
144

Implementation of a non intrusive software component to monitor web applications in a public entity

Ind. data 16(2), 2013

Sistemas e Informática

Implementation of a non intrusive software
component to monitor web applications in a
public entity

Recibido: 12/11/13 Aceptado: 15/11/13 Félix Melchor Santos López*

Revista de la Facultad de Ingeniería Industrial
16(2): 144-152 (2013) UNMSM
ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico)

*	 Informatics Engineer, PUCP. Postgraduate Diploma in Audit and Security of
Information Technology, UNMSM. Postgraduate Diploma in Software Engineering,
UNI. J2EE Analyst at SUNAT. E-mail: fsantos@pucp.edu.pe

ABSTRACT

The importance of measuring the response time
of web applications is transcendental for decision-
making and/or corrections on the part of public
officials involved in the departments of information
systems and technologies. This research provides
the conceptual framework for the development of
a component J2EE (Java 2 Enterprise Edition)
non-intrusive through Web Servlet filters and
Interceptors of Spring Framework. It also
uses the communication protocol TCP/IP for
sending frames in JSON format (JavaScript
Object Notation) and its subsequent reception
for a stand-alone component for the record in
a database. Finally, a hypothesis test between
Log4j and Socket Simple technologies is
performed, achieving an average record time of
the plots approximately 0.05 seconds, and report
that there are no statistical evidences to affirm that
one is better and faster than the other.

Keywords: component, filters, interceptor, log4j,
socket

Implementación of non intrusive
software component to monitor web
applications in a public entity

RESUMEN

La importancia de medir el tiempo de respuesta
de las aplicaciones Web es transcendental para
la toma de decisiones y/o correctivos por parte
de los funcionarios públicos involucrados en los
departamentos de tecnologías y sistemas de
información. Esta investigación provee el marco
conceptual del desarrollo de un componente
J2EE (Java 2 Enterprise Edition) no intrusivo
mediante filtros -Web de Servlets e Interceptors
de Spring Framework. Así mismo, emplea el
protocolo de comunicaciones TCP/IP para el
envío de tramas en el formato JSON (JavaScript
Object Notation) y su posterior recepción por
un componente stand-alone para el registro en
una base de datos. Finalmente, se realiza una
prueba de hipótesis entre las tecnologías Log4j
y Socket Simple, logrando determinar un tiempo
de registro promedio de la tramas aproximado a
0.05 segundos, así como señalar que no existen
evidencias estadísticas suficientes para afirmar
que una sea más óptima y/o rápida que la otra.

Palabras clave: componente, filtros, interceptor,
log4j, socket

INTRODUCTION

Today the need for measuring, assessing and monitoring
the services provided not only by companies but also by
government bodies, is of high significance in achieving
corporate goals. Furthermore, in the fields of technology
and information systems there are a series of mandatory
regulations, as well as a set of best practices and
frameworks that allow an adequate work performance and
strategic alignment of the technologic area as a support
to the institutional strategic plan (Peruvian Technical
Standard-NTP, ISO, SOX, COBIT, COSO, etc.).

In this regard, the need to measure response times or
service processing is crucial as evidence of the current
situation of the organization and thus determines whether
or not they meet the goals previously established by senior
management. In the specific case of information technology,
measuring response times of the applications or services
offered via the Web, both to citizens and internal users,
is an important source of data and information to make
decisions, perform corrections and develops management
plans of the specialized areas.

Additionally, a well-known framework like COBIT®
suggests for instance the use of the Balanced Scorecard
for Information Technology because it “defines clear
goals and the effect of the impact of IT also demonstrates
and communicates to senior management effectiveness
and delivering business value” [10]. In other words, the
information obtained from a measurement to quantify the
real contribution of the information technology area to the
entity and obtain a first indicator of the satisfaction level of
service offered to users.

Therefore, this article illustrates the case study of the
implementation of a component with the library type that
adds in a non-intrusive way to monitor web applications.
Its main target is to measure the initial and final time of a
service, and then throw a message in the form of JSON
(JavaScript Object Notation) a frame to a remote server
that contains a stand-alone component responsible for
receiving this message, interpret and record in a statistical

145

Félix Melchor Santos López

Ind. data 16(2), 2013

Sistemas e Informática

database. As an encoding solution arises in J2EE
(Java 2 Enterprise Edition) web filter for the case of
Servlets and Interceptor by AOP (Aspect Oriented
Programming) for the case of Spring Framework.

