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ABSTRACT

Publications dealing with chaos usually exhibit an image 
of a single, truncated and always expanding chaotic 
event in the system in which chaos is being reported. 
This generates the impression that chaotic events are 
unique and once they start, they increase intensity ad 
infinitum, eventually taking control of the system, and 
lasting forever. With the aim on finding out whether the 
above described panorama is correct, an investigation 
was carried out on the nonlinear damped and forced 
oscillator (NLDFO).  It was encountered a diversity of 
chaotic events and that those have a beginning and an 
end, this is, they are temporal. Additionally it has been 
observed that chaotic events initially generate a series 
of period bifurcations increasing their intensity and 
then by collapsing bifurcations this intensity gradually 
decreases until chaos vanishes. The largest Lyapunov 
exponents of the displayed chaotic events, as well as 
some general observations about chaotic events in the 
NLDFO are reported.

Keywords: nonlinear oscillations, chaos, numerical, 
simulation, runge kutta

diversidad y temporalidad de los eventos 
CaótiCos

RESUMEN

Las publicaciones sobre caos generalmente exhiben 
una imagen de un único evento caótico, truncado y 
siempre en expansión, del sistema en el que el caos se 
está divulgando. Esto genera la impresión de que los 
eventos caóticos son únicos y una vez que comienzan, 
aumentan su intensidad ad infinitum, tomando 
eventualmente el control del sistema y permaneciendo 
para siempre. Con el objetivo de averiguar si es exacto 
el panorama  descrito, se llevó a cabo una investigación 
con el oscilador no lineal amortiguado y forzado 
(ONLAF). Se encontró una diversidad de eventos 
caóticos y, que los mismos tienen un inicio y un final, 
es decir, son temporales. Se descubrió además que 
los eventos caóticos generan inicialmente una serie de 
bifurcaciones del periodo, incrementando su intensidad 
y, luego mediante colapsos de las mencionadas 
bifurcaciones, su intensidad disminuye gradualmente, 
hasta que el caos desaparece. Se reportan los mayores 
exponentes de Lyapunov de los eventos caóticos 
mostrados, así como algunas observaciones generales 
sobre los eventos caóticos en el ONLAF. 

Palabras clave: oscilaciones no lineales, caos, 
simulación numérica, runge kutta
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1. INTRODUCTION

1.1. Chaos is becoming ubiquitous

Industrial machinery makes ample use of rotators and oscillating 
gearings which, due to the combined frequencies involved in 
their functioning are strong candidates to experiment chaos. The 
dynamics of fluid mixing, which is present in the preparation of 
colorants, tints, paintings and foods may be understood from 
the point of view of chaos. Industrial machinery is controlled 
by complex electronic circuits prone to chaos.  In economics, 
the dollar exchange rate in third world countries is chaotic. In 
physics, chaos is encountered in the nonlinear dynamics of some 
oscillators, and in astrophysics. In fluid dynamics engineering, 
chaos may help to model turbulent fluid dynamics. The muscular 
fibers of the heart may be regarded as a set of harmoniously 
pulsating oscillators, and the cardiac fibrillation preceding a 
cardiac collapse may be considered as a transition to chaos 
of the heart. Since long ago it is known that certain chemical 
reactions oscillate and now traces of chaotic behavior in some of 
those reactions have been identified.

The above mentioned examples lead to the conclusion that 
Chaos is becoming ubiquitous in diverse fields of everyday life.

1.2. The question leading this research

Most publications dealing with chaos exhibit an image like the 
one in Fig. 1, where a truncated and unique chaotic episode, 
whose magnitude is apparently increasing, is displayed. 

This gives the impression that chaotic events are constantly 
amplifying intensity. In addition, since literature never comments 
about the uniqueness or variety of chaotic events, readers get 
also the impression that these events are unique, and infinite, 
this is, once a chaotic event starts, it takes control of the system 
undergoing it and, chaos never ends. 

Diversity and Temporality of Chaotic Events 

JAvier MoNteNeGro Joo * 

* Facultad de Ciencias Físicas – Universidad Nacional Mayor de San Marcos.  VirtualDynamics: 
Science & Engineering Virtual Labs.  E-mail: Director@VirtualDynamics.Org 



126

Diversity anD temporality of chaotic events 

Ind. data 19(1), 2016

SiStemaS e informática

SiStemaS e informática

Fig. 1. Truncated and apparently always 
expanding bifurcation cascade of a chaotic event. 

This image produces the impression that once 
initiated, a chaotic event increases intensity without 

limit, taking control of the system and lasting 
forever.

