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A linear spin-wave theory for LiNiPO4 utilizing a nonextensive distribution
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This work is concerned about the lithium-nickel phosphate, LiNiPO4, a very important magnetic-
electric material due to its promising applications to tailor the next-generation lithium-nickel batteries.
In the Hamiltonian operator, it is considered the interactions of Ni2+, the unique magnetic ion in the
phosphate. Specifically, it is taken into account the Heisenberg interactions along with the single-ion
anisotropy term. Furthermore, the utilization of the Holstein-Primakoff formalism leads to spin-wave
scattering. To investigate the spin-wave intensities, we utilize the nonextensive probability distribution
what originates some bulges in the curves of the intensities.
Keywords: Spin waves, neutron diffraction, magnetic materials, quantum statistical mechanics.

Una teoría lineal de ondas de espín para el LiNiPO4 utilizando una distribución
no extensiva

Este trabajo se basa en el estudio del fosfato de Li-Ni, LiNiPO4, un material magnético-eléctrico
promisorio en la próxima generación de baterias de litio-niquel. El operador hamiltoniano considera
las interacciones del único ión magnético, Ni+, en el fosfato. Específicamente se toman en consideración
las interacciones de Heisenberg con los términos de anisotropía del ión. Asimismo, la utilización del
formalismo de Holstein-Primakoff conduce al scattering de las ondas de espín. Para investigar las
intensidades de ondas de espín, utilizamos la distribución de probabilidad no extensiva que origina
unos bultos en las curvas de las intensidades.
Palabras claves: Ondas de espín, difracción de neutrones, materiales magnéticos, mecánica estadística
cuántica.

Nowadays, the studies to obtain low-cost and non-
contaminant rechargeable batteries is very intense, for
these investigations have become vital to prevent the
pollutant materials which destroy our environment.
Particularly, two phosphate compounds, very impor-
tant when tailoring the next-generation batteries, ha-
ve focussed the researchers’ interest: FeNiPO4 and
LiNiPO4. Herein, we will only concern with the Li-Ni
phosphate, and we carry out computer simulations for
this compound. The references [1, 2] furnish us a cu-
rrent review respecting that material as well as infor-
mation about its synthesis and the experimental tech-
niques utilized to investigate it. Concretely, to study
the LiNiPO4 we will utilize a procedure based on spin
waves what was developed by T. B. S. Jensen [3] as
well as the nonextensive statistical mechanics invented
by C. Tsallis [4].

The nonextensive statistics is also known as Tsallis
statistics. It is named after its inventor, a Brazilian re-

searcher of Greek origin. It is by far the most studied
generalized statistics. There are four versions about this
alternative to the Boltzmann-Gibbs-Shannon statistics;
basically, they differ in the way of defining the thermal
mean value [5]. The Tsallis statistics has support as
theoretical as experimental in areas like Econophysics,
Cosmology, Quantum Field theories, etc. Specially, we
cite [6] as the reference containing applications of Tsa-
llis statistics on magnetic materials and spin waves in
the field of Condensed Matter Physics.

Apart from this introductory section, this article is
organized into the following way: in the section we pro-
vide the theoretical frame; the subsection contains the
background on both the composite LiNiPO4 and the
spin waves; the focusing on the Tsallis statistics is done
in subsection ; in subsection we display the essential
formulas for obtaining the spin-wave intensities origi-
nated in the Li-Ni phosphate. The section exhibits the
computer simulations of spin waves utilizing the inno-
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vative statistic. Displaying the conclusions about this
paper, we have the section . And, finally, in the sec-
tion we acknowledge the persons that contributed to
enhance the present work.

