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Abstract 

 

A Virtual Lab to study the Transition to Chaos in second order non-linear differential equations has been 

developed and successfully applied to the search for chaotic behavior in the damped and forced non-linear 

oscillator. This simulation and visualization software evaluates the equation under investigation at up to one 

million time-steps, generating in real-time and on the screen, plots like amplitude of oscillation, phase diagram, 

amplitude oscillation peaks and an animation of an oscillator governed by the problem equation. In this way the 

investigator not only gets important behavior graphs but he or she also gets a physical visualization of the system 

under investigation. Visualizing an animation of the system under study is an enormous help because it is not 

always easy to interpret behavior graphs. 

 

PACS: 05.45.-a; 05.45.Gg 
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Resumen 

 

Se ha creado un Laboratorio Virtual para estudiar la transición al caos en ecuaciones diferenciales no-lineales 

de segundo orden. Este software ha sido exitosamente aplicado a la investigación de la transición al caos en un 

oscilador no-lineal, amortiguado y forzado. El software, de simulación y visualización, evalúa la ecuación que se 

esta estudiando, en hasta un millón de puntos, generando en tiempo-real y en la pantalla del monitor, graficas de 

amplitud de oscilación, diagrama de fase y picos de amplitudes, produce además una animación del oscilador 

que se estudia. De esta forma, el investigador obtiene no solo importantes graficas de comportamiento del 

sistema que investiga, sino que también puede visualizarlo. La visualización de una animación del sistema que se 

estudia, es una enorme ayuda, pues no es siempre fácil interpretar graficas de comportamiento. 

 

Palabras claves: Laboratorio virtual, sistema no-lineal, oscilaciones, diagrama de fase, caos. 

 
 

1. Introduction 

 

Oscillatory phenomena are everywhere in real 

life, the list of examples is never-ending, they can be 

found from heartbeats, and pulsating neurons, to 

earthquakes and pulsating stars. In some topics of 

social sciences and economy these phenomena are 

present too. There are also oscillating electrical 

circuits and oscillating chemical reactions and 

oscillations in atoms and molecules and in 

electromagnetic waves. Tides in the sea are also an 

example of oscillatory motion. Man-made 

engineering structures like bridges and machines may 

behave also as oscillators under some conditions.  

Facing the above described scenario the 

investigation of oscillatory phenomena is very 

important.  

The formal study of oscillations is based on 

models, being the simplest ones the swinging 

pendulum and the oscillating spring, both in vacuum 

(free oscillators). However, free oscillating 

pendulums and springs are rather ideal linear 

oscillators, this because real life oscillatory 

mechanisms are to some extent non-linear and 

subject to some kind of friction (damping). Besides 

this, usually there is also an external force acting 

upon these systems, so as to maintain its motion.  

Forced oscillating systems include at least two 

oscillating frequencies, one corresponding to the 

oscillator itself (its natural frequency) and another, 
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associated to the external applied force. Hence there 

are –in the simplest case- two competing frequencies. 

It is well-known that after some initial time the 

oscillator winds up oscillating with the frequency of 

the external applied force. It is also known that 

dissipative systems with two competing frequencies 

exhibit transitions to chaos [1, 2] 

Resonance is common in oscillatory systems and 

when designing oscillatory mechanisms, engineers 

try by all means to avoid that so as to keep away 

from undesired harmful out-of-control vibrations 

which may eventually wreak havoc.    

Under some conditions non-linear oscillators may 

display irregular and really complex oscillations, 

being it impossible to detect its period and amplitude 

of oscillation, in other words, the oscillation becomes 

aperiodical (it never exactly repeats).   

Since the 1980’s researchers have made 

enormous efforts to understand aperiodic motions of 

oscillatory systems, these endeavors have resulted in 

the Chaos Theory [2, 3]. Aperiodicity of non-linear 

dynamical systems is also known as Chaotic 

Dynamics. Chaos theory would have been fathered 

by Henri Poincare in the 1890’s, but he had no 

computers. 

