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Abstract
Experimental evidence so far suggests that there are only three generations of quarks and leptons. Before
electroweak symmetry breaking, the three families of quarks and leptons are indistinguishable, so they
are invariant under transformations of the S3 group. Using the symmetry S3 we have at our disposal 3
irreducible representations, 2, 1s, 1a, where we can accommodate up to 4 Higgses doublets in a model
that occupies all the irreducible representations of the group S3. This model with four Higgses doublets
(4HDM) is of great interest, thanks to the fact that we can take the fourth Higgs doublet as a stable
particle without interaction with fermions so that it becomes a candidate for dark matter, while with
the remaining three Higgses the properties obtained are maintained. An important condition for having
a viable dark matter candidate is its stability, i. e., it does not decay into Standard Model particles.
The simplest way to establish the stability of a particle is imposing a discrete symmetry Z2, so that all
the �elds are transformed in the form Ψ −→ Ψ, while the dark matter candidates are transformed as
χ −→ −χ, this way we make sure we don't have terms denoting decays of χ. This method will be used
in 4HDM. Another imposition required to propose the candidacy of a �eld of the doublet Ha, is that
its corresponding Vacuum Expectation Value (VEV) is equal to zero, va = 0.
Keywords: Four Higgses doublet model, �avor symmetry, dark matter candidate.

La simetría S3 en la materia oscura
Resumen
La evidencia experimental hasta ahora sugiere que sólo existen tres generaciones de quarks y leptones.
Antes de que se rompa la simetría electrodébil, las tres familias de quarks y leptones son indistinguibles,
por lo que son invariantes ante transformaciones del grupo S3. Usando la simetría S3 tenemos a nuestra
disposición 3 representaciones irreductibles, 2, 1s, 1a, donde podemos acomodar hasta cuatro dobletes
de Higgs en un modelo que ocupa todas las representaciones irreductibles del grupo S3. Este modelo con
cuatro dobletes de Higgs (4HDM) es de gran interés, gracias a que podemos tomar el cuarto doblete de
Higgs como una partícula estable sin interacción con los fermiones por lo que se convierte en candidato
a materia oscura, mientras que con los tres restantes las propiedades obtenidas se mantienen. Una
condición importante para tener un candidato viable a materia oscura es su estabilidad, es decir, no se
desintegra en partículas del modelo estándar. La forma más sencilla de establecer la estabilidad de una
partícula es imponiendo una simetría discreta Z2, de modo que todos los campos se transformen en la
forma Ψ −→ Ψ, mientras que las candidatas a materia oscura se transformen como χ −→ −χ, de esta
manera nos aseguramos de que no tengamos términos que denoten desintegraciones de χ. Este método
se utilizará en 4HDM. Otra imposición requerida para proponer la candidatura de un campo del doblete
Ha, es que su Valor de Espectación del Vacío (VEV) correspondiente sea igual a cero, va = 0.
Palabras clave: Modelo de cuatro dobletes de Higgs, simetría del sabor, candidato a materia oscura.
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1 Introduction

The symmetric group Sn is the group of bijections of
{1, 2, ..., n} to itself, also called the permutation group of
n objects. It is a �nite group of order n!, that is, there
are n! ways to swap n objects. The group that interests
us is S3.

The group S1, comprises the permutations of a sin-
gle object, and its only element is the identity {E}.
The group S2 comprises the permutations of two ob-
jects f1 and f2. This group has 2! = 2 elements {E,A},
where E is the identity that produces the trivial trans-
formation, f2 −→ f2 and A produces the transformation
A : f1 −→ f2, f2 −→ f1. Note that the symmetry groups
are abelian.

The group S3 comprises the permutations of three
objects f1, f2 and f3. This group has 3! = 6 ele-
ments {E,A1, A2, A3, A4, A5}, where E as always, is the
identity, A1, A2, A3 transform two elements and leave
one �xed (for example A2 produce la transfomación
A2 : f1 −→ f3, f2 −→ f2, f3 −→ f1) and A4, A5 pro-
duce a permutation of all objects (for example A4 :
f1 −→ f2, f2 −→ f3, f3 −→ f1). Let us now note that
A1A4 ̸= A4A1, so the symmetry group S3 is non-abelian.
In fact, since a group Sm, where m < n, is a subgroup of
Sn. The groups Sn with n ≥ 3 are non-abelian.

Experimental evidence so far suggests that there are
only three generations of quarks and leptons. Before elec-
troweak symmetry breaking, the three families of quarks
and leptons are indistinguishable, so they are invariant
under transformations of the S3 group. This tells us that
the S3 symmetry [1�17] is convenient. The fermions in
the irreducible representation of the doublet are denoted
as ψD(L,R), where

ψD (L,R) ≡
(
ψ1(L,R)

ψ2(L,R)

)
∼ 2 (1)

and those found in the symmetric singlet representation
as

ψS(L,R) ≡ ψ3(L,R) ∼ 1s (2)

where 1, 2, 3 represent the index of each family of the
left (L) or right (R) fermionic �eld. For quarks we have:

ψ3,L = (bL, tL) , ψ3,R = tR, ψ3,R = bR (3)

(
ψ1,L

ψ2,L

)
=

(
(uL, dL)
(cL, sL)

)
, (4)

(
ψ1,R

ψ2,R

)
ψ=u

=

(
uR
cR

)
, (5)

(
ψ1,R

ψ2,R

)
ψ=d

=

(
dR
sR

)
, (6)

where (uL, dL) and (cL, sL) are doublets SU (2)L, while
uR, cR, dR y sR are singlets SU (2)L.

The Higgs �elds are then denoted as:

HD ≡
(
H1

H2

)
∼ 2, Hs ∼ 1s, Ha ∼ 1a. (7)

We accommodate four SU (2) doublets into the irre-
ducible representations of the permutation group S3, de-
noting the symmetric and antisymmetric scalars by Hs

and Ha respectively, while the remaining two doublet H1

and H2 are arranged in a column vector conforming the
S3 doublet, i. e.

Hs =

(
hcs

hns + v0 + ihps

)
Ha =

(
hca

hna + va + ihpa

)
H1 =

(
hc1

hn1 + v1 + ihp1

)
H2 =

(
hc2

hn2 + v2 + ihp2

)
.

2 The symmetry group S3

The group S3 is de�ned as the group of permutations
of three objects [18]. This is a non-abelian group and
is formed by three even and three odd permutations of
three objects, which can be labeled as follows (f1, f2, f3).
The elements of the group are

S3 = {E,A1, A2, A3, A4, A5} (8)

where E is the identity element of the group and the Ai,
with i = 1, 2, 3, 4, 5, label the permutations as follows

E =

(
1 2 3
1 2 3

)
, A1 =

(
1 2 3
2 1 3

)
, A2 =

(
1 2 3
3 2 1

)
,

A3 =

(
1 2 3
1 2 2

)
, A4 =

(
1 2 3
2 3 1

)
, A5 =

(
1 2 3
3 1 2

)
.

(9)

The notation used refers to the exchange of the sub- scripts of f1, f2, f3, for example A1 acts as follows:

f1 −→ f2
f2 −→ f1
f3 −→ f3

.
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In general, for the permutation group Sn the prod-
uct between two of its elements is simply their successive
application and this product is not commutative. Thus,
for example, by multiplying A2 with A5 we obtain that:

A2A5 =

(
1 2 3
3 2 1

)(
1 2 3
3 1 2

)
=

(
1 2 3
1 3 2

)
= A3,

in terms of f1, f2 and f3

f1 −→ f3 −→ f1,
f2 −→ f1 −→ f3,
f3 −→ f2 −→ f2.

The products between the remaining elements of
group S3 are carried out in an analogous manner to the
previous example. Thus, the multiplication table of the
group is given in table 2.