Theory

The phosphate composite LiNiPO4

This crystal presents the magnetoelectricity, a phe-
nomenon that is the interplay between the electric po-
larization and the magnetization. Its crystal structure
is orthorhombic with lattice parameters a=10.032 Å,
b=5.854 Å and c=4.677 Å; its crystal symmetry is des-
cribed by the space group Pnma [7]. In the compound
LiNiPO4 the following ions aren’t magnetic: Li1+, P5+

and O2−. But, the ions Ni2+ are the magnetic ions
which possess a total spin S=1 [8]. So, each of these ions
has a magnetic dipolar moment what interacts with its
surroundings, and even more they can interplay with
neutrons, for these elemental particles present a mag-
netic dipolar moment at that. Therefore, it is possible
to take into account the neutron diffraction when this
phosphate is targeted by a neutron beam from a source.
For instance, T. B. S. Jensen et al. carried out expe-
rimental measurements in the Paul Scherrer Institute,
Switzerland [9]. They utilized the triple-axis spectrome-
ter RITA (Re-Invented Triple Axis) – a device built at
Risø National Laboratory DTU (Dutch acronym trans-
lated as Technical University of Denmark) – coupled to
the SINQ (German acronym translated as Swiss Spa-
llation Neutron Source). The flux of the SINQ is appro-
ximately 1014 n/(cm2-s) [10].

The full Hamiltonian operator we consider for the
compound LiNiPO4 is the one proposed in [3,9]:

Ĥtotal = Ĥyz + Ĥy + Ĥz + Ĥxz+

Ĥxy + Âx + Ây + Âz, (1)

where the circumflex symbol indicates a quantum ope-
rator; above Ĥxy stands for the Heisenberg Hamiltonian
of interactions between two ions Ni, which are next-
nearest neighbors along the axes x and y (indeed it is
along axes a and b); Ĥxy, Ĥyz, Ĥz and Ĥy are defined
in an analogous manner. Âx, Ây and Âz indicate single-
ion anisotropies. So on, we specify the mentioned terms
like

Ĥyz = Jyz

∑

i,j

~Si.~Sj , (2)

Ĥxy = Jxy

∑

i,j

~Si.~Sj , (3)

Ĥxz = Jxz

(

∑

i,i′

~Si.~Si′ +
∑

j,j′

~Sj .~Sj′

)

, (4)

Ĥy = Jy

(

∑

i,i′

~Si.~Si′ +
∑

j,j′

~Sj .~Sj′

)

, and (5)

Ĥz = Jz

(

∑

i,i′

~Si.~Si′ +
∑

j,j′

~Sj .~Sj′

)

, (6)

where it must be implied ~Si is an operator standing for
a spin in the site i; analogously for ~Sj . Also, both i and
i′ represent sites of spin up; both j and j′ means sites
with spin down; Jyz, Jxy , Jxz, Jy and Jz are the usual
exchange constants.

Furthermore, the three terms of single-ion aniso-
tropy are given by

Âx = Dx

(

∑

i

(Sx
i )

2 +
∑

j

(Sx
j )

2

)

, (7)

Ây = Dy

(

∑

i

(Sy
i )

2 +
∑

j

(Sy
j )

2

)

and (8)

Âz = Dz

(

∑

i

(Sz
i )

2 +
∑

j

(Sz
j )

2

)

= 0, (9)

where Dx, Dy and Dz are the single-ion anisotropy
constants in the directions of the crystal axes a, b and
c, respectively. Finally, it was taken into account Az=0
since it was assumed Dz=0.

On the other side, it is possible deploy the Holstein-
Primakoff transformations to pass from a spin problem
toward a boson problem [11], because the commutation
rules for bosons are simpler than commutation rules for
spins. We must also consider Ni2+ originates two mag-
netic types of ions: the ones with spin up and the ones
with spin down. Thereupon, we can expand the spin
operators in terms of two class of boson operator:

S
+
i =

√
2S

√

1− a
†
iai

2S
ai, (10)

S
−
i =

√
2Sa†

i

√

1− a
†
iai

2S
(11)

S
z
i = S − a

†
iai; (12)

S
+
j =

√
2Sbj

√

1−
b
†
jbj

2S
, (13)