Finally, sending JSON messages is done by log4j, a
technology that allows asynchronous sending frames
as “log” using TCP/IP sockets. It also evaluates the
performance of simple socket and log4j through
hypothesis testing by first calculating the sample
size of n=599 , then based on these samples
yields an average transaction log approximately
a twentieth of a second and
a significance level of α=0.05 it is concluded that
there is not statistic evidence to affirm ta superiority
in performing on the part of log4j about socket
simple.

1. DEFINITION OF THE SOFTWARE COMPO-
NENT

According to Sommerville I. [14], software
engineering is applied to component-based approach
in the definition, implementation and composition of
loosely coupled independent components within
the systems. Flexible coupling means to invoke the
feature via software component interfaces calls.
By independent component is interpreted to be
capable of being deployed in a distributed manner
without the need to call external services. Here
figure 1 shows a component software diagrammed
with UML (Unified Modeling Language) notation.

On the other hand, among the select group of authors
J2EE development experts, Dereck C. [4] defines
software components as “generic utility classes
and static to be used by many applications”, also
provides the necessary guidelines to generate high
quality components themselves. It recommends

that should be a short development time and effort,
maintenance short expectation that are useful in
many applications because they are generic as well
as a reliable availability and stability.

2. WEB FILTERS AND INTERCEPTORS WITH
AOP

The concept of filters appears from the 2.3 Servlet
specifications. In technical terms it is established
that a filter “is an object that intercepts a message
from a data source and a recipient” [1]. That is, the
filter performs an interception when it is invoked a
procedure or method. In the development of web
applications, a filter is a component that resides
on the web server by filtering the requests and
responses are passed between the client and
a resource. Additionally, in the Java application
development allows implementation of multiple
filters which are linked and executed in a chain
way. Figure 2 shows a graphic description of the
application of filters.

In parallel, Spring Framework has its own
implementation to conduct interceptions of calls that
are called “interceptors”. As noted by H. Harrop [8]
in his book, the basis of these interceptors is given
by the paradigm of aspect-oriented programming
(AOP).

As seen in figure 3, AOP presents a slight variation
regarding the traditional paradigm of object-
oriented programming (OOP). When a call is made
to the technical services from applications, then
it is applied an “aspect” in charge of intercepting
different moments of the called to the service
requesting for example the official moment and the
last one of an invocation to an operation of a Java
class.

Figure 1. Graphical specification of a software component.

Source: Taken from Sommerville I. [14]

146

Implementation of a non intrusive software component to monitor web applications in a public entity

Ind. data 16(2), 2013

Sistemas e Informática

3. CONNECTION BY LOG4J

Nowadays, there are no companies or organizations
that do not implement the use of logs to record the
register of events and/or failures occurred in their
enterprise applications deployed in production.
Commonly, these logs of information are stored in
files that are generated and automatically renaming
every day. However, not only can be stored and
streamed to files, but also in libraries “logs” that
provide other forms of storage and transmission
to a JMS queue (Java Message Service), console,
email, telnet and sockets. In the case of J2EE,
the most used library in public institutions and
companies is log4j.jar. Then the Figure 4 is shown
the lines of classic configuration for the use of a log
through a socket.

Figure 2. Servlet filters scheme.
Source: Own elaboration with Oracle Business Process Architect®

Figure 3. OOP vs. AOPP.
 Source: Taken from Pawllak R [12].

Figure 4. Log file of configuration.
Source: Own elaboration.

Client Servlet

147

Félix Melchor Santos López

Ind. data 16(2), 2013

Sistemas e Informática

Gupta S. [5] mentions in his publication that “the
transfer of information to a log from one machine
to another is a scenario of distributed storage”. In
other words, log4j allows to send frames to a remote
server using the protocol TCP/IP.

4. JSON FORMAT FOR SENDING FRAMES

According to the findings by N. Zakas [15],
JavaScript Object Notation (JSON) was technically
specified as IETF RFC 4627 in 2006 by Douglas
Crockford, although it had previously been used
since 2001. It is noteworthy that JSON is not a
programming language or a software development
technology, but is a standard format for sending and
receiving messages in plain text. Below in figure 5
it is shown an example of the JSON format for the
proposed solution in this article:

Figure 5. JSON example

Source: Own elaboration

It is noted that the text in square brackets is framed
both the beginning and end of the message. Fields
that are sent are described in double quotes,
followed by a colon and the value to send. Each
group of fields with their respective values ​​is
separated by commas.

5. SOLUTION PROPOSED FOR THE IMPLEMEN-
TATION

Applying the concepts explained in the previous
sections, we proceed to give solution to implementing
a non-intrusive software component to monitor web
applications.