Now in general, if

A =

(
1 2 . . . n
i1 i2 . . . in

)
∈ Sn =⇒ A−1 =

(
i1 i2 . . . in
1 2 . . . n

)
∈ Sn,

where A−1 is the inverse element. Therefore, the condi-
tion is satis�ed

A−1A = AA−1 = E.

As a particular example in the case of S3, the inverse
of A1 is

A−1
1 =

(
2 1 3
1 2 3

)
=

(
1 2 3
2 1 3

)
= A1,

analogously, we have the inverses of the other elements

E−1 = E, A−1
1 = A1, A−1

2 = A2,
A−1

3 = A3, A−1
4 = A5, A−1

5 = A4.

�
Elements E A1 A2 A3 A4 A5

E E A1 A2 A3 A4 A5

A1 A1 E A5 A4 A3 A2

A2 A2 A4 E A5 A1 A3

A3 A3 A5 A4 E A2 A1

A4 A4 A2 A3 A1 A5 E

A5 A5 A3 A1 A2 E A4

Table 1: Multiplication table of group S3.

2.1 Conjugate Classes

A conjugate class for a group G of order g is de�ned as

(a) ≡
{
a, b/u−1bu = a, u ∈ G

}
.

The identity element E by itself forms a conjugate
class, the remaining classes are determined with the help
of the multiplication table of the group (see table 1).
Thus, for the conjugate class whose representative is A1

and which is denoted as k1, we have:

A−1
4 A1A4 = A−1

4 A2 = A1

A−1
2 A3A2 = A−1

2 A4 = A1

A−1
3 A2A3 = A−1

3 A5 = A1.

Denoting with k2 the conjugate class with representative
A4, for this we have

A−1
5 A4A5 = A−1

5 E = A4,
A−1

1 A5A1 = A−1
1 A3 = A4.

Therefore, the group S3 has three conjugate classes that
are denoted as E, k1 and k2, and have the form:

E = {E} , k1 = {A1, A2, A3} , k2 = {A4, A5} .
(10)

The conjugate classes of the group are useful for con-
structing the so-called class operators and in turn con-
structing the projectors of the group.

2.2 Representations of S3

In this section we will construct a pair of matrix repre-
sentations of the group S3, we will begin by considering
the three-dimensional vector space generated by the ba-
sis vectors{ −→e 1 = (1, 0, 0) , −→e 2 = (0, 1, 0) , −→e 3 = (0, 0, 1)

}
.

(11)
The way in which the element E acts on the base vec-
tors is evident, so we are tempted to represent element
in matrix form in the following form

D (E) =

 1 0 0
0 1 0
0 0 1

 .

For a more illustrative example, we analyze the e�ect of
applying A5 to the basis vectors,

A5
−→e 1 = −→e 3,

A5
−→e 2 = −→e 1,

A5
−→e 3 = −→e 2,

thus the matrix representation of A5 is

D (A5) =

 0 0 1
1 0 0
0 1 0

 ,

analogously for the other elements of the group S3, we
then obtain the so-called representation S3
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D (E) =

 1 0 0
0 1 0
0 0 1

 , D (A1) =

 0 1 0
1 0 0
0 1 0

 , D (A2) =

 0 0 1
0 1 0
1 0 0

 ,

D (A3) =

 1 0 0
0 0 1
0 1 0

 , D (A4) =

 0 1 0
0 0 1
1 0 0

 , D (A5) =

 0 0 1
1 0 0
0 1 0

 .

(12)

The real representation is a three-dimensional repre-
sentation.

We will now construct one more representation, tak-
ing advantage of the fact that the group S3 is isomorphic
to the symmetry group of a rectangle triangle [19], ele-
ments A1, A2 and A3 are associated with re�ections on
the indicated axes of symmetry and elements A4 and A5

with rotations corresponding to angles of 2π/3 and 4π/3
respectively, around the z axis. Let us consider again
the three-dimensional vector space generated by the base
vectors (11), as an example, let's see how A4 (rotation
by 2π/3 around z) acts on the base vectors,

A1
−→e 1 = cos

(
2π
3

)−→e 1 + sin
(
2π
3

)−→e 2 = − 1
2
−→e 1 +

√
3

2
−→e 2,

A4
−→e 2 = − sin

(
2π
3

)−→e 1 + cos
(
2π
3

)−→e 2 = −
√

3
2
−→e 1 − 1

2
−→e 2,

A4
−→e 3 = −→e 3,

so we represent element A4 as follows:

D (A5) =

 − 1
2

√
3

2
0

−
√
3

2
− 1

2
0

0 0 1

 .

�
Proceeding in a similar way with the other elements

D (E) =

 1 0 0
0 1 0
0 0 1

 , D (A1) =

 1
2

−
√
3

2
0

−
√
3
2

− 1
2

0
0 0 −1

 , D (A2) =

 −1 0 0
0 1 0
0 0 −1

 ,

D (A3) =

 1
2

√
3

2
0√

3
2

− 1
2

0
0 0 −1

 , D (A4) =

 − 1
2

√
3

2
0

−
√
3

2
− 1

2
0

0 0 1

 , D (A5) =

 − 1
2

−
√
3

2
0√

3
2

− 1
2

0
0 0 1

 .

(13)

The matrices of this representation are unitary, there-
fore the representation we have just constructed is a uni-
tary representation. From now on we will work speci�-
cally on this representation.

Now, from group theory, we know that the number
of non-equivalent irreducible representations of a group
G of order g is equal to the number of conjugate classes
in the group, so in our case, because the number of con-
jugate classes of S3 is 3, we can say that the number of
irreducible representations of S3 is 3. On the other hand,
we can also determine the dimensions of the irreducible
representations of S3 by the following relation

3∑
µ=1

n2
ν = n2

1 + n2
2 + n2

3 = 6

by simple inspection we can notice that the values for
which this equation holds are n1 = n2 = 1 and n3 = 2,
so the irreducible representations of S3 have dimensions
1 and 2 respectively; that is, we can decompose the group
into two singlets and a doublet.

We see that all the matrices in the representation (13)
have a block structure, so it is evident that they are re-
ducible and therefore we can decompose them into two
matrices of dimensions (2× 2) and (1× 1), but we also
know that there exists a trivial irreducible representation
for each group, called the identical representation and
which is characterized by D(1) (Ri) = 1, for all Ri ∈ G.
All this is summarized in Table 2.

Using the equation to obtain the characters of a group
[19]

χ (R) =

4∑
i=1

Dii (R) (14)

and using table 2 we can build the respective character
table 3 for S3.
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�

Element D(1) D(2) D(3)

E 1 1

(
1 0
0 1

)
A1 1 -1

(
1
2

−
√
3

2

−
√
3

2
− 1

2

)
A2 1 -1

(
−1 0
0 1

)
A3 1 -1

(
1
2

√
3

2√
3

2
− 1

2

)

A4 1 1

(
− 1

2

√
3

2

−
√
3

2
− 1

2

)

A5 -1 1

(
− 1

2
−

√
3

2√
3

2
− 1

2

)
Table 2: Representations of the elements of

S3. D(1) and D(2) correspond to one-
dimensional representations, while D(3) is
a two-dimensional representation.

�
Classes/Representation E K3

1 K2
2

D(1) 1 1 1
D(2) 1 -1 1
D(3) 2 0 -1

Table 3: Characters of S3, where kli (i = 1, 2)
corresponds to the ith class of the group
and the superscript l indicates the num-
ber of elements in the class.