S
−
j =

√
2S

√

1−
b
†
jbj

2S
b
†
j (14)

S
z
j = −S + b

†
jbj . (15)

It is absolutely essential four operators because two
operators – both creation and destruction – are utili-
zed for each spin. Namely, for the spin up, the operator
a
†
i ≡ a

†

~ri
denotes the creation of a boson in the position

~ri, and the operator ai ≡ a~ri symbolizes the annihila-
tion of a boson in the same position; analogously for the
ions with spin down. In Eqs. (10) we have evidenced it
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is possible expand it in a power series and, taking into
account only linear terms, we can get a linear spin-wave
theory:

S
+
i =

√
2Sai, (16)

S
−
i =

√
2Sa†

i (17)

S
z
i = S − a

†
iai (18)

S
+
j =

√
2Sb†j , (19)

S
−
j =

√
2Sbj and (20)

S
z
i = −S + b

†
ibi . (21)

Next, we can express each of the respective ladder
operators as a Fourier transform:

a
†
i =

√

2

N

∑

~k

e
−i~k.~ria

†

~k
(22)

ai =

√

2

N

∑

~k

e
i~k.~r

a~k, (23)

b
†
j =

√

2

N

∑

~k

e
−i~k.~rj b

†

~k
(24)

bj =

√

2

N

∑

~k

e
i~k.~rj b~k, (25)

where a
†

~k
and a~k represent the respective creation and

annihilation of a magnon with wave vector ~k; likewi-
se for b

†

~k
and b~k. The magnon is a collective excitation

and to evincing it we can explicitly set the inverse of
Eqs.(22):

a
†

~k
=

√

2

N

∑

~k

e
i~k.~ria

†
i , (26)

a~k =

√

2

N

∑

~k

e
−i~k.~r

ai , (27)

b
†

~k
=

√

2

N

∑

~k

e
i~k.~rj b

†
j , (28)

b~k =

√

2

N

∑

~k

e
−i~k.~rj bj . (29)

There upon, replacing the equation sets (16) and (22)
into Eq. (1), we obtain the total Hamiltonian operator
for LiNiPO4 in the frame of a linear spin-wave theory.
That Hamiltonian expression can be compacted in the
following matrix way:

Ĥtotal =
1

2

∑

~k

a†Ha (30)

with

a† =
(

a
†

~k
a
−~k

b
†

~k
b
−~k

)

a =











a~k
a
†

−~k

b~k
b
†

−~k











, (31)

where H indicates a matrix constituted by no operators;
it has the following expression:

H =









A B 0 D

B A D 0
0 D A B

D 0 B A









, (32)

the matrix entries will be specified subsequently. We
want to stress just now is H doesn’t contain the eigen-
values of LiNiPO4 because this case is very much dif-
ferent to the elemental expression for a given arbitrary
Hamiltonian operator:

Ĥ =
∑

m

P†
mHmmPm (33)

where H has to be a matrix represented in the eigen-
vector basis of Ĥ with elements Hmm = 〈Em|Ĥ|Em〉,
and

P†
m =

(

|E1〉〈E1| |E2〉〈E2| ... |Em〉〈Em|
)

(34)

Pm =









|E1〉〈E1|
|E2〉〈E2|

...

|Em〉〈Em|









; (35)

certainly, the matrix H contains the arbitrary eigenva-
lues. Therefore, to find out the eigenvalues of LiNiPO4

it will be necessary to effectuate a transformation that
guarantees the boson commutation rules. Before de-
lineating that procedure, we must specify the matrix
components of H:

A = 4S(Jyz + Jxy)− 2S

{

Jy

[

1− cos(~k.~r5)

]

+

Jz

[

1− cos(~k.~r6)

]

+ Jxz

[

2− cos(~k.~r7)− cos(~k.~r8)

]}

+

2Dx

(

S − 1

2

)