Fig. 2. The State Space is the 3D plotting of 
displacement and velocity versus time (time 

along the vertical axis).  In this case the 
depicted curve is that of a damped oscillator, 

for this reason the curve shrinks with time until 
the oscillator eventually stops.  The sketched 

plane P is the Poincaré section (or plane) at an 
angle with the x-axis.  The curve intersects the 
Poincaré plane at some points which constitute 

the Poincare Map at angle    Notice that 
theoretically there are infinite Poincaré Maps. 

The sequence of (x,v,t) points on State Space is 
known as  “The Flow” of the system.

A research to find out whether the above mentioned 
impressions are correct or not has been carried out 
and the results are exposed in this paper.

2. A BRIEF INTRODUCTION TO CHAOS THEORY

Chaos is the generic name of those eventual 
manifestations of randomness and unpredictability 
in completely deterministic systems.

2.1. Deterministic System

Deterministic System is a system where an initial 
condition completely determines the future of the 
system, with no randomness at all. In other words, 
the future states of a deterministic system depend 
only on its initial conditions.

Hence, provided initial conditions are known, the 
future of a deterministic system can be predicted 
with absolute certainty. A deterministic system may 
be represented by a function-of-time equation. 

As an example of deterministic system consider the 
case of an object that is launched downwards from 
a height  ho with velocity  vo1, in a place where the 
acceleration of the gravity is g, its position  y(t) at a 
future time t is given by eq. (1):

The position of the object at any time  t depends 
only on the values of ho2 vo and g 

The mathematical model of a deterministic system 
will always return the same value at a given time, for 
the same initial conditions.

2.2. Non-deterministic System

A non-deterministic system has randomness; hence 
a given initial condition may produce different future 
states.  The best example of a non-deterministic 
system is a dice. When a dice is thrown, there is no 
way to predict the resulting outcome.  

2.3. The Sate Space and the Poincare Map

The State Space (Fig.2) of a dynamical system is the 
tridimensional plotting of velocity and displacement 
versus time. The sequence of the (x, v, t) points as 
time elapses is known as “The Flow” of the system. 
Since time is always positive this plotting evolves 
only in the direction of increasing time, which is 
usually presented upwards.

An approach to study the evolution of a chaotic 
dynamical system is to analyze its State Space 
and, one way of achieving this is by means of bi-
dimensional Poincare Maps (Fig.2).
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Fig. 3. Projection of State Space (x,v,t) points 
over the XV-plane. The sketch shows the 

connection of X-V axes with different angles for 
Poincare Maps. Planes at θ=0  and  θ= π collect 
the extreme values (positive and negative) of 
the oscillation displacement, while planes at 

θ=π⁄2 and θ=3π⁄2, capture the extreme values of 
oscillation velocity.

Fig. 4. Forced oscillations in a medium of 
variable damping. As the immersed piece 

oscillates in gelatin or oil, the temperature of 
the medium varies, changing its density and 

viscosity.

The Poincare Plane P, may be seen as a tomographic 
cut along time of the State Space, see Fig. 2. This 
plane P, is defined at some angle with the x-axis. 
The Poincare Map is the set of all the intersections 
of the (x,v,t) curve –the flow of the system- with 
the plane P, at a predefined angle. In this way the 
Poincare Map helps to detect the structure –if there 
is one- of the State Space at the angle it is defined. 
Obviously, (see Fig. 3) the structure of extreme 
displacements is obtained at angles  θ=0  and θ=π 
and the structure of extreme velocities is found at 
(θ= π)⁄2   and  θ=3π⁄2 A common oscillator has two 
opposite vibration amplitude extremes and normally 
these two amplitude extremes are symmetrical. 
This report presents visual evidence that these 
amplitude extremes are not necessarily symmetrical 
in the chaotic NLDF oscillator. 

2.4 Declaring Chaos: The Lyapunov Exponent

The most common test to declare an event as 
chaotic is the calculation of its largest Lyapunov 
exponent, if this happens to be positive, the event 
is considered chaotic [1,2,3,4]. The experimental 
procedure –not so simple in practice- is to follow two 
nearby orbits in state space initially separated by 
a very short distance  fixed by the researcher, and 
calculate the average logarithmic rate of deformation 
(contraction or separation) of the orbits along time.   
If it is assumed that the orbit deformation can be 

represented by an exponential factor, then the 
distance between the two orbits after a time t can 
be expressed as.

Notice that the shorter the time t between both 
distances  , the larger the Lyapunov exponent.