We can express the representations in terms of their ir-
reducible components, that is

D = a1D
(1) ⊕ a2D

(2) ⊕ a3D
(3), (15)

where ⊕ denotes the direct sum and the aν can be de-
termined according to the equation

aν =
1

g

∑
i=1

ciχ
ν∗
i χi, (16)

where g is the order of the group, ci is the number of
elements of class Ki, χ

(ν)
i is the primitive character of

class Ki, and χi is the composite character of the class
Ki. We compute a1

a1 =
1

g

[
c1χ

(1)
1 χ1 + c2χ

(1)
2 χ2 + c3χ

(1)
3 χ3

]

=
1

6
[(1) (1) (3) + (3) (1) (−1) + (2) (1) (0)]

consequently a1 = 0, similarly, we �nd that

a1 = 0, a2 = 1, a3 = 1,

which means that the representation D(2) and D(3) are
included in D, but D(1) is not here.

The matrix representation of equation (13) in terms
of its irreducible components is expressed as the direct
sum of a single singlet and a doublet, that is,

D = D(2) ⊕D(3). (17)

We can obtain a representation of S3 by direct prod-
uct of the irreducible representations, in particular we
construct the direct product of each element of S3 with
itself in the representation D(3), this is:

E ⊗ E =

(
E 0
0 E

)
, A1 ⊗A1 =

(
1
2
A1 −

√
3
2
A1

−
√
3

2
A1 − 1

2

)
,

A2 ⊗A2 =

(
−A2 0
0 A2

)
, A3 ⊗A3 =

(
1
2
A3

√
3

2
A3√

3
2
A3 − 1

2
A3

)
,

A4 ⊗A4 =

(
− 1

2
A4

√
3

2
A4

−
√
3
2
A4 − 1

2
A4

)
, A5 ⊗A5 =

(
− 1

2
A5 −

√
3

2
A5√

3
2
A5 − 1

2
A5

)
,

(18)

then we get

D(2) ⊗D(3) = D(1) ⊕D(2) ⊕D(3), (19)

which is the direct sum of a pair of singlets and a doublet.

2.3 Projectors

The projectors of the group we can obtain the functions
adapted to the S3 symmetry (invariants). For the pro-

jectors we use the equation

P ν =
nν
g

∑
i=1

χν∗i Ci, (20)

where Ci are the class operators, obtained from the di-
rect product of each representation element D(3); this
is,

C0 = E ⊗ E, C1 = A1 ⊗A1,
C2 = A2 ⊗A2, C3 = A3 ⊗A3,
C4 = A4 ⊗A4, C5 = A5 ⊗A5

(21)
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Then, the form of the projection operator on the sym-
metric singlet is given by:

P1S =
1

6
[1C0 + 1 (C1 + C2 + C3) + 1 (C4 + C5)]

P1S =
1

6

(
E −A2 +

1
2
(A1 +A3 −A4 −A5) −

√
3

2
(A1 −A3 −A4 +A5)

−
√
3

2
(A1 −A3 +A4 −A5) E +A1 − 1

2
(A1 +A3 +A4 +A5)

)

P1S =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

Similarly, we �nd P1A , the projector on the antisymmetric singlet
(
P 2
)

P1A =
1

6
[1C0 − 1 (C1 + C2 + C3) + 1 (C4 + C5)]P1A

P1A =
1

6

(
E +A2 − 1

2
(A1 +A4 +A5) −

√
3
2

(A1 −A3 +A4 −A5)

−
√
3
2

(A1 −A3 −A4 +A5) E −A2 − 1
2
(A1 +A3 −A4 −A5)

)

P1A =
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .

And �nally we �nd P2, the projector on the doublet
(
P 3
)
,

P2 =
2

6
[2C0 − 0 (C1 + C2 + C3)− 1 (C4 + C5)]PA

P2 = I4×4 − P1S − P1A

P2 =
1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .

The projector P2 can be decomposed into two terms, each of which is a tensor of rank one, that is,

P2 = P
(1)
2 + P

(2)
2 ,

where

P
(1)
2 =

1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 =
1√
2


1
0
0
−1

 1√
2

(
1 0 0 −1

)
,

and

P
(1)
2 =

1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 =
1√
2


0
1
1
0

 1√
2

(
0 1 1 0

)
.

The eigenvalues of the elementary projectors will allow the construction of the matrices U that diagonalize the product
by blocks D (R)×D (R).

With the help of the projectors, the direct product X⊗Y is decomposed into a direct sum of singlets and doublets.
Then, applying each of the projectors obtained previously to said direct product, we obtain:
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P1S (X⊗Y) =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




x1y1
x1y2
x2y1
x2y2

 =
1

2


x1y1 + x2y2

0
0

x1y1 + x2y2

 , (22)

P1A (X⊗Y) =
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0




x1y1
x1y2
x2y1
x2y2

 =
1

2


0

x1y2 − x2y1
−x1y2 + x2y1

0

 , (23)

P2 (X⊗Y) =
1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1




x1y1
x1y2
x2y1
x2y2

 =
1

2


x1y1 + x2y2
x1y2 + x2y1
x1y2 + x2y1
−x1y1 + x2y2

 . (24)

Or

P1S (X⊗Y) =
1√
2
(x1y1 + x2y2)

1√
2


1
0
0
1

 , (25)

P1A (X⊗Y) =
1√
2
(x1y2 − x2y1)

1√
2


0
1
1
0

 , (26)

P2 (X⊗Y) =
1√
2
(x1y1 − x2y2)

1√
2


1
0
0
−1

+
1√
2
(x1y2 + x2y1)

1√
2


0
1
1
0

 . (27)

The coe�cients of the eigenvectors are the functions
adapted to symmetry. If (x1, x2) and (y1, y2) are the
components of two doublets of S3, the Kronecker prod-
uct (x1, x2)⊗ (y1, y2) contains the following components:

� A symmetrical singlet:

1√
2
(x1y1 + x2y2) ,

which is invariant under the group S3.

� An antisymmetric singlet:

1√
2
(x1y2 − x2y1) ,

which is not invariant under the group S3.

� A doublet whose components are:(
1√
2
(x1y1 − x2y2) ,

1√
2
(x1y2 + x2y1)

)
.

3 Mass matrices

The Yukawa Lagrangian density for three families of
quarks and leptons is written as follows

LY =
∑3
i=1

∑3
j=1

{
QijY

u
ijH

1+σ3
2
Q3 +QiY

d
ijH

1−σ3
2
Qj
}

+
∑3
i=1

∑3
j=1

{
lLiY

ν
ijH

1+σ3
2
lRj + lLiY

l
ijH

1−σ3
2
lRj
}
,

(28)
where Qi and Li denote the weak isospin doublets of
quarks and leptons, respectively; H is the Higgs �eld.

The weak isospin doublets are expressed as follows:

Q1 (x) =

(
u (x)
d (x)

)
=

(
ψu1 (x)

ψd1 (x)

)
, l1 (x) =

(
νe (x)
e (x)

)
=

(
ψ
νl
1 (x)

ψl1 (x)

)
,

Q2 (x) =

(
c (x)
s (x)

)
=

(
ψu2 (x)

ψd2 (x)

)
, l2 (x) =

(
νµ (x)
µ (x)

)
=

(
ψ
νl
2 (x)

ψl2 (x)

)
,

Q3 (x) =

(
t (x)
b (x)

)
=

(
ψu3 (x)

ψd3 (x)

)
, l3 (x) =

(
ντ (x)
τ (x)

)
=

(
ψ
νl
3 (x)

ψl3 (x)

)
.

(29)
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It is convenient to rearrange the terms of equation (28) and write the Lagrangian density LY as a function of the
spinors ψq and ψl, whose components are de�ned in the space of families like:

ψu (x) =

 u (x)
c (x)
t (x)

 =

 ψu1 (x)
ψu2 (x)
ψu3 (x)

 , ψν1 (x) =

 νe (x)
νµ (x)
ντ (x)

 =

 ψ
νl
1 (x)

ψ
νl
2 (x)

ψ
νl
3 (x)

 ,

ψd =

 d (x)
s (x)
b (x)

 =

 ψd1 (x)

ψd2 (x)

ψd3 (x)

 , ψl (x) =

 e (x)
µ (x)
τ (x)

 =

 ψl1 (x)

ψl2 (x)

ψl3 (x)

 .