+ 2Dy

(

S − 1

2

)

, (36)

B = 2Dx

(

S − 1

2

)

− 2Dy

(

S − 1

2

)

, (37)

D = 2JyzS

[

cos(~k.~r1) + cos(~k.~r2)

]

+

2JxyS

[

cos(~k.~r3) + cos(~k.~r4)

]

; (38)
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with the vectors ~ri meaning

~r1 = (0,
b

2
,
c

2
), ~r2 = (0,

b

2
,
−c

2
),

~r3 = (
a

2
,
b

2
, 0), ~r4 = (

a

2
,
−b

2
, 0),

~r5 = (0, b, 0), ~r6 = (0, 0, c),

~r7 = (
a

2
, 0,

c

2
) and ~r8 = (

a

2
, 0,

−c

2
) . (39)

Immediately, we are going to apply the transformation
proposed in [3]: a = Tα. As a result of it the full Ha-
miltonian, Eq. (30), become

Ĥtotal =
1

2

∑

~k

α
†
T

†HTα ≡ 1

2

∑

~k

α
†
Hα (40)

with H = T
†HT standing for the Hamiltonian matrix

in the eigenvector basis; T is a real transformation ma-
trix, and hence T

† = T
t; α† and α are a set of Bosons

operators, as well. In detail, these last mathematical
entities are denoted as

T =









T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44









; (41)

α
† =

(

α
†

~k
α
−~k

β
†

~k
β
−~k

)

, α =













α~k

α
†

−~k

β~k

β
†

−~k













. (42)

Now, there are 16 boson commutator relations origina-
ted from commutations between elements of a and a

† in
the Eq. (31). All of them can be compacted as follows:









T11 −T12 T13 −T14

−T21 T22 −T23 T24

T31 −T32 T33 −T34

−T41 T42 −T43 T44









×









T11 T21 T31 T41

T12 T22 T32 T42

T13 T23 T33 T43

T14 T24 T34 T44









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(43)

from this expression, we perceive two facts: the first one
is there appears the transpose of T:

T
t =









T11 T21 T31 T41

T12 T22 T32 T42

T13 T23 T33 T43

T14 T24 T34 T44









; (44)

the second one is the inverse matrix of Tt also is defi-
ned from Eq. (43), for (Tt)−1

T
t = I4x4; explicitly we

have

(Tt)−1 =









T11 −T12 T13 −T14

−T21 T22 −T23 T24

T31 −T32 T33 −T34

−T41 T42 −T43 T44









. (45)

Next, we want to point out an important conclusion
from Eqs.(44) and (45): T isn’t a unitary transforma-
tion since T

t 6= (Tt)−1. This fact will have repercussion
on the Hamiltonian matrix of LiNiPO4 as we will dis-
play later.

Now from the diagonal matrix, with lambda eigen-
values, H = T

tHT it can be inferred that

HT = (Tt)−1
H =









T11 −T12 T13 −T14

−T21 T22 −T23 T24

T31 −T32 T33 −T34

−T41 T42 −T43 T44









×









λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4









; (46)

after we have

HT =









λ1









T11

−T21

T31

−T41









λ2









−T12

T22

−T32

T42









λ3









T13

−T23

T33

−T43









×

λ4









−T14

T24

−T34

T44

















(47)

but from matrix properties we have also

HT =
(

HT1 HT2 HT3 HT4

)

=








H









T11

T21

T31

T41









H









T12

T22

T32

T42









H









T13

T23

T33

T43









H









T14

T24

T34

T44

















,

(48)

where it is clear the meaning of T1, T2, T3 and T4.
By contrasting the Eqs. (47) and (48) we obtained four
matrix equations:

HT1 = λ1









T11

−T21

T31

−T41









,HT2 = λ2









−T12

T22

−T32

T42









HT3 = λ3









T13

−T23

T33

−T43









and HT4 = λ4









−T14

T24

−T34

T44









; (49)
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from this last four expressions, we found, respectively,
the column vectors T1, T2, T3 and T4 on the right side
of the respective matrix identity:

