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Abstract  

 

Using a time of flight technique, the maximal values of the kinetic energy as a function of the primary mass 

of fragments from low energy fission of 
234

U and 
236

U were measured by Signarbieux et al. From calculations of 

scission configurations, one can conclude that, for those two fissioning systems, the maximal values of the total 

kinetic energy corresponding to fragmentations (42Mo62, 50Sn80) and (42Mo64, 50Sn80) respectively, are equal to the 

available energy, and that their scission configurations are composed of a spherical heavy fragment and a prolate 

light fragment, both in their ground state. 
 

PACS: 25.70.-z; 25.85.-w; 24.75.+i 
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Resumen  

 

Usando una técnica de tiempo de vuelo, Signarbieux et al. midieron el valor máximo de la energía cinética 

total en función de la masa primaria de los fragmentos de la fisión de baja energía de 
234

U y 
236

U. De los cálculos 

de las configuraciones de escisión, puede concluirse que, para esos dos sistemas físiles, el valor máximo de la 

energía cinética corresponde a las fragmentaciones (
104

Mo, 
130

Sn) y (
106

Mo, 
130

Sn), respectivamente, son iguales 

a los valores disponibles de energía, y sus configuraciones de escisión están compuestas por un fragmento 

pesado esférico  y un fragmento liviano prolato, ambos en sus estados fundamentales. 
 

Palabras claves: Fisión a baja energía; 234U; 236U; energía cinética de fragmentos; fisión fría. 

 
 

1. Introduction 

 

One of the most studied quantities to understand 

the fission process are the fragment mass and kinetic 

energy distributions, which are very closely related to 

the topological features in the multi-dimensional 

potential energy surface [1]. Structures in the 

distributions of mass and kinetic energy may be 

interpreted by shell effects on potential energy of the 

fissioning system, determined by the Strutinsky 

prescription and discussed by Dickmann [2] and 

Wilkins [3].  

In order to investigate the fragments with very 

low excitation energy, using the time of flight 

method, Signarbieux et al. [4] measured the fragment 

mass distribution for high values of fragment kinetic 

energy. Because in that kinetic energy region there is 

no neutron emission, the time of flight technique 

permits separate neighboring fragment masses. In 

this work one calculates the deformations of those 

fragments which must correspond to the most 

compact scission configurations, i.e. to the highest 

values of Coulomb interaction energy between the 

two fragments. 
 
 

2. The most compact scission configurations 

 

In the process of thermal neutron induced fission 

of 
233

U, the compound nucleus 
234

U with excitation 

energy equal to neutron separation energy (Bn) is 

formed first. Then, this nucleus splits into two 

complementary light and heavy fragments having AL  

and AH  as mass numbers, and EL  and EH as kinetic 

energies, respectively. 

The Q-value of this reaction is given by the 

relation 

 

),,(),()234,92( HHLL AZMAZMMQ                  (1) 

 

where M(Z, A) is the mass of nucleus with Z and A as 

proton number and mass number, respectively. 
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The balance energy at scission configuration will 

be 

 

Q+Bn=TKE0 +CE+TDE+TXE
                         (2) 

 

where TKE0 is the pre-scission total kinetic energy; 

CE is the Coulomb interaction energy between 

fragments; 

 

TDE=DE
L
+DE

H                                               (3) 

 

is the total deformation energy, where DEL and DEH  

are the deformation energies of the light and heavy 

fragments  respectively; and 

 

TXE=XEL+XE H                                               (4) 

 

is the total intrinsic excitation energy, where XEL and 

XEH  are the intrinsic light and heavy fragments 

excitation energies, respectively. 

If there is no neutron emission, the light and 

heavy fragments reach the detectors with their 

primary kinetic energies equal to KEL and KEH , 

respectively. The total kinetic energy of the primary 

fragments will be 

 

TXETDEBQCETKETKE n  0
          (5) 

 

The maximal value of total kinetic energy is 

reached when the sum of TDE and TXE is minimal, 

i.e. 

 

  .minmax TXETDEBQTKE n                         (6) 

 

The most compact scission configuration is 

defined as that corresponding to  

 

0min TDE  , 0min TXE  and 00 TKE .            (7) 

 

In this case, from Eq. (6) one obtains the relations 

 

nBQCETKE  maxmax
                                    (8) 

 

Not always this situation is possible to occur. 

Nevertheless we can assume that for each mass 

fragmentation the maximal value of total kinetic 

energy is obtained for similar condition, i.e. 

00 TKE , 0TXE  and 
minTDETDE  . 

 

 

3. Deformation energy 

 

The total energy (U) of a composed of nucleons, 

is calculated using the Strutinsky method [5]. The 

total energy of a nucleus is calculated at first 

approximation by a liquid drop model type  W
~ , 

using the mass formula of Myers and Swiatecki [6]. 

The shell correction (U) is calculated by the 

Strutinsky's method applied by Quentin et al. [7], 

using Nilsson Hamiltonian [8]: 

 

  
N

corr llslV 22ˆˆˆ                             (9) 

 

where K and  are the Nilsson's constants. 

The pairing correction is calculated using the 

BCS method [9]. Then, the relation for the total 

energy of the nucleus (Z, N) is given by: 

 

    ZNZNS PPUUNZWNZWDE   ,
~

,,
~

   (10) 

 

where  ,,
~

NZW is the energy of a nucleus (Z, N) 

having deformation ε, and  NZWS ,
~ the energy in its 

spherical shape. 