(30)

The Yukawa Lagrangian density in family notation,
equation (28), is

LY =
∑3
i=1

∑3
j=1

{
ψLiY

u
ijHψ

u
Rj + ψ

d

RjY
d
ijHψ

d
Li

}
+
∑3
i=1

∑3
j=1

{
ψ
νl
LiY

νl
ij Hψ

νl
Rj + ψ

l

RjY
l
ijHψ

l
Li

}
.

(31)
Before the breaking of gauge symmetry, quarks and

leptons have no mass and the theory is chiral. Therefore,
the left and right spinors transform independently, that
is:

ψqL (x) → ψ,qL (x) = g

 ψq1L (x)
ψq2L (x)
ψq3L (x)

 , (32)

ψlL (x) → ψ,lL (x) = g

 ψl1L (x)

ψl2L (x)

ψl3L (x)

 , (33)

ψqR (x) → ψ,qR (x) = g̃

 ψq1R (x)
ψq2R (x)
ψq3R (x)

 , (34)

ψlR (x) → ψ,lR (x) = g̃

 ψl1R (x)

ψl2R (x)

ψl3R (x)

 . (35)

with q = u, d and l = νl, l; where g ∈ S3L acts on the
left spinors, and g̃ ∈ S3R on the right spinors.

When the gauge symmetry is spontaneously broken,
the fermions acquire mass. Therefore, the �elds of quarks
are transformed as follows:

ψq (x) → ψ,q (x) = g

 ψq1L (x)
ψq2L (x)
ψq3L (x)

+ g

 ψq1R (x)
ψq2R (x)
ψq3R (x)

 .

(36)
In the same way, the �elds of charged leptons and

neutrinos transform as:

ψq (x) → ψ,q (x) = g

 ψl1L (x)

ψl2L (x)

ψl3L (x)

+ g

 ψl1R (x)

ψl2R (x)

ψl3R (x)

 .

(37)
The left and right chirality components of the same

�eld are transformed with the same group element. The
�avor symmetry group of the bilinear forms in equations
(36) and (37) is the group Sdiag3 whose elements are the
pairs (g, g̃), with g ∈ S3L and g̃ ∈ S3R and g = g′.
Clearly, Sdiag3 ⊂ S3L × S3R.

The mass term from the Yukawa coupling is trans-
formed as follows:

LY → L ,
Y = ψ,uLMuψ

,u
R + ψ,dRMdψ

,d
L + ψ

,νl
L Mνlψ

,νl
R + ψ,lRMlψ

,l
L + h.c., (38)

substituting the expressions for ψ,q,ψ,q, ψ,l,ψ,l, we obtain

L ′
Y = ψuLg

TMugψ
u
R + ψdRg

TMdgψ
d
L + ψ

νl
L gTMνlgψ

νl
R + ψlRg

TMlgψ
l
L + h.c.. (39)

Therefore, under the action of the �avor group Sdiag3 ,
the mass matricesMq andMl are transformed according
to the following rule:

M ,
u = gTMug,

M ,
d = gTMdg,

M ,
νl = gTMνlg,
M ,
l = gTMlg.

(40)

If the Yukawa sector is invariant to the family group

Sdiag3 , it must be true that

M ,
q =Mq, M ,

l =Ml, (41)

The Yukawa sector of the Standard Model has family
symmetry if the mass matrix commutes with all elements
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of the group S3, that is

[Mu,S ,g] = 0,
[Md,S ,g] = 0,
[Mνl,S ,g] = 0,
[Ml,S ,g] = 0.

(42)

4 Model with 4 Higgs doublets and sym-

metry S3

Using the symmetry S3 we have at our disposal 3 irre-
ducible representations, 2, 1s, 1a, where we can accom-
modate up to 4 Higgses in a model that occupies all the
irreducible representations of the group S3. This model
S3 − 4H is of great interest, thanks to the fact that we
can take the fourth Higgs as a stable particle without

interaction with fermions so that it becomes a candidate
for dark matter, while with the remaining three Higgses
the properties obtained are maintained. in a model with
four doublets. It is worth mentioning that the possibility
of obtaining dark matter candidates with only three dou-
blets was explored [20�22], but no way was found without
altering the results obtained for this model.

The Higgs potential has quadratic and quartic terms.
This means that we need to �nd the invariants of S3

made with two and four �elds that are irreducible repre-
sentations of S3. The invariants of S3 for the quadratic
and quartic tensor product are, respectively,

1s ⊗ 1s, 1a ⊗ 1a, [2⊗ 2]s

and

1s ⊗ 1s ⊗ 1s ⊗ 1s, 1a ⊗ 1a ⊗ 1a ⊗ 1a, [2⊗ 2]s ⊗ [2⊗ 2]s ,
1s ⊗ 1s ⊗ 1a ⊗ 1a, 1s ⊗ 1s ⊗ [2⊗ 2]s , 1a ⊗ 1a ⊗ [2⊗ 2]s ,
1s ⊗ 1a ⊗ [2⊗ 2]a , 1s ⊗

[
2⊗ [2⊗ 2]2

]
s
, 1a ⊗

[
2⊗ [2⊗ 2]2

]
a
,

[2⊗ 2]a ⊗ [2⊗ 2]a , y
[
[2⊗ 2]2 ⊗ [2⊗ 2]2

]
s
.

For the construction of the terms in the potential, we
need to consider the weak index of the �elds. We make
the corresponding projections to generate the invariants
of S3 and for this purpose we use the projections of the
four-dimensional real basis of S3.

� Invariants with two �elds:

(a)

H†
s ⊗Hs

(b)

H†
a ⊗Ha

(c)

Ws

(
H†
D ⊗HD

)
= Ws

(
H†

1

H†
2

)
⊗
(
H1

H2

)
=

Ws


H†

1H1

H†
1H2

H†
2H1

H†
2H2

 = 1√
2

(
H†

1H1 +H†
2H2

)
|1S⟩ .

� Invariants with four �elds:

HD +Hs :

(a)

(
H†
s ⊗Hs

)
⊗
(
H†
s ⊗Hs

)
(b)

(
H†
s ⊗Hs

)
Ws

(
H†
D ⊗HD

)
=

1√
2

(
H†
s ⊗Hs

)(
H†

1H1 +H†
2H2

)
|1s⟩

(c)

Ws(H
†
DH1 ⊗H†

sHD) + h.c. =
1√
2

[(
H†
sH1

)2
+
(
H†
sH2

)2
+
(
H†

1Hs

)2
+
(
H†

2Hs

)2]
|1s⟩

(d)
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Ws(H
†
DH1 ⊗H†

sHD) =
1√
2

[(
H†
sH1

)(
H†

1Hs

)
+
(
H†

2Hs

)(
H†

2Hs

)]
|1s⟩

(e)

Ws

[
H†
sHD ⊗Ws

(
H†
D ⊗HD

)]
+ h.c. = 1√

2
Ws

[(
H†
sHD

)
⊗
(
H†

1H2 +H†
2H1

H†
1H1 −H†

2H2

)]
+ h.c.