HT1 = λ1I1T1, HT2 = λ2I2T2,

HT3 = λ3I1T3, and HT4 = λ4I2T4 , (50)

with

I1 =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









and (51)

I2 =









−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1









. (52)

We notice Eq. (50) may be converted in the following
one:

I1HT1 = λ1T1, I2HT2 = λ2T2,

I1HT3 = λ3T3, and I2HT4 = λ4T4; (53)

and, by taking into account that I1 = −I2,

I1HT1 = λ1T1, I1HT2 = −λ2T2,

I1HT3 = λ3T3, and I1HT4 = −λ4T4; (54)

renaming H = I1H, we can rewrite the earlier equation
as follows:

HT1 = λ1T1, HT2 = −λ2T2,

HT3 = λ3T3, and HT4 = −λ4T4 . (55)

Therefore, it has been formed four eigenvalue equa-
tions with their respective eigenvalues λ1, −λ2, λ3 and
−λ4. Furthermore, it has been obtained the true hamil-
tonian matrix H that represents the full Hamiltonian of
the Eq. (1). But it isn’t represented in the eigenvector
basis, for it is non-diagonal; that is, we have to diago-
nalize else

H = I1H =









A B 0 D

−B −A −D 0
0 D A B

−D 0 −B −A









. (56)

We want to emphasize the matrix H – got by T. S.
Jensen [3] – is non-Hermitian; it is a consequence of the
fact the transformation matrix, Eq. (41), isn’t unitary,
but its usage have an experimental support [3]. Besides
the non-hermitian quantum mechanics is an emerging

field of research currently [12]. Now, mathematically,
we have four real eigenvalues for Eq. (56):

ǫ1 = λ1 =
√

A2 − (B +D)2, (57)

ǫ2 = −λ2 = −
√

A2 − (B +D)2, (58)

ǫ3 = λ3 =
√

A2 − (B −D)2 and (59)

ǫ4 = −λ4 = −
√

A2 − (B −D)2. (60)

However, we will only consider the positive values
expressing the dispersion of the spin waves; we will de-
note them as

ǫα,β =
√

A2 − (B ±D)2 . (61)

Next, following the developed work by T. S. Jen-
sen [3], it can be formed, with the associated eigenvec-
tors of H, a provisional transformation matrix P. Logi-
cally, if it is to be the true matrix, it will be renamed
T. Then, let P1, P2, P3 and P4 denoting the associated
eigenvectors of H so that P is defined as

P =
(

P1 P2 P3 P4

)

=
























− ǫα +A

B +D
−−ǫα + A

B +D

ǫβ +A

B −D

−ǫβ + A

B −D

1 1 −1 −1

− ǫα +A

B +D
−−ǫα + A

B +D
− ǫβ +A

B −D
−−ǫβ + A

B −D

1 1 1 1

























.

(62)

Now, the true transformation matrix must confirm
the relation I1 = TI1T

t. So, we proceed to verify if P
satisfies it:

PI1P
t =









−x1 −x2 x3 x4

1 1 −1 −1
−x1 −x2 −x3 −x4

1 1 1 1









×









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

















−x1 1 −x1 1
−x2 1 −x2 1
x3 −1 −x3 1
x4 −1 −x4 1









6= I1,

(63)

where we have set the following parameters:

x1 =
ǫα + A

B +D
, x2 =

−ǫα + A

B +D
(64)

x3 =
ǫβ + A

B −D
and x4 =

−ǫβ + A

B −D
. (65)

Certainly, the provisional matrix P doesn’t satisfy
the mentioned relation for I1 and, therefore, it doesn’t
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contain the sought eigenvectors. In [3] is shown that the
true transformation matrix is

T = [T1 T2 T3 T4] = PM (66)

where M =
√

I1P
−1I1(Pt)−1.