The constant of the harmonic oscillator was the 

suggested by Nilsson [8]: 

 

.41 3/1

0 A  

 

As one said, the total kinetic energy of the 

fragments is close to the available energy for light 

and heavy complementary fragments with masses 

around A = 104 and A = 132, respectively. Let us 

relate this result to the deformation of nuclei in this 

mass neighborhood. 

The energy of nucleus 
106-108

Mo as a function of 

their corresponding deformations (ε) are presented on 

Fig. 1. The assumed Nilsson's constants [7] for these 

nuclei are 

 

678.0N , 07.0P , 33.0N and 35.0P . 

 

As we can see these nuclei have a prolate shape 

with to  = 0.3 in their ground state. If the fragment 

deformation changes from  = 0 to  = 0.3 the 

deformation energy will decreases by about 2 MeV, 

while a change from  = 0.3 to  = 0.4 increases of 

deformation energy by 4 MeV. This result suggests 

that these nuclei are prolate and soft between  = 0 to 

 = 0.3 and became stiff for higher prolate 

deformations. 

The deformation energy as a function 

deformation for nuclei 
130-132

Sn are presented in 

Fig.2. The assumed Nilsson’s constants for these 

nuclei are  

 

Kn = 0.0635, Kp = 0.067 

μN = 0.43, μp = 0.54 
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One can see that 
130

Sn is softer than 
132

Sn. For a 

deformation from ε= 0 to ε= 0.2, the nucleus 
130

Sn 

spends around 5 MeV while the nucleus 
132

Sn, for the 

same deformation, spends 10 MeV. The neutron 

number N=82 and proton numbers around Z = 50 

correspond to spherical hard nuclei. 

The above characteristics of light fragments, 

corresponding to masses from A=100 to A=106, and 

their complementary fragments, corresponding to 

masses from A = 130 to A = 132, make possible that 

the maximal values of their total kinetic energy of 

complementary fragments TKE be close to the 

available energy. 

 

 
 
Fig. 1. Deformation energy for nuclei 106-108Mo 

calculated by a liquid drop model with pairing and shell 

correction [6]. See text 

 

For the case of 
233

U(nth, f), the total kinetic energy 

of the pair (42Mo62, 50Sn80) is almost equal to the 

available energy. This result means that the 

corresponding scission configuration is composed by 

fragments in their ground state. In Fig. 3 we can see 

the equipotential energies of the scission 

configurations composed by those fragments given 

by the relation 

 

LH DEDECEV   

 

where DEH and DEL are the heavy and light 

fragment deformation energy, respectively, 

calculated using the Nilsson model [8] and CE is the 

Coulomb interaction energy between the two 

fragments separated by 2 fm. On this curve one 

obtains that for H = 0 and L = 0.3 the Coulomb 

energy is equal to the available energy of 204 MeV. 

 

 

 
 
Fig. 2. Deformation energy for nuclei 130-132

 Sn 

calculated by a liquid  drop model with pairing and shell 

correction [6]. See text. 

 

The results are similar to complementary 

fragments corresponding to the deformed transitional 

nuclei with AL between 100 and 106 (N between 60 y 

64) and to the spherical nuclei with AH around 132 (Z 

= 50 and N = 82). 

For the complementary fragments 
104

Mo and 
130

Sn 

the maximal value of CE corresponds to ground state 

nuclei or close to that. This case is unique. Other 

configurations will need deformation energy, which 

will be higher for the harder nuclei. 

In Fig. 3 the deformation energy is presented for 

the spherical nuclei 
130

Se, 
131

Se and 
132

Se, 

respectively. We can see that the double magic 

nucleus 
132

Se needs 2 MeV more than 
130

Se for going 

from the spherical state  =0 to the slightly deformed 

ε = 0.05. The fact that 
132

Se is no so hard as 
132

Se 

explains why the highest values of Coulomb 
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interaction energy corresponds to values close to the 

available energy for 
233

U(nth,f) as well as for 
235

U(nth,f). 

 

 
 
Fig.3. Equipotential curves for scission configuration 

of fragments 104Mo, 130Sn as a function of their 

deformation. L and H are the light and heavy fragment 

deformation. 

 
 

4. Conclusions 

 

From the calculation of scission configurations by 

thermal neutron induced fission of 
233

U and 
235

U, 

respectively, one can conclude that the highest value 

of Coulomb interaction energy between 

complementary fragments corresponds to 

fragmentations (
104

Mo, 
130

Sn)  and (
106

Mo, 
130

Sn), 

respectively. For both cases the calculated maximal 

values of Coulomb interaction energy values are 

equal to the available energy of the reaction for 

spherical (εH = 0) heavy fragments and prolate (εL = 

0.3) complementary light fragments, which 

correspond to their ground states. Moreover the light 

fragments are soft between εL = 0 and εL = 0.3 and 

harder if they go to more prolate shapes; while the 

spherical heavy fragment 
130

Sn is no as hard as 
132

Sn. 

The calculated maximal value of Coulomb 

interaction energy is equal to the measured maximal 

value of total kinetic energy of fragments. The pre-

scission kinetic energy and intrinsic excitation energy 

of the fragments are assumed to be null. These results 

suggest that the fission process take time to explore 

all energetically permitted scission configurations 
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