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Abstract

A simplified version of the Kondo lattice model, the Kondo necklace model, is studied at finite temperature
using a representation for the localized and conduction electron spins in terms of local Kondo singlet and triplet
operators. We calculate the double time Green’s functions to get the dispersion relation of the excitations of the
system. We show that in 3-d there is an antiferromagnetic ordered state at finite temperatures, but in 2-d long-
range magnetic order occurs only at T = 0.
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Resumen

En el presente trabajo se presenta una version simplificada del modelo de celda de Kondo, el llamado modelo
del collar, a una temperatura finita usando una representacion para los espines electrénicos de conduccion
localizados, en términos de los operadores de Kondo: singlete y triplete. Se calcula las funciones dobles de
Green dependientes del tiempo para obtener la relacion de dispersion de las excitaciones del sistema. Se
demuestra que en tres dimensiones existe un estado ordenado antiferromagnético a temperaturas finitas, sin

embargo, en dos dimensiones un orden magnética de alto rango ocurren solamente a T = 0.

Palabras claves: Collar Kondo, punto cudntico critico, campo magnético.
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It is well known that the nature of the ground
stare of dense Kondo compounds results basically
from the competition between the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) interaction and the Kondo
effect. It is governed by a single parameter, the ratio
Ift, where J is the effective exchange between
localized moments and conduction electrons and t is
the bandwidth of the latter. The RKKY interaction is
an indirect magnetic interaction between localized
moments, mediated by the polarized conduction
electrons, which produces a long-range ordered
magnetic ground state. On the other hand, the Kondo
effect favors the formation of singlet states between
localized moments and conduction electrons
generating a non-magnetic ground state. As a result
of the interplay between these two effects, some
Kondo compounds are non-magnetic and are
characterized by a heavy-fermion behavior (Fermi-
liquid) at very low temperatures, while others order
magnetically, generally antiferromagnetically. The
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study of this interplay is easily formulated using the
Kondo lattice model (KLM), which emphasized the
importance of spin fluctuations neglecting charge
fluctuations of the localized electrons and has been
well characterized by the Doniach phase diagram [1].

The KLM is a theoretical model for heavy
fermions that can be derived from the more
fundamental Anderson lattice model in the case of
well-developed local spin moments [2]. It consists of
two different types of electrons, the localized spins
whose charge degrees of freedom are suppressed and
the conduction electrons that propagate as charge
carriers. It is described by
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The first term. represents the conduction band
(C ,a, is the creation operator, t is the hopping

between nearest neighbors) and the second term is
the interaction between electrons and localized
moment S; via the intra-site exchange .J, where o are
the Pauli matrices. In order to study the interplay
between Kondo screening and the RKKY interaction.
Doniach proposed a simplified model related to the
one-dimensional Kondo lattice, called the Kondo
Necklace Model (KNM). In this model, the
conduction electrons are replaced by a spin chain
with XY coupling which eliminates charge
fluctuations [1]:
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where 7; and S; are independent sets of spins —1/2
Pauli operators. The first term mimics electron
propagation and in one dimension can be mapped by
the Jordan Wigner transformation onto a band of

spinless fermions. The second term is the magnetic -

interaction between conduction electrons and
localized spins S; via the coupling J, as in equation
{1]. Usually, for two s = 1/2 spins 7 and S, placed on
a lattice site, the local Hilbert spaced is spanned by
four states consisting of one singlet and three triplet

states defined by: ! > TtO) and !t >~tf10> (a

= x, y, z). A representation of the impurity spins and
conduction electron spins in terms of these singlet
and triplet operators is given by
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where «, S, y represents components along the x, y
and z axes, respectively and e is the antysimetric
Levi-Civita tensor. This type of spin representation in
terms of singlet and triplet (bond) operators was first
proposed by Sachdev and Bhatt to study the
properties of dimerized phases [3]. Substituting the
operator representation of the impurity and
conduction electron spins and considering that, the
local Kondo spin singlets (s bosons) and local Kondo
spin triplets (f) condenses, as well on the AF

reciprocal vector £, . =NNIO, o+7,,, it wil

lead considering at finite temperature.
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where @, is the dispersionless energy level of the
antiparallel spin triplet excited state,

2
@, = A}~ (ZA,,) corresponds to the excitation

spectrum of the parallel spin triplet excited states and
Z is the total number of the nearest neighbors on the

cubic lattice. When the order parameter [ is
nonzero, the saddle point equation for [ yields

w, =+Z15% \(14+2A(k)/ Z . The mean field 7

represent the AF order parameter. We derive the
saddle-point equations, and finally obtain at finite
temperature

3 :1+~{———L’Z,/1+21(k)/2 coth a’k

(6

(7)
1/1+2/1 (k)/ Z ——F2—
4NKT sink? wk
2KT
o 1 o,
=l — coth
Zt 2N>;\/1+2,1(k)/z 2KT ©
1 @,
+ +¢&
4NKT zk: J1+24(k)/ Z gip2
2KT
where
1 @, 1 ®
= th -1 0
d 4N;(CO 2KT ) SNKTZk:smhz
2KT

Near to ground state, we have for 2D and 3D
respectively,
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