Thus to find the true eigenvectors contained in T,
it has to be utilized a computational approach because
the inverse matrices appearing in the last formula for
M.

The Nonextensive Statistical Mechanics

As indicated in the section 1, this statistical propo-
sal has four versions currently. However, it is the third
one what has been more studied; we utilized it in this
article. Then, the theoretical construction starts by pos-
tulating the Tsallis entropy [4,5]:

Sq = kB

1−∑

i

(pqi )

q − 1
, (67)

where p
q
i is the probability distribution to find the sys-

tem in i-th state, pi, powered to the entropic index q;
kB is the Boltzmann constant;

∑

i

(pqi ) symbolizes the

quantum operation of trace over the matrix p
q
i . As we

apply the limit q tending to 1 for Eq.(67), we recover
the well known Boltzmann-Gibbs-Shannon entropy,

S = −kB
∑

i

(piLnpi). (68)

The nonextensive probability distribution pi is ob-
tained via maximum entropy method, which was in-
vented by the American Edward T. Jaynes [15]. In that
procedure, we consider the following constraints,

∑

i

pi = 1 and Eq =

∑

i

p
q
i ǫi

∑

i

p
q
i

, (69)

where ǫi are the energy eigenvalues and Eq is the inter-
nal energy. By the means of the aforementioned met-
hod, we obtain the probability distribution given by

pi =

[

1− (1− q)β′ǫi

] 1
1−q

Zq

, (70)

where Zq stands for the partition function

Zq =
∑

i

[

1− (1− q)β′
ǫi

] 1
1−q

; (71)

where β′ is a parameter defined as the inverse tempe-
rature

β
′ =

1

kBT
. (72)

However, in the Tsallis statistics it exists other de-
finitions for temperature [16].

On the other side, we want to stress in the Eqs. (70)
and (71) it is necessary to guarantee the positivity of
probabilities. It is get via the Tsallis cut-off:

[

1− (1− q)
1

kBT
ǫi

]

> 0 . (73)

Therefore, the distribution of probability can be ex-
pressed as

pi =







[1−(1−q) 1
kBT

ǫi]
1

1−q

Zq
, if [1− (1− q) 1

kBT
ǫi] > 0

0 , otherwise
(74)

In addition, we can rewrite the relationships for Sq

and pi through the functions known as q-exponential
and q-logarithm, respectively:

expq(x) = [1 + (1− q)x]
1

1−q and (75)

Lnq(x) =
x1−q − 1

1− q
; (76)

thereupon, Sq and pi, Eq. (67) and Eq. (70), verify

Sq = −kB
∑

i

[

piLnq(pi)
]

and (77)

pi =
expq(− 1

kBT
ǫi)

∑

i

expq(− 1
kBT

ǫi)
(78)

which, clearly, remember both the entropy and probabi-
lity distribution for the Boltzmann-Gibbs-Shannon sta-
tistics.

Quantum mean values

In the third version of the nonextensive statistical
mechanics, the thermal mean values of an observable
O, represented by the operator Ô, in the Hilbert space
are calculated by means of this expression:

Oq = 〈Ô〉q =

∑

i

pi
qOi

∑

i

p
q
i

, (79)

where Oi betoken the eigenvalues of the observable Ô.
The limit q → 1 of the formula above becomes the stan-
dard expression:

O = 〈Ô〉 =
∑

i

piOi. (80)
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An example of thermal mean value is the internal
energy what is defined by

Eq =

∑

i

[

1− (1− q)
1

kBT
ǫi

]
q

1−q

ǫi

∑

i

[

1− (1− q)
1

kBT
ǫi

]
q

1−q

; (81)

clearly this is an iterative formula, so the Newton-
Raphson method can be utilized to find Eq. But, herein,
we are more concerned with the energy eigenvalues than
the internal energy.