= 1
2

[(
H†
sH1 +H†

1Hs

)(
H†

1H2 +H†
2H1

)
+
(
H†
sH2 +H†

2Hs

)(
H†

1H1 −H†
2H2

)]
|1s⟩

(f)

Ws

[
Ws

(
H†
D ⊗HD

)
⊗Ws

(
H†
D ⊗HD

)]
= 1

2
Ws

[(
H†

1H2 +H†
2H1

H†
1H1 −H†

2H2

)
⊗
(
H†

1H2 +H†
2H1

H†
1H1 −H†

2H2

)]
= 1

2
√
2

[(
H†

1H2 +H†
2H1

)(
H†

1H2 +H†
2H1

)
+
(
H†

1H1 −H†
2H2

)(
H†

1H1 −H†
2H2

)]
|1s⟩

(g)

Ws

(
H†
D ⊗HD

)
⊗Ws

(
H†
D ⊗HD

)
= 1

2

[(
H†

1H2 +H†
2H1

)2
+
(
H†

1H1 −H†
2H2

)2]
|1s⟩

(h)

Wa

(
H†
D ⊗HD

)
⊗Wa

(
H†
D ⊗HD

)
= 1

2

(
H†

1H1 −H†
2H2

)2
|1s⟩

HD +Hs +Ha :

(a) (
H†
a ⊗Ha

)
⊗
(
H†
s ⊗Hs

)
(b) (

H†
a ⊗Ha

)
⊗
(
H†
a ⊗Ha

)
(c) (

H†
a ⊗Hs

)
⊗
(
H†
s ⊗Ha

)
(d) (

H†
a ⊗Hs

)
⊗
(
H†
a ⊗Hs

)
+ h.c.

(e) (
H†
a ⊗Ha

)
Ws

(
H†
D ⊗HD

)
=

1√
2

(
H†
aHa

)(
H†

1H1 +H†
2H2

)
|1s⟩

(f)

Ws

(
H†
DHa ⊗H†

DHa

)
+ h.c. = Ws

[(
−H†

2Ha

H†
1Ha

)
⊗
(

−H†
2Ha

H†
1Ha

)]
+ h.c.

= 1√
2

[(
H†

1Ha

)2
+
(
H†

2Ha

)2
+
(
H†
aH1

)2
+
(
H†
aH2

)2] |1s⟩

(g)
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Ws

(
H†
DHa ⊗H†

aHD

)
= Ws

[(
−H†

2Ha

H†
1Ha

)
⊗
(

−H†
aH2

H†
aH1

)]
+ h.c.

= 1√
2

[(
H†

1Ha

) (
H†
aH1

)
+
(
H†

2Ha

) (
H†
aH2

)]
|1s⟩

(h) (
H†
s ⊗Ha

)
Wa

(
H†
D ⊗HD

)
+ h.c. =

1√
2

(
H†
sHa −H†

aHs

)(
H†

1H2 −H†
2H1

)
|1s⟩

(i)

Ws

(
H†
DHs ⊗H†

DHa

)
+ h.c. = Ws

[(
−H†

1Hs

H†
2Hs

)
⊗
(

−H†
2Ha

H†
1Ha

)]
= 1√

2

[(
H†

2Hs

)(
H†

1Ha

)
−
(
H†

1Hs

)(
H†

2Ha

)
+ h.c.

]
|1s⟩

(j)

Ws

(
H†
DHs ⊗H†

aHD

)
+ h.c. = Ws

[(
−H†

1Hs

H†
2Hs

)
⊗
(

−H†
aH2

H†
aH1

)]
= 1√

2

[(
H†

2Hs

) (
H†
aH1

)
−
(
H†

1Hs

) (
H†
aH2

)
+ h.c.

]
|1s⟩

(k)

Ws

[
H†
aHD ⊗WD

(
H†
D ⊗HD

)]
+ h.c. = 1√

2
Ws

[(
−H†

aH2

H†
aH1

)
⊗
(
H†

1H2 +H†
2H1

H†
1H1 −H†

2H2

)]
= 1

2

[
−
(
H†
aH2 +H†

2Ha

)(
H†

1H2 +H†
2H1

)
+
(
H†
aH1 +H†

1Ha

)(
H†

1H1 −H†
2H2

)]
|1s⟩ .

To simplify the calculations, we introduce the following variables as in [23,24]

x1 = H†
1H1, x5 = R

(
H†

2Hs

)
, x9 = I

(
H†

2Hs

)
, y4 = R

(
H†
sHa

)
,

x2 = H†
2H2, x6 = R

(
H†

1Hs

)
, y1 = H†

aHa, y5 = I
(
H†

1Ha

)
,

x3 = H†
sHs, x7 = I

(
H†

1H2

)
, y2 = R

(
H†

1Ha

)
, y6 = I

(
H†

2Ha

)
,

x4 = R (H1H2) , x8 = I
(
H†

1Hs

)
, y3 = R (H2Ha) , y7 = I

(
H†
sHa

)
.

(43)

Using the above and taking the assignment of the self-coupling coe�cients in the order in which the constructed
invariant terms are listed, we obtain:

V4H = VHs⊗Ha + VHa , (44)

where
VHs⊗Ha = µ2

0x3 + µ2
1 (x1 + x2) + ax23 + bx3 (x1 + x2) + 2c

(
x25 + x26 − x28 − x29

)
+d
(
x25 + x26 + x28 + x29

)
+ 2e [(x1 − x2)x5 + 2x4x6] + f

[
(x1 − x2)

2 + 4x24
]

+g (x1 + x2)
2 − 4hx27,

(45)

VHa = µ2
2y1 + α1x3y1 + α2y

2
1 + α3

(
y24 + y27

)
+ 2α4

(
y24 − y27

)
+ α5y1 (x1 + x2)

+2α6

(
y22 + y23 − y25 − y26

)
+ α7

(
y22 + y23 + y25 + y26

)
− 4α8x7y7

+2α9 (x5y2 + x8y6 − x6y3 − x9y5) + 2α10 (x5y2 − x8y6 − x6y3 + x9y5)
+2α11 [y2 (x1 − x2)− 2x4y3] .

(46)

At the normal minimum, the VEV's of the Higgs �elds are considered real. So, once the �elds acquire VEV's, we
can relate them to the new variables (43) like

⟨x1⟩ = v21 , ⟨x2⟩ = v22 , ⟨x3⟩ = v2s , ⟨x4⟩ = v1v2,
⟨x5⟩ = v2vs, ⟨x6⟩ = v1vs, ⟨x7⟩ = ⟨x8⟩ = ⟨x9⟩ = 0, ⟨y1⟩ = v2a,
⟨y2⟩ = v1va, ⟨y3⟩ = v2va, ⟨y4⟩ = vsva, ⟨y5⟩ = ⟨y6⟩ = ⟨y7⟩ = 0.

(47)
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4.1 Normal minimum

The minimization equations of potential are de�ned as:

∂V4

∂vi
=
∂V4

∂xj

∂xj
∂vi

= 0. (48)

with i = 1, 2, 3 and j = 1, 2, ...15.
First of all, we calculate the di�erent terms individually

∂x1
∂v1

= 2v1,
∂x4
∂v1

= v2,
∂x6
∂v1

= vs,
∂y2
∂v1

= va y
∂xj
∂v1

= 0, for the rest.

∂x2
∂v2

= 2v2,
∂x4
∂v2

= v1,
∂x5
∂v2

= vs,
∂y3
∂v2

= va y
∂xj
∂v2

= 0, for the rest.

∂x3
∂vs

= 2vs,
∂x5
∂vs

= v2,
∂x6
∂vs

= v1,
∂y4
∂vs

= va y
∂xj
∂vs

= 0, for the rest.

∂y1
∂va

= 2va,
∂y2
∂vs

= v1,
∂y3
∂va

= v2,
∂y4
∂va

= vs y
∂xj
∂va

= 0, for the rest.