The following items must be considered for a
successful implementation:

−− In the file configuration of log4j file it must be
specified the classes whose package “logs” will
be sent via a socket. For example, in line 2 of
figure 4 is declared explicitly the packet com.
pe.timer.filter and the socket appender.

−− Lines below are stated the properties required
by the socket appender as the remote host’s
IP number 192.168.1.116 and the listening
port 9010 on that server. It was chosen the
most stable communication protocol TCP/
IP (Transmission Control Protocol / Internet
Protocol) that “belongs to the transport layer/
network which were developed by the U.S.
Department of Defense’s Advanced Research
Projects Agency Network (ARPANET) by Vinton
Cerf and Bob Khan in 1974” [3].

−− As noted by Gustafson D. [6], the design
is “artistic or creative part of the software
development process.” This process converts
the “what” into “how”, i.e. understanding and
documenting software requirements. For this
research are developed in figures 6 and 7 the
design class diagrams that provide support for
coding level solution.

−− To design class diagrams it is used the UML
(Unified Modeling Language), which allows “bind
class static content through relationships. Also
shows the variables and member functions of
the class” [2]. In figure 6 it is defined the class
“BeanTimer” with the following fields:

•	 Aà Service code

•	 Bà Start date of the process

•	 Cà End date of the process

•	 Dà Transaction user

•	 Eà Name of the method or monitored
operation

•	 Fà Field of 255 characters to store any chain

•	 Gà Indicator if the process was conducted
successfully or not

−− An example of BeanTimer using JSON is
displayed in Figure 5. Letters are used for this
bean because these data travels through the
network and is required to occupy the fewest
possible bits thus are used as short descriptions
letters.

−− On the other hand, Figure 7 shows the classes
necessary to build stand-alone component
responsible for receiving the frames and record
on a relational database. The class diagram
ListenerLog4j that by operating handles go
recibirMensaje receiving frames them is
coming to this component. It uses an infinite
loop to achieve this purpose. Then ListenerLog4j
creates what in the Java programming language
is called “Thread”.

148

Implementation of a non intrusive software component to monitor web applications in a public entity

Ind. data 16(2), 2013

Sistemas e Informática

−− Quoting the statement by Sierra K. [13], a
Thread is divided into two parts: On the one
hand is defined as any object in Java that has
variables and methods, and has a beginning
and end within the pile of computer memory.
On the other hand, there is the so-called thread
of execution is an individual process that has
its own call stack. Therefore, due to the high
turnout of web applications must implement the
record to the database using Threads. In this
way, Figure 7 shows ServerThreadLog4j class
that implements the Runnable to implement a
Thread.

−− In the Figure 8 it is shown the Java code for
shipping BeanTimer class instance to the
remote server. On the left side implementation
is illustrated by Simple Socket should indicate
where in the IP source code and listen port of
destination, as well as opening and closing
a connection to the socket. However, on the
right side displays Log4j implementation by
requiring only use log.debug function, because
the library itself is responsible for opening and
closing connections, as well as use the file of
configuration shown in the Figure 4.

Figure 6: Class Diagram for the Client-side
Source: Own elaboration with Enterprise Architect®

Figure 7. Class Diagram for the Client-server.
Source: Own elaboration with Enterprise Architect®

149

Félix Melchor Santos López

Ind. data 16(2), 2013

Sistemas e Informática

−− In figure 9 is illustrated the non-intrusive
deployment configuration XML files developed
component and must be added to all the
applications to be monitored. On the left side is
the configuration using servlets and filters for the
configuration right for Spring AOP Framework.

−− Finally, the company’s technology architecture
is diagrammed in figure 10. Here are displayed

Figure 8: Socket Simple and Log4j
Source: Own elaboration

Figure 9: Web Filter and AOP Interceptor
Source: Own elaboration

calls from browsers Internet, Extranet and
Intranet applications. Then a distributed server
Oracle Web Logic® application receives
requests for that at that moment the component
intercepts the initial and final time of the process.
It also shows the JSON sending messages to
the remote server.

6. STATISTICAL SAMPLING

Due to the high concurrency, for implementing web
applications should not be ignore the so-called stress
tests to analyze and verify optimal implementation
of service monitoring component. Available on the
market a number of tools that provide interfaces for
stress testing, Jmeter® being the country’s leading
proceeds to use this tool with detailed usage can
be found in the book of Halili E [7]. Additionally, the
area of ​​technology infrastructure of the public entity

under study delivers an estimated 200 000 daily
records for this component.