Spin-wave intensities

In this subsection it will be utilized some expres-
sions from the two early subsections. To quantify the
spin-wave intensities it must be done a beam of neu-
trons comes into contact with the LiNiPO4; see e.g. [9].
That stream of particles is scattered inelastically by
the material and its energy loss excites a magnon in
the phosphate. The spin-wave intensity is expressed by
the differential scattering cross-section that is defined
as follows

d2σm

dΩdE′
( ~K, ω) =

Ef

Ei

(γr0)
2

∣

∣

∣

∣

g

2
F
( ~K)

∣

∣

∣

∣

2
e
−2W

( ~K)

~
×

∑

µν

(

δµν − k̂µk̂ν

)

S
µν

( ~K,ω)
, (82)

where ~K is the momentum transfer, ω is the dispersion
frequency, Ω is a solid angle, Ef and Ei are the final
and incoming neutron energies, respectively; F( ~K) is the

dynamical structure factor; k̂µ and k̂ν are unit vectors
in the axes µ and ν, respectively; being µ, ν ≡ x, y, z.
γ is the neutron magnetic dipolar moment; r0 is the
classical electron radius; g is the Landé g-factor; W( ~K)

is the Debye-Waller factor represented in the reciprocal
space. In addition, Sµν

( ~K,ω)
is the scattering matrix (also

known as S-matrix); it can be too expressed as S
µν

( ~K,t)
,

that is,

S
µν

(~Q,w)
=

∫

dte
iwt

S
µν

(~Q,t)
and (83)

S
µν

(~Q,t)
=

∑

~r~r′

e
−~Q.(~r−~r′)〈Sµ

~rS
ν
~r (t)〉. (84)

with ~Q = (Qx, Qy) representing a reciprocal lattice vec-
tor and t meaning a time variable. The cross section
indicates the probability that a magnetic interaction
happens. This interaction can give origin whether the
creation or annihilation of a magnon. For instance, we

have the creation of a magnon α is revealed by the fo-
llowing expression

d2σα+

dΩdE′
( ~K, ω) = Γ( ~K,ω)

[

n(ωα
~K
) + 1

]

δ(ω−ωα
~K
)×

∑

~τ, ~K

[

(1−Q
2
x)|M +N |2 + (1−Q

2
y)|M −N |2

− 2QxQyIm(MN
∗)
]

(85)

where n(ωα
~K
) is the Bose-Einstein population of mag-

nons in accordance to Tsallis statistical distribution; it
indicates the average number of magnons in the quan-
tum state with an energy ~ωα

~K
. Both M and N are

auxiliary parameters. All of these last parameters are
defined as follows

n(ωα
~K
) =

∞
∑

n=0

n[1− (1− q) n
kBT

(~ωα
~K
)]

q
1−q

∞
∑

n=0

[1− (1− q) n
kBT

(~ωα
~K
)]

q
1−q

(86)

and

M = T11F↑(~τ ) + T41F↓(~τ) and (87)

N = T21F↑(~τ ) + T31F↓(~τ) (88)

where ~τ also is a reciprocal lattice vector defined like
~τ = ~K−~k; Fσ(~τ) is the spin-dependent structure factor.
Likewise, for the destruction of a magnon α we have the
following formula

d2σα−

dΩdE′
( ~K, ω) = Γ( ~K,ω)n(ωα

~K
)δ(ω+ωα

~K
)×

∑

τ, ~K

[

(1−Q
2
x)|M +N |2 + (1−Q

2
y)|M −N |2

− 2QxQyIm(MN
∗)
]

(89)

this time M , N and ~τ are redefined in the following way

M = T11F
∗
↑ (~τ ) + T

∗
41F↓(~τ) , (90)

N = T21F
∗
↑ (~τ ) + T31F

∗
↓ (~τ) and (91)

~τ = ~K + ~k (92)

The expressions for the creation and the annihilation of
a magnon β are similar.