After
∂V

∂x1
= µ2

1 + bx3 + 2ex5 + 2f (x1 − x2) + 2g (x1 + x2) + α5y1 + 2α11y2,

∂V

∂x2
= µ2

1 + bx3 − 2ex5 − 2f (x1 − x2) + 2g (x1 + x2) + α5y1 − 2α11y2,

∂V

∂x3
= µ2

1 + 2ax3 + b (x1 + x2) + α1y1,

∂V

∂x4
= 4ex6 + 8fx4 − 4α11y3,

∂V

∂x5
= 2 (2c+ d)x5 + 2e (x1 − x2) + 2 (α9 + α10) y2,

∂V

∂x6
= 2 (2c+ d)x6 + 4ex4 − 2 (α9 + α10) y3,

∂V

∂x7
= −8hx7 − 4α8y7,

∂V

∂x8
= −2 (2c− d)x8 + 2 (α9 − α10) y6,

∂V

∂x9
= −2 (2c− d)x9 + 2 (α9 − α10) y5,

∂V

∂y1
= µ2

2 + α1x3 + 2α2y1 + α5 (x1 + x2) ,

∂V

∂y2
= 2 (2α6 + α7) y2 + 2 (α9 + α10)x5 + 2α11 (x1 − x2) ,

∂V

∂y3
= 2 (2α6 + α7) y3 − 2 (α9 + α10)x6 − 4α11x4,

∂V

∂y4
= 2 (α3 + 2α4) y4,

∂V

∂y5
= 2 (α7 − 2α6) y5 + 2 (α10 − α9)x9,

∂V

∂y6
= 2 (α7 − 2α6) y6 + 2 (α9 − α10)x8,

∂V

∂y7
= 2 (α3 − 2α4) y7 − 4α8x7.
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Evaluating all partial derivatives at the minimum:

∂V

∂x1

∣∣∣∣
min

= µ2
1 + bv2s + 2ev2vs + 2f

(
v21 − v22

)
+ 2g

(
v21 + v22

)
+ α5v

2
a + 2α11v1va,

∂V

∂x2

∣∣∣∣
min

= µ2
1 + bv2s − 2ev2vs − 2f

(
v21 − v22

)
+ 2g

(
v21 + v22

)
+ α5v

2
a − 2α11v1va,

∂V

∂x3

∣∣∣∣
min

= µ2
1 + 2ax3 + b (x1 + x2) + α1y1,

∂V

∂x4

∣∣∣∣
min

= 4ev1vs + 8fv1v2 − 4α11v2va,

∂V

∂x5

∣∣∣∣
min

= 2 (2c+ d) v2vs + 2e
(
v21 − v22

)
+ 2 (α9 + α10) v1va,

∂V

∂x6

∣∣∣∣
min

= 2 (2c+ d) v1vs + 4ev1v2 − 2 (α9 + α10) v2va,

∂V

∂x7

∣∣∣∣
min

= 0,

∂V

∂x8

∣∣∣∣
min

= 0,

∂V

∂x9

∣∣∣∣
min

= 0,

∂V

∂y1

∣∣∣∣
min

= µ2
2 + α1v

2
s + 2α2v

2
a + α5

(
v21 + v22

)
,

∂V

∂y2

∣∣∣∣
min

= 2 (2α6 + α7) v1va + 2 (α9 + α10) v2vs + 2α11

(
v21 − v22

)
,

∂V

∂y3

∣∣∣∣
min

= 2 (2α6 + α7) v2va − 2 (α9 + α10) v1vs − 4α11v1v2,

∂V

∂y4

∣∣∣∣
min

= 2 (α3 + 2α4) vsva,

∂V

∂y5

∣∣∣∣
min

= 0,

∂V

∂y6

∣∣∣∣
min

= 0,

∂V

∂y7

∣∣∣∣
min

= 0.

Then, we can write the system of equations of the minimum:

v1
[
µ2
1 + (b+ d+ 2c) v2s + (α5 + α7 + 2α6) v

2
a + 2 (f + g)

(
v21 + v22

)
+ 6ev2vs

]
= 3α11va

(
v22 − v21

)
,

v2
[
µ2
1 + (b+ d+ 2c) v2s + (α5 + α7 + 2α6) v

2
a + 2 (f + g)

(
v21 + v22

)
− 6α11v1va

]
= 3evs

(
v22 − v21

)
,

vs
[
µ2
0 + 2av2s + (α1 + α3 + 2α4) v

2
a + 2 (b+ d+ 2c)

(
v21 + v22

)]
= ev2

(
v22 − 3v21

)
,

va
[
µ2
2 + 2α2v

2
a + (α1 + α3 + 2α4) v

2
s + 2 (α5 + α7 + 2α6)

(
v21 + v22

)]
= α11v1

(
3v22 − v21

)
.

Using the potential (54), the equations of the minimum are

v1
[
µ2
1 + (λ5 + λ6 + 2λ7) v

2
s + (λ10 + λ12 + 2λ15) v

2
a + 2 (λ1 + λ2)

(
v21 + v22

)
+ 6λ4v2vs

]
= 3λ9va

(
v22 − v21

)
, (49)

v2
[
µ2
1 + (λ5 + λ6 + 2λ7) v

2
s + (λ10 + λ12 + 2λ15) v

2
a + 2 (λ1 + λ2)

(
v21 + v22

)
− 6λ9v1vs

]
= 3λ4v0

(
v22 − v21

)
, (50)

vs
[
µ2
0 + 2λ8v

2
s + λ14v

2
a + 2 (λ5 + λ6 + 2λ7)

(
v21 + v22

)]
= λ4v2

(
v22 − 3v21

)
, (51)

va
[
µ2
2 + 2λ13v

2
a + λ14v

2
s + (λ10 + λ12 + 2λ15)

(
v21 + v22

)]
= λ9v1

(
3v22 − v21

)
. (52)
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Furthermore, we obtain the equation

v1 =
√
3v2. (53)

In this way we can describe the mass matrices in a sim-
pler way.

4.2 4HDM Model

The scalar potential (symmetry invariant and renormal-
izable SU (3)C ⊗ SU (2)L ⊗ U (1)Y ⊗ S3) is a mixture
of the potentials known from studies of the three Higgs
model with permutation symmetry, and can be written
as:

V4 = µ2
0H

†
sHs + µ2

1

(
H†

1H1 +H†
2H2

)
+ µ2

2H
†
aHa

+λ1

(
H†

1H1 +H†
2H2

)2
+ λ2

(
H†

1H2 −H†
2H1

)2
+λ3

[(
H†

1H1 −H†
2H2

)2
+
(
H†

1H2 +H†
2H1

)2]
+λ4

[(
H†
sH1

) (
H†

1H2 +H†
2H1

)
+
(
H†
sH2

) (
H†

1H1 −H†
2H2

)
+ h.c.

]
+λ5

(
H†
sHs

) (
H†

1H1 +H†
2H2

)
+ λ8

(
H†
sHs

)2
+λ6

[(
H†
sH1

) (
H†

1Hs

)
+
(
H†
sH2

) (
H†

2Hs

)]
+λ7

[(
H†
sH1

) (
H†
sH1

)
+
(
H†
sH2

) (
H†
sH2

)
+ h.c.

]
+λ9

[(
H†
aH2

) (
H†

1H2 +H†
2H1

)
−
(
H†
aH1

) (
H†

1H1 −H†
2H2

)
+ h.c.

]
+λ10

(
H†
aHa

) (
H†

1H1 +H†
2H2

)
+λ11

[(
H†
aH1

) (
H†

1Ha

)
+
(
H†
aH2

) (
H†

2Ha

)]
+λ12

[(
H†
aH1

) (
H†
aH1

)
+
(
H†
aH2

) (
H†
aH2

)
+ h.c.

]
+λ13

(
H†
aHa

)2
+ λ14

(
H†
sHaH

†
aHs

)
+λ15

[(
H†

1Ha

)(
H†

2Ha

)
+ h.c.

]
.

