merous models, such as the scotogenic [41] and the inert
scalar doublet [42]. It is worth mentioning that there
are also models with more complex discrete symmetries,
such as Zs in [43]. In general you can make models with
symmetry Zy.

In this model with symmetry Z, i. e. 4HDM [44-46],
dark matter candidate is the Higgs boson in the anti-
symmetric singlet representation H, , so these transform
under Z3 as H, — —H,. So, the Lagrangian density of
Yukawa is given by:

~%y; = Y1 (Vs L¥s.rH:) +
%Y& (¢’1,L¢1,R + 7/’2,L¢2,R) H,
+%Y3 [(EI,LHQ +J2,LH1) Y1,R + (EI’LHl — o, Ha) 2, R]
+%Y4 (Y12 R — Yy rth1r) Ha
+%Y5 (Y1, Hi + ¢y Hy + 0y  Ho) Y5 R
+%Y6wS,L (H1v1,r + H2tp2,R) + h.c.
(75)
and scalar potential

V = W HH, + it (H{Hy + HYHy) + g H)H,
o (HIH + HgHz)2 W (HIH2 - Hng)2
s (HIH1 - H§H2)2 + (HIHQ + H;Hlﬂ
A [(HIE) (H{Ho + HYH) + (HH2) (HUHy - HH) + he
+As5 (H;HS) (HIH1 + H;rH2) + As (HJHS)Z
X [(HIHL) (HLH) + (HUH) (HIHL)]
+X7 [(HIHY) (HIHY) + (HIH2) (HIH2) + h.c.]
+o [(HiH,) (H{H: + HiH: ) — (H{H:) (H{H: - H{H ) + hc]
Ao (HH) (H{Hy + HH:)
FAu [(Hng) gHIHG) + (HIH) (H;Ha)]
+Xi2 [(HIH:) (HYHy) + (HIHz) (HIH2) + h.c]
s (HIHL)? + g (HIH H]H,)
+A1s [(H}H) (H;Ha) + h.c.]
(76)

with this new symmetry.

The terms highlighted in bold, correspond to those
that break the Z; symmetry and are therefore omit-
ted, note that H, no longer appears in the Yukawa La-
grangian density. Another imposition required to pro-

pose the candidacy of a field of the doublet H,, is that
its corresponding VEV is equal to zero, v, = 0 (For more
details of this model, see [44-46]).
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5 Dark matter candidate

This model is based on S3 symmetry, which allows us to
accommodate the four Higgs doublets:

hi hs
Hi = ( T4 vy + ih? )’ HQ*( Y 4 v + ihh >’
hg he
H, = ( h? 4+ vo + th? ) » Ha= < hl + vq + ih%
(77)
Hence, the fourth Higgs doublet, H,, contains four phys-
ical fields, two charged h and two neutral, the scalar hy
and the pseudoscalar h%. Charged particles are restricted
as dark matter candidates [47]. Thus, viable candidates
are the antisymmetric doublet neutral Higgs fields, hg
and hf, with masses:

mig = p3 + Mavg 4+ 4 (Ao + A1 — 2h12) v3, (78)

mig = 3+ Mavg +4 (Mo + Aix +20i2) v, (79)

the lightest neutral Higgs field will be the dark matter
candidate resulting from the fourth Higgs doublet.
There are theoretical and experimental constraints,
which apply to the analysis of the candidate to constrain
the mass range of this and the rest of the Higgs fields in
the model. Using the IDM [48], we have the constraints:

Theoretical restrictions

1. The potential must be bounded from below, so that
it has a stable vacuum [44].

2. The quartic couplings of the Higgses must be per-
turbative, i.e. ’aﬂ, |bi] < 167 [44].

Experimental restrictions

1. The mass Higgs boson of the standard model is [49]:

mpn = 125.09 +0.21 GeV. (80)

2. The upper limit of the total amplitude of the boson
h? [50] [51] is:
I' < 22 MeV. (81)

3. The relic density obtained in the PLANCK exper-
iment [52]
Qh? < 0.1241. (82)

In this model, we consider the mass of the Standard
Model Higgs m, = 125 GeV, taking the possibility of
two of the scalar neutral fields (those corresponding to
the Higgs doublets Hs and H>).
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6 Concluding remarks

In this article, we study the 4HDM model in the theo-
retical framework of the minimum extension Ss3 of the
standard model. We extend the Higgs sector by adding
four Higgs doublets and making the theory invariant with
respect to flavor permutations. We impose Z> symme-
try on the fourth Higgs doublet, H,. In this model, the
dark matter candidate is the Higgs doublet in the anti-
symmetric singlet representation H,, so these transform
under 7> as H, — —H,.
The Higgs doublets are denoted as:
Hp = ( g; )Nz, Hy ~1s, Ha~ 1.

We accommodate four SU (2) doublets into the irre-
ducible representations of the permutation group Ss, de-
noting the symmetric and antisymmetric scalars by H,
and H, respectively, while the remaining two doublet H
and H, are arranged how

he B he
HS—( R+ vo + iR > Ha = ( I + va + ih? )

= Copenear ) %= Crgeviens )
R} + vy + ih? 2 2 4 vy + ihE

In the model with four Higgs doublets (4HDM), we
takes the fourth Higgs doublet as a stable particle with-
out interaction with fermions, making it a candidate for
dark matter, while with the remaining three the proper-
ties obtained are maintained. Another imposition that
we impose on the doublet H, is that its corresponding
VEV is equal to zero, v, = 0.

In this model, we compute the system of equations
of the minimum of the potential, so we obtain the equa-
tion v1 = V3vs. In this way we can describe the mass
matrices in a simpler way. The 3HDM models can be
obtained as special cases of the 4HDM models, that
is, in the limit H, — 0, we obtain the mass matrices

my +ms V3my V3my

My, = VBmi omiomi o omEo |
V3my mg m3
mi{+ms  V3mi  /3m§
My, = Vimd mf-mi omd .
V3mg§ mg m§
m§+ms  V3ms  V3ms
My, = V3m§  mi-m§ mé ,
V3m§ m§ ms
my + mjy V3mb V3m¥
My, = V3ms  mi{-m§y m¥
V3my me ms

Additionally, the 4AHDM model can continue to be
studied and understood. Then future perspectives could
be to calculate radiative corrections that show correc-
tions to the mass values. Another additional perspective
of the work would be the possibility of extending the dark
matter sector of the model with additional particles.
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