Applying the concepts of classical statistics proceed
to calculate the sample size for a proper study of
the processing time. To do this, says Hayter A.
[9], the sample size for a universe of 200 000, a
significance level of 0.05

, an estimate

of p unknown for which one must assume a value
of 0.5 and erroneous sample percentage not ex-
ceeding 4% is calculated by:

With the sample size of 599 proceeds to obtain that
size of socket simple and log4j, using Jmeter®, as

shown in Table 1. Furthermore-, the arithmetic mean
and standard deviation are calculated for each sample.

150

Implementation of a non intrusive software component to monitor web applications in a public entity

Ind. data 16(2), 2013

Sistemas e Informática

Figure 10. Diagram of technology architecture.
Source: Own elaboration with Power Designer®

Table 1. Monitoring processing times (shows the four first and last)

Source: Own elaboration.

6. STATISTICAL SAMPLING

Due to the high concurrency, for implementing web applications should not be ignore the so-
called stress tests to analyze and verify optimal implementation of service monitoring
component. Available on the market a number of tools that provide interfaces for stress testing,
Jmeter® being the country's leading proceeds to use this tool with detailed usage can be found
in the book of Halili E [7]. Additionally, the area of technology infrastructure of the public entity
under study delivers an estimated 200 000 daily records for this component.

Applying the concepts of classical statistics proceed to calculate the sample size for a proper
study of the processing time. To do this, says Hayter A. [9], the sample size for a universe of
200 000, a significance level of 0.05 , an estimate of p unknown for which one must

assume a value of 0.5 and erroneous sample percentage not exceeding 4% is
calculated by:

With the sample size of 599 proceeds to obtain that size of socket simple and log4j, using
Jmeter ®, as shown in table 1. Furthermore-, the arithmetic mean and standard deviation are
calculated for each sample.

Table 1: Monitoring processing times (shows the four first and last)
Test Log4j (599 samples) Simple Socket Test (599 samples)

Register date End date service Diff
2013-03-29 15:00:07.328 2013-03-29 15:00:07.259 0.069
2013-03-29 15:00:12.299 2013-03-29 15:00:12.252 0.047
2013-03-29 15:00:17.081 2013-03-29 15:00:17.04 0.041
2013-03-29 15:00:19.73 2013-03-29 15:00:19.671 0.059
……….. ……….. …..
……….. ……….. …..
……….. ……….. …..
2013-03-29 15:25:14.536 2013-03-29 15:25:14.476 0.06
2013-03-29 15:25:15.319 2013-03-29 15:25:15.276 0.043
2013-03-29 15:25:18.953 2013-03-29 15:25:18.902 0.051
2013-03-29 15:25:21.987 2013-03-29 15:25:21.925 0.062

Register date End date service Diff
2013-03-29 19:34:52.42 2013-03-29 19:34:52.298 0.122
2013-03-29 19:34:54.882 2013-03-29 19:34:54.809 0.073
2013-03-29 19:34:55.129 2013-03-29 19:34:55.085 0.044
2013-03-29 19:34:59.597 2013-03-29 19:34:59.523 0.074
……….. ……….. …..
……….. ……….. …..
……….. ……….. …..
2013-03-29 20:01:04.508 2013-03-29 20:01:04.442 0.066
2013-03-29 20:01:09.101 2013-03-29 20:01:09.063 0.038
2013-03-29 20:01:13.971 2013-03-29 20:01:13.912 0.059
2013-03-29 20:01:17.065 2013-03-29 20:01:17.023 0.042

Source: Own elaboration

In the Diff column provided in table 1 is expressed in seconds the result of the subtraction of
the register date and the end date service. This provides the processing time since the network
sends the plot to its inclusion in the Informix® database, and socket both log4j simple. In both
cases it gives an average of approximately 0.05 seconds and a standard deviation of about
0.011.

151

Félix Melchor Santos López

Ind. data 16(2), 2013

Sistemas e Informática

In the Diff column provided in table 1 is expressed in
seconds the result of the subtraction of the register
date and the end date service. This provides the
processing time since the network sends the plot to
its inclusion in the Informix® database, and socket
both log4j simple. In both cases it gives an average
of approximately 0.05 seconds and a standard
deviation of about 0.011.

The figure 11 appreciates a diagram of linear
dispersion sample for log4j. It is shown that the
values ​​are close to 0.05 seconds and the vast

majority below 0.07 which is the maximum tolerated
by the public entity of this study.

HYPOTHESIS TEST

Based on the data obtained from the samples of
the previous point, it proceeds to calculate success
rates as shown in Table 2. Additionally, account and
considered a successful time for those less than
0.07 seconds.