(54)

The most general S3-invariant Yukawa Lagrangian density for the coupling of 4-Higgs coupled Dirac fermions (see
table 4), where both components of the third family are assigned to the symmetric singlet of S3 is:

−LYf = Y1

(
ψS,LψS,RHs

)
+ 1√

2
Y2

(
ψ1,Lψ1,R + ψ2,Lψ2,R

)
Hs

+ 1√
2
Y3

[(
ψ1,LH2 + ψ2,LH1

)
ψ1,R +

(
ψ1,LH1 − ψ2,LH2

)
ψ2,R

]
+ 1√

2
Y4

(
ψ1,Lψ2,R − ψ2,Lψ1,R

)
Ha

+ 1√
2
Y5

(
ψ1,LH1 + ψ1,LH1 + ψ2,LH2

)
ψS,R

+ 1√
2
Y6ψS,L (H1ψ1,R +H2ψ2,R) + h.c.

(55)

�
Particles SU (3)c × SU (2)L × U (1)Y S3 Z2

Q1, Q2 (3, 2, 1/3) 2 +1

Q3 (3, 2, 1/3) 1 +1

u1R, u2R (3, 1, 4/3) 2 +1

u3R (3, 1, 4/3) 1 +1

d1R, d2R (3, 1,−2/3) 2 +1

d3R (3, 1,−2/3) 1 +1

L1, L2 (1, 2,−1) 2 +1

L3 (1, 2,−1) 1 +1

e1R, e2R (1, 1,−2) 2 +1

e3R (1, 1,−2) 1 +1

H1, H2 (0, 2, 1) 2 +1

Hs (0, 2, 1) 1 +1

Ha (0, 2, 1) 1 −1

Table 4: Particle spectrum of SM group and S3 ⊗ Z2.
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where Yi are complex Yukawa couplings. When writing the Yukawa Lagrangian density, for up-type quarks or Dirac
neutrinos, the Higgs �eld must be replaced by the conjugate Higgs �eld Hiw → iσ2H

∗
iW , i = 1, 2.

After symmetry breaking [25], the Higgs doublets SU (2)L acquire expectation values in a vacuum, which we
choose real.

v1 ≡ ⟨0|H1 |0⟩ v2 ≡ ⟨0|H2 |0⟩
vs ≡ ⟨0|Hs |0⟩ va ≡ ⟨0|Ha |0⟩ ,

(56)

In this communication, the Yukawa interactions yield mass matrices, for all fermions in the theory, starting by LYD

LYD =
1

2

(
d s b

)
MYD

 d
s
b

 =
1

2

(
d s b

) md
1 +md

2 md
4 +md

5 md
6

md
4 −md

5 md
1 −md

2 md
7

md
8 md

9 md
3

 d
s
b

 (57)

or

MYD =

 md
1 +md

2 md
4 +md

5 md
6

md
4 −md

5 md
1 −md

2 md
7

md
8 md

9 md
3

 . (58)

giving mass to the fermions of the Standard Model. The eigenvalues are md
i , i = 1, 2, 3. It is convenient to de�ne the

notation
md

1 ≡ 2Y d1 vs, md
2 ≡ 2Y d2 v2, md

3 ≡ 2Y d3 v1,

md
4 ≡ 2Y d2 v1, md

5 ≡ 2Y d4 va, md
6 ≡ 2Y d5 v1,

md
7 ≡ 2Y d5 v2, md

8 ≡ 2Y d6 v1 md
9 ≡ 2Y d6 v2,

(59)

The rest of the matrices (and in particular MYν ) have the same structure, changing only the Yukawa coupling terms,
i. e.,

LYU =
1

2

(
u c t

) mu
1 +mu

2 mu
4 +mu

5 mu
6

mu
4 −mu

5 mu
1 −mu

2 mu
7

mu
8 mu

9 mu
3

 u
c
t

 , (60)

LYE =
1

2

(
e µ τ

) me
1 +me

2 me
4 +me

5 me
6

me
4 −me

5 me
1 −me

2 me
7

me
8 me

9 me
3

 e
µ
τ

 , (61)

LYν =
1

2

(
νe νµ ντ

) mν
1 +mν

2 mν
4 +mν

5 mν
6

mν
4 −mν

5 mν
1 −mν

2 mν
7

mν
8 mν

9 mν
3

 νe
νµ
ντ

 , (62)

with the mass matrices

MYU =

 mu
1 +mu

2 mu
4 +mu

5 mu
6

mu
4 −mu

5 mu
1 −mu

2 mu
7

mu
8 mu

9 mu
3

 , (63)

MYE =

 me
1 +me

2 me
4 +me

5 me
6

me
4 −me

5 me
1 −me

2 me
7

me
8 me

9 me
3

 , (64)

MYν =

 mν
1 +mν

2 mν
4 +mν

5 mν
6

mν
4 −mν

5 mν
1 −mν

2 mν
7

mν
8 mν

9 mν
3

 . (65)

If we use equation (53), we obtain

MYU =

 mu
1 +mu

2

√
3mu

2 +mu
5

√
3mu

7√
3mu

2 −mu
5 mu

1 −mu
2 mu

7√
3mu

9 mu
9 mu

3

 ,

(66)

MYD =

 md
1 +md

2

√
3md

2 +md
5

√
3md

7√
3md

2 −md
5 md

1 −md
2 md

7√
3md

9 md
9 md

3

 .

(67)

MYE =

 me
1 +me

2

√
3me

2 +me
5

√
3me

7√
3me

2 −me
5 me

1 −me
2 me

7√
3me

9 me
9 me

3

 ,

(68)
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MYν =

 mν
1 +mν

2

√
3mν

2 +mν
5

√
3mν

7√
3mν

2 −mν
5 mν

1 −mν
2 mν

7√
3mν

9 mν
9 mν

3

 .

(69)
Models with three Higgs doublets can be obtained as

special cases of models with 4 Higgs doublets, e.g. to
obtain the mass matrix of a 3HDM [26�40] and the third
fermion family in the singlet representation asymmetric,
it is enough to take the limit when Ha → 0

− Lím
Ha→0

LYf = Y1

(
ψS,LψS,RHs

)
+

1√
2
Y2

(
ψ1,Lψ1,R + ψ2,Lψ2,R

)
Hs+

1√
2
Y3

[(
ψ1,LH2 + ψ2,LH1

)
ψ1,R+(

ψ1,LH1 − ψ2,LH2

)
ψ2,R

+

��������������: 0

1√
2
Y4

(
ψ1,Lψ2,R − ψ2,Lψ1,R

)
Ha

+ 1√
2
Y5

(
ψ1,LH1 + ψ1,LH1 + ψ2,LH2

)
ψS,R

+ 1√
2
Y6ψS,L (H1ψ1,R +H2ψ2,R) + h.c.

(70)

then, the mass matrices are given by:

MYD =

 md
1 +md

2 md
4 md

6

md
4 md

1 −md
2 md

7

md
8 md

9 md
3

 . (71)

MYU =

 mu
1 +mu

2 mu
4 mu

6

mu
4 mu

1 −mu
2 mu

7

mu
8 mu

9 mu
3

 , (72)

MYE =

 me
1 +me

2 me
4 me

6

me
4 me

1 −me
2 me

7

me
8 me

9 me
3

 , (73)

MYν =

 mν
1 +mν

2 mν
4 mν

6

mν
4 mν

1 −mν
2 mν

7

mν
8 mν

9 mν
3

 . (74)

4.3 4HDM with Z2

This model has a dark matter candidate from a model
with S3 symmetry without interfering with the positive
results obtained in [26�32].

An important condition for having a viable dark mat-
ter candidate is its stability. That is, it does not de-
cay into Standard Model particles. The simplest way to
establish the stability of a particle in a model beyond

the standard, is imposing a discrete symmetry Z2, so
that all the �elds are transformed in the form Ψ −→ Ψ,
while the two dark matter candidates are transformed as
χ −→ −χ, this way we make sure we don't have terms
denoting decays of χ. This method has been used in nu-
merous models, such as the scotogenic [41] and the inert
scalar doublet [42]. It is worth mentioning that there
are also models with more complex discrete symmetries,
such as Z3 in [43]. In general you can make models with
symmetry Zn.