Concerning the organization of this paper, next an 

introduction to chaos is presented, then a description 

of the created software is exposed and after that the 

application to the case of the damped non-linear 

oscillator with variable damping is reported 

 

1.1 Common Chaos and Physical Chaos 

 

While everyday language understands chaos as 

complete disorder, tantamount to total randomness, it 

has a much subtler meaning in physics. 

Chaos is the phenomena related to the occurrence 

of randomness and unpredictability in completely 

deterministic systems, it is not to be equated simply 

with disorder, it is more appropriate to consider 

Chaos as a kind of order without periodicity [4]. 

Stochasticity, Dynamical Chaos or simply Chaos 

[5, 6], is the appearance of apparently random motion 

in a deterministic dynamical system, this is, a system 

with no random forcing. 

Even at long times chaotic systems include 

elements of order, this is, chaos is not completely 

random [6, 7]. 

A chaotic system is not a random system, it is 

deterministic. A chaotic system seems random if the 

beholder fails to recognize that it is chaotic. In a 

random system it is impossible to determine future 

states from previous states, in deterministic systems, 

that prediction is possible, provided the system is not 

sensitive to small variations in initial conditions. 

 

1.2 Period Doubling Route to Chaos. 

 

Several routes to chaos have been observed, 

however, the Period Doubling Route to Chaos 

(PDRC) [8, 9] is a universal and fundamental form of 

transition from periodicity to chaos (Transition to 

chaos [10]), observed in many mathematical and real 

systems. 

In the Transition to Chaos [10], a system evolves 

toward non periodic time dependence as one or more 

parameters are varied. 

In the PDRC [10] process, the time it takes the 

system to repeat itself, this is its Period, doubles and 

then doubles again and again, until the period 

becomes essentially infinitely long, as one or more 

control parameters (temperature, velocity, force, etc) 

are varied. Hence the PDRC involves an infinite 

sequence of Bifurcations [10], which appears as a 

Cascade of Bifurcations. All systems that become 

chaotic by the period doubling process do so in the 

same universal way. Beyond the period doubling 

cascade the stable periodic orbit disappears and chaos 

dominates the scene. However it is important to 

mention that not all systems evolving to chaos follow 

the bifurcation cascade behavior.  

 

1.3 Strange Attractor 

 

A Strange Attractor [10] is the shape (geometrical 

object) depicted in Phase Space (a.k.a. State Space) 

by a chaotic system. These attractors are fractal (have 

non-integer dimension) and consist of an infinitely 

number of closely spaced layers. Nearby trajectories 

diverge from each other by an amount that is 

exponential in time rather than proportional to time.  

 

1.4 Dependence on Initial Conditions 

 

A quality that characterizes chaotic systems is 

that these definitively show a sensitive dependence 

on initial conditions. Other systems may or may not 

exhibit this sensitivity, but chaotic ones definitively 

do. Sensitivity to initial conditions however, does not 

automatically entail chaos 

 

 

2. The Virtual Lab 

 

A Virtual Lab to numerically solve by the Runge-

Kutta algorithm a second order non linear differential 

equation has been developed, this software can 

evaluate the equation in up to one million (10
6
) time 

steps, it shows the Time Series and the Phase 

Diagram (Phase Space) and detects and plots on 

screen the peaks and valleys of the amplitudes, all in 

a single screen and taking no more than 6 seconds in 

a Dual-Core Processor PC. Additionally a pendulum 

in motion according to the data generated in the 

simulation may be appreciated at the click of a 

button. This pendulum however, is just to visualize 
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the oscillations; the problem under study may have 

nothing to do with a pendulum. 

The two most important products of this software 

are the plotting on screen of the Bifurcation Cascade 

route to chaos of the equation it is solving and the 

animated pendulum, in this way, the route to chaos 

and chaos itself are easily and quickly visualized.   