Figure 11. Diagram of the times for the samples of Log4j.
Source: Own elaboration with Microsoft Excel®

Table 2. Times of monitoring processing

Technology
log4j socket simple

Less than or equal times to 0.07 seconds 576 575

Total number of measured times 599 599

Success percentage 96.16026% 95.99332%

Source: Own elaboration.

With the values ​​of tables 1 and 2, and assuming that
this process behaves under a normal distribution
statistical calculations are made for achieving
determine if one technology is better than the other.

Step 1: It is defined the sample of log4j as and

the one of the socket simple as .

Step 2: The assertion of a higher speed of log4j is

expressed as .

Step 3: If is false, then .The
hypothesis are defined as:

(Null hypothesis)

(Alternative hypothesis)

Step 4: The significance level is established as
.

Step 5: Apply the normal distribution and calculate

the estimate of the grouped sample .

Where:
Step 6: Calculate the test statistic value expressed
by the following equation:

152

Implementation of a non intrusive software component to monitor web applications in a public entity

Ind. data 16(2), 2013

Sistemas e Informática

As this is a normal distribution, then you get left area
for the z statistic (see table in [9]), being 0.5557.
Therefore, the value (area to the right):

Step 7: Since P is not less than the significance
level , then the null hypothesis is not
rejected.

8. CONCLUSIONS AND RECOMMENDATION

−− According to the results obtained in the sampling
and testing of hypotheses, we conclude that in
both cases both log4j and simple socket means
and standard deviations are very similar and
with little variation. In addition, by not rejecting
the null hypothesis can not be
said to be more efficient log4j logging response
times than simple socket.

−− The design using the UML modeling language
and the implementation of good practices in
software engineering allow successfully develop
and implement non-intrusive component
changes in the monitored applications just
modifying XML files.

−− As discussed throughout this article, it is
concluded that the log4j implementation is
the best choice because using fewer lines of
code for sending frames; you configure the
IP address and destination port to an external
file the enterprise applications, making these
parameters are subsequently modified without
altering the source code. That is superior in
terms of quality.

−− It is highly recommendable to install the software
component deployed as a library and distributed
within the application server instead of including
them in the “classpath” of each web application.
As a result, the component is achieved centralize
allowing quick and efficient updates. For this
research were performed configurations and
facilities suggested by Patrick R [11] in the case
of Oracle Web Logic® (see pages 286, 287 and
288 for details). For other distributions should
consult their own documentation.

9. BIBLIOGRAPHY

[1]	 Carter J. Deshmukh H. Maliva J. (2003).
SCWCD Exam Study Kit: Java Web Component
Developer Certification. Manning Publications
Co. U.S.A.

[2]	 Cecil R. (2002). UML for Java Programmers.
Prentice Hall, U.S.A.

[3]	 Dennis A. Durcikova A. Fitzgerald J. (2012).
Business Data Communications & Networking.
John Wiley & Sons, Inc. U.S.A.

[4]	 Dereck C. (2004). The J2EE Architect’s
Handbook: How to be a successful technical
architect for J2EE applications. DVT Press,
Illinois, U.S.A.

[5]	 Gupta S. (2005). Pro Apache Log4j: Java
application logging using the open source
Apache Log4j API. Apress®, U.S.A.

[6]	 Gustafson D. (2002). Theory and Problems of
Software Engineering. McGraw – Hill, U.S.A.

[7]	 Halili E. (2008). Apache JMeter: A practical
beginner’s guide to automated testing and
performance measurement for your websites.
Packt Publishing, United Kingdom.

[8]	 Harrop H. Ho C. (2012). Pro Spring 3: A
comprehensive reference and practical guide to
the Spring Framework. Apress®, U.S.A.

[9]	 Hayter A. (2012). Probability and Statistics for
Engineers and Scientists. Brooks/Cole, U.S.A.

[10]	IT Governance Institute (2003). Board Briefing
on TI Governance. ITGI, U.S.A.

[11]	Patrick R. Nyberg G. Aston P. (2010).
Professional Oracle Web Logic Server. Wiley
Publishing. Inc, U.S.A.

[12]	Pawllak R. Retaillé J. Seinturier L. (2005)
Foundations of AOP for J2EE Development.
APress®, U.S.A.

[13]	Sierra K. Bates B. (2008). SCJP Sun® Certified
Programmer for Java 6: Study Guide (Exam
310-065). McGraw-Hill, U.S.A.

[14]	Sommerville I. (2007). Software Engineering 8.
Addison-Wesley, U.S.A.

[15]	Zakas N. (2012). Professional JavaScript® for
Web Developers. John Wiley & Sons, Inc. U.S.A.