In this model with symmetry Z2, i. e. 4HDM [44�46],
dark matter candidate is the Higgs boson in the anti-
symmetric singlet representation Ha , so these transform
under Z2 as Ha −→ −Ha. So, the Lagrangian density of
Yukawa is given by:

−LYf = Y1

(
ψS,LψS,RHs

)
+

1√
2
Y2

(
ψ1,Lψ1,R + ψ2,Lψ2,R

)
Hs

+ 1√
2
Y3

[(
ψ1,LH2 + ψ2,LH1

)
ψ1,R +

(
ψ1,LH1 − ψ2,LH2

)
ψ2,R

]
+ 1√

2
Y4

(
ψ1,Lψ2,R − ψ2,Lψ1,R

)
Ha

+ 1√
2
Y5

(
ψ1,LH1 + ψ1,LH1 + ψ2,LH2

)
ψS,R

+ 1√
2
Y6ψS,L (H1ψ1,R +H2ψ2,R) + h.c.

(75)
and scalar potential

V = µ2
0H

†
sHs + µ2

1

(
H†

1H1 +H†
2H2

)
+ µ2

2H
†
aHa

+λ1

(
H†

1H1 +H†
2H2

)2
+ λ2

(
H†

1H2 −H†
2H1

)2
+λ3

[(
H†

1H1 −H†
2H2

)2
+
(
H†

1H2 +H†
2H1

)2]
+λ4

[(
H†
sH1

) (
H†

1H2 +H†
2H1

)
+
(
H†
sH2

) (
H†

1H1 −H†
2H2

)
+ h.c.

]
+λ5

(
H†
sHs

) (
H†

1H1 +H†
2H2

)
+ λ8

(
H†
sHs

)2
+λ6

[(
H†
sH1

) (
H†

1Hs

)
+
(
H†
sH2

) (
H†

2Hs

)]
+λ7

[(
H†
sH1

) (
H†
sH1

)
+
(
H†
sH2

) (
H†
sH2

)
+ h.c.

]
+λ9

[(
H†

aH2

) (
H†

1H2 +H†
2H1

)
−
(
H†

aH1

) (
H†

1H1 −H†
2H2

)
+ h.c.

]
+λ10

(
H†
aHa

) (
H†

1H1 +H†
2H2

)
+λ11

[(
H†
aH1

) (
H†

1Ha

)
+
(
H†
aH2

) (
H†

2Ha

)]
+λ12

[(
H†
aH1

) (
H†
aH1

)
+
(
H†
aH2

) (
H†
aH2

)
+ h.c.

]
+λ13

(
H†
aHa

)2
+ λ14

(
H†
sHaH

†
aHs

)
+λ15

[(
H†

1Hs

)(
H†

2Ha

)
+ h.c.

]
(76)

with this new symmetry.
The terms highlighted in bold, correspond to those

that break the Z2 symmetry and are therefore omit-
ted, note that Ha no longer appears in the Yukawa La-
grangian density. Another imposition required to pro-

pose the candidacy of a �eld of the doublet Ha, is that
its corresponding VEV is equal to zero, va = 0 (For more
details of this model, see [44�46]).



Rev. Inv. Fis. 27(2), (2024) 53

5 Dark matter candidate

This model is based on S3 symmetry, which allows us to
accommodate the four Higgs doublets:

H1 =

(
hc1

hn1 + v1 + ihp1

)
, H2 =

(
hc2

hn2 + v2 + ihp2

)
,

Hs =

(
hcs

hns + v0 + ihps

)
, Ha =

(
hca

hna + va + ihpa

)
.

(77)
Hence, the fourth Higgs doublet, Ha, contains four phys-
ical �elds, two charged hca and two neutral, the scalar hna
and the pseudoscalar hpa. Charged particles are restricted
as dark matter candidates [47]. Thus, viable candidates
are the antisymmetric doublet neutral Higgs �elds, hna
and hpa, with masses:

m2
h
p
a
= µ2

2 + λ14v
2
0 + 4 (λ10 + λ11 − 2λ12) v

2
2 , (78)

m2
hn
a
= µ2

2 + λ14v
2
0 + 4 (λ10 + λ11 + 2λ12) v

2
2 , (79)

the lightest neutral Higgs �eld will be the dark matter
candidate resulting from the fourth Higgs doublet.

There are theoretical and experimental constraints,
which apply to the analysis of the candidate to constrain
the mass range of this and the rest of the Higgs �elds in
the model. Using the IDM [48], we have the constraints:

Theoretical restrictions

1. The potential must be bounded from below, so that
it has a stable vacuum [44].

2. The quartic couplings of the Higgses must be per-
turbative, i.e.

∣∣a±i ∣∣, |bi| < 16π [44].

Experimental restrictions

1. The mass Higgs boson of the standard model is [49]:

mhn
s
= 125.09± 0.21 GeV. (80)

2. The upper limit of the total amplitude of the boson
hns [50] [51] is:

Γ < 22 MeV. (81)

3. The relic density obtained in the PLANCK exper-
iment [52]

Ωh2 ≤ 0.1241. (82)

In this model, we consider the mass of the Standard
Model Higgs mh = 125 GeV, taking the possibility of
two of the scalar neutral �elds (those corresponding to
the Higgs doublets Hs and H2).

6 Concluding remarks

In this article, we study the 4HDM model in the theo-
retical framework of the minimum extension S3 of the
standard model. We extend the Higgs sector by adding
four Higgs doublets and making the theory invariant with
respect to �avor permutations. We impose Z2 symme-
try on the fourth Higgs doublet, Ha. In this model, the
dark matter candidate is the Higgs doublet in the anti-
symmetric singlet representation Ha, so these transform
under Z2 as Ha −→ −Ha.

The Higgs doublets are denoted as:

HD ≡
(
H1

H2

)
∼ 2, Hs ∼ 1s, Ha ∼ 1a.

We accommodate four SU (2) doublets into the irre-
ducible representations of the permutation group S3, de-
noting the symmetric and antisymmetric scalars by Hs

and Ha respectively, while the remaining two doublet H1

and H2 are arranged how

Hs =

(
hcs

hns + v0 + ihps

)
Ha =

(
hca

hna + va + ihpa

)
H1 =

(
hc1

hn1 + v1 + ihp1

)
H2 =

(
hc2

hn2 + v2 + ihp2

)
In the model with four Higgs doublets (4HDM), we

takes the fourth Higgs doublet as a stable particle with-
out interaction with fermions, making it a candidate for
dark matter, while with the remaining three the proper-
ties obtained are maintained. Another imposition that
we impose on the doublet Ha is that its corresponding
VEV is equal to zero, va = 0.

In this model, we compute the system of equations
of the minimum of the potential, so we obtain the equa-
tion v1 =

√
3v2. In this way we can describe the mass

matrices in a simpler way. The 3HDM models can be
obtained as special cases of the 4HDM models, that
is, in the limit Ha → 0, we obtain the mass matrices

MYU =

 mu
1 +mu

2

√
3mu

2

√
3mu

7√
3mu

2 mu
1 −mu

2 mu
7√

3mu
9 mu

9 mu
3

 ,

MYD =

 md
1 +md

2

√
3md

2

√
3md

7√
3md

2 md
1 −md

2 md
7√

3md
9 md

9 md
3

 ,

MYE =

 me
1 +me

2

√
3me

2

√
3me

7√
3me

2 me
1 −me

2 me
7√

3me
9 me

9 me
3

 ,

MYν =

 mν
1 +mν

2

√
3mν

2

√
3mν

7√
3mν

2 mν
1 −mν

2 mν
7√

3mν
9 mν

9 mν
3

 .

Additionally, the 4HDM model can continue to be
studied and understood. Then future perspectives could
be to calculate radiative corrections that show correc-
tions to the mass values. Another additional perspective
of the work would be the possibility of extending the dark
matter sector of the model with additional particles.
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