Numerical results

In this section we introduce some numerical calcu-
lations framed in the linear spin-wave theory for the
compound LiNiPO4. We apply the nonextensive statis-
tical mechanics in the simulations. So we calculate the
energy eigenvalues as well as the intensities for scat-
tering vectors. These late parameter are analyzed for
several values of the entropic index q.
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Figure ~k T Jyz Jy Jz Jxz Jxy Dx Dy Dz

1a) (0 1 kz) 14 1.036 0.6701 -0.0469 -0.1121 0.2977 0.1696 0.9097 0

1b) (kx 1 0) 6 1.036 0.6701 -0.0469 -0.1121 0.2977 0.1696 0.9097 0

1c) (0 ky 0) 6 1.040 0.6700 -0.0500 -0.1100 0.3000 0.1700 0.9100 0

Table 1: Data for figure 1.

~k T Jyz Jy Jz Jxz Jxy Dx Dy Dz

(0 ky 0) 6 1.040 0.6700 -0.0500 -0.1100 0.3000 0.1700 0.9100 0

Table 2: Data for figure 2.
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Figure 1: Dispersion relations for the Li−Ni phosphate:

a) Dispersion for the plane (kx 1 0), b) Dispersion for the

plane (0 ky 0), and c) Dispersion for the plane (0 1 kz).

In the Fig. 1, we have the spin-wave dispersion rela-
tions, i.e., the eigenenergies that are excited when the
neutrons interact with the Li-Ni phosphate. The solid
lines indicate the magnon α and the dashed lines, the
magnon β. Concretely, in the Figs. 1a), 1b) and 1c) we
have the dispersion relations on the reciprocal planes
(0 ky 0), (kx 1 0) and (0 1 kz), respectively. Inside the
Table 1 we have all the relevant parameters for the Fig.
1. Respecting to the used units in the table, the tempe-

rature T is in kelvins, the wave vector is expressed in
reciprocal lattice units, rlu; the exchange constants as
well as the single-ion anisotropy constants are in meV.
It is obvious the spin-wave dispersion relation doesn’t
depend on the entropic index q, so this last parameter
isn’t in the table 1.

The Table 2 show the parameters used in the Fig.
2a) which displays the intensity of the magnons α crea-
ted during the interaction between the neutrons and the
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magnetic structure. This spin-wave intensity has been
calculated numerically in the plane (0 ky 0); we have
deployed the following values of the entropic index q:
0.7, 1.3, 1.7 and 2.0. We notice the more q increases,
the more the hight peak increases. At q = 1 it is clear
the intensity of the magnons α is a smooth curve wit-
hout changes very abrupt. However, when we take into
account values of q > 1 the landscape is different: it ap-
pears some lateral bulges in the graphics. At q=1.3 and
1.7 the bulges are slight but at q=2.0 they are pretty
much notorious. For the Fig. 2b) we also utilize the sa-
me data from Table 2. It represents the intensity of the
magnon β created during the interaction between the
plane (0 ky 0) and the incident neutrons. It is apparent
no magnons β were created. This fact is evidenced by
the bold lines having all of them a value zero.

These computer simulations can be contrasted with
experimental measurements of Li-Ni phosphate done by
T. S. Jensen [3]. So, the nonextensive distribution ma-
kes a good fitting for experimental data.

Conclusions

In this paper we have applied the nonextensive
statistical mechanics for investigating the compound
LiNiPO4 by means of a linear spin-wave theory. By
considering two sublattices for the unique magnetic ion
Ni2+, we have studied the modifications appearing in
the computer simulations of that phosphate. For q=1
the results are similar to those obtained early by other
authors. However, simulations with q 6= 1 turned out
to give rise to some lateral bulges in the graphics of
spin-wave intensities.
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Figure 2: a) Intensities, calculated numerically, for the

magnons α created through the interaction of the reciprocal

plane (0 ky 0) and the neutrons falling upon it. b) Intensities

for the magnons β. No magnons β are observed.
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