Seeing that dealing with non-linear systems is not 

straightforward at all, determining the parameters 

that generate the transition to chaos for a given 

differential equation is not an easy undertaking, and 

one way of detecting them may be by trial-and-error. 

If this program were set to operate on a trial-and-

error mode search for chaos over randomly generated 

parameters, it would be able to investigate up to 20 to 

30 different cases every minute (a huge time saving), 

and by virtue of a pattern recognition technique 

operating on phase space, automatically might report 

chaos when encountered. 

 

 

3. The Non-Linear Damped &Forced Oscillator 

 

The equation under investigation is 

 

 
 

corresponding to a non-linear oscillator (a pendulum) 

immersed in a dissipative medium of damping 

constant b and which is connected to an external 

applied sinusoidal force Fo oscillating with 

frequency , the free angular frequency of the linear 

oscillator is o . 

It is expected that after a transient stage the 

oscillator will be forced to oscillate with the 

frequency   of the applied external force. 

In view of the fact that the system under 

investigation is subject to dissipation (damping b) 

and since there are two competing frequencies, it is 

expected to observe a transition to chaos [1]. In the 

investigation reported in this document, the applied 

force Fo was slowly increased, which is equivalent to 

slowly lowering the damping. 

 

 

4. Results of the investigation 

 

Based on both experience and physical intuition 

the set of parameters where the oscillator under study 

shows a transition to chaos was successfully 

determined with the help of the developed software 

and after just a few trials, the result is shown in fig. 1, 

corresponding to 900,000 time steps. In Fig 1, region 

(a) corresponds to a period 1, region (b) corresponds 

to the first bifurcation, with period 2, in region (c) a 

second bifurcation is displayed, with period 4, and 

this is followed by region (d) with chaos. There must 

be another bifurcation after region (c) but it is not 

evident with the plotting resolution used. 

 

 
 

Fig. 1. Amplitude peaks vs. time: Two bifurcations are clearly seen, before chaotic motion sets in. The corresponding Phase 

Diagram (velocity vs. position) is also shown. 

 

 

Fig. 2 shows the phase diagram for the first 

530000 time steps of the simulation shown in Fig. 1, 

this is, from the start up to the point where the two 

first bifurcations in Fig. 1 are still easily 

distinguishable, right before the onset of chaos. It can 

be seen that the graph has self similarity; hence it 

may be a fractal.  

Fig. 3 displays the oscillation amplitude peaks 

and valleys for a simulation along one million time 

steps, as the applied force Fo increases. The cascade 

of bifurcations is clearly seen. 
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Fig 4 shows the Return Map for the case shown in 

Fig. 3. The Return Map is a plotting of Xn+1  as a 

function of  Xn , where X is the oscillation amplitude 

peak. It can be seen that for some values of Xn , there 

are several possible values of Xn+1  , which means that 

there is impossible to predict an amplitude of 

oscillation. 
 

 

 
 
Fig. 2. Phase Diagram for the first 530000 (x,V) points of the simulation corresponding to Fig. 1, before the onset of chaos. 

 

 

 
 
Fig. 3. Bifurcation cascade of the non-linear damped and forced oscillator. The graph shows the oscillation amplitude peaks 

(top) and valleys (bottom) versus time, for 1000000 time steps white applied force increases. 
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5. Conclusions 

 

The creation of a Virtual Lab to investigate the 

transition to chaos in second order non-linear 

differential equations has been reported. The Virtual 

Lab has been successfully applied to investigate the 

transition to chaos in the damped and forced non-

linear oscillator, with variable (increasing) applied 

force. The created software allows for a very quick 

simulation and visualization, reporting the 

Bifurcation Diagram, the Return Map, The Phase 

Diagram, and a visualization of the oscillations of the 

system under study 

 

 
Fig. 4. Return Map for the case shown on Fig.3. 
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