In general, each chaotic episode is associated to 
a particular orbit in state space and, in order to 
calculate the average Lyapunov exponent for each 
chaotic event, a series of measurements to assess 
eq.(2) must be performed at some  predefined time 
interval in the corresponding orbits. 

Where t is the time elapsed between dt  and  do and  
λ is known as the Lyapunov exponent. 

While the chaotic event shown in Fig. 6, (event N.° 
11)  has 1.5 million time steps,Δt=0.020 s and
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Fig. 5. Period bifurcation cascades detected in the nonlinear damped and forced oscillator (NLDFO, chaotic 
event 15). These plottings are Poincaré maps at θ=0  and θ= π   respectively.  From elementary university 
physics, it is known that the period of an oscillator may be calculated by measuring the distance between 
any two consecutive equal-phase points in its plotting of displacement versus time. In these graphs it can 
be seen that periods measured in the top plotting are different to those in the bottom one. It may also be 

appreciated that the period bifurcation cascades are not symmetrical.

3. A VIRTUAL LAB TO STUDY CHAOS

A Virtual Lab (highly interactive and integrated 
computer program) to investigate chaos in some 
nonlinear systems has been completely developed 
from scratch by the author of this report. This Virtual 
Lab uses the Runge-Kutta method to numerically 
solve the differential equation of the nonlinear 
system under research.  Currently this VirtualLab 
executes simulations up to 30 million time steps 
(iterations) and it generates diverse graphs. An 
interesting feature of the mentioned VirtualLab is 
that it simultaneously shows on computer screen 
a vibrator oscillating according to the evolution of 
the simulation and while the State Space is also 
depicted. 

This means that the researcher’s appreciation 
of chaos is not limited to interpreting terminated 
plottings, but many details are observed directly (in 
real-time) by visualizing the motion of the oscillator. 
This latest feature helps to understand how the 
intricate motion of the oscillator is depicted in state 
space. 

 

4. THE MATHEMATICAL MODEL USED IN THE 
INVESTIGATION

The investigation here reported is based on 
computer simulation of the oscillating system 
depicted in Fig. 4, whose differential equation of 
motion (Eq. 3) is that of the nonlinear damped and 
forced (NLDF) oscillator [5,6]:

The system is an oscillator immersed in a medium 
of variable damping, such as oil or gelatin (Fig.4). 
The continuous motion of the oscillator disturbs 
the temperature of the medium and in this way 
its density and viscosity varies while the oscillator 
vibrates. The oscillator, whose natural frequency is  
ωo is subject to an oscillatory driving motion force   
Fo whose frequency is Ω .

As it can be appreciated, there are two competing 
frequencies in the system and there exists also 
an applied force and a variable damping. This 
constitutes the recipe [7,8] for a prone-to-chaos 
system. Note that the same effect may be attained 
without damping and with a variable force.

5. RESULTS OF THE INVESTIGATION

5.1. Diversity and temporality of chaotic events

The results here described may be appreciated in 
Figs. 5, 6 and 7.

Many isolated chaotic events were detected in 
the NLDF oscillator, which means that there is a 
diversity of chaotic events in this system [9,10], and 
not only a single one. 
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Fig. 6. Another period bifurcation cascade 
detected in the NLDFO (case 11). Top: Detection 

with Poincaré plane at 0°. Bottom: detection with a 
Poincaré plane at 180°

Fig. 7. Poincaré maps at 0°  for five of the many 
different chaotic events detected in the NLDF 

oscillator.  All the events have a beginning and an 
end, they are finite. The system abandons chaos 
as smoothly as it entered there. In each case the 

number of simulation time-steps is shown.

It has been found that chaotic events have a 
beginning and an end, this is, they do not last forever. 
This implies that chaotic events have finiteness.

Concerning the surge of bifurcations, which may be 
interpreted as the intensity of the chaotic event, it 
was observed that initially the intensity (the number 
of bifurcations) is low and, little by little this intensity 
increases, but after some time the intensity begins 
to reduce –bifurcations gradually collapse- until 
finally the chaotic event vanishes and the system 
returns to its forced chaos-free oscillations regime. 

In Figs. 5, 6 and 7 it can be seen that the transition 
towards chaos is as smooth as the transition out of it. 
It has been observed that the system experiencing 
a chaotic event terminates the events with the same 
smoothness it started them. 

When entering a chaotic event a bifurcation of the 
period is observed, then each of these bifurcations 
bifurcates again and again, and then the system 
bursts into chaos. When abandoning chaos the 
opposite effect is observed, this is, the system 
collapses the period cascade until it finally winds up 
oscillating -free of chaos- with a single period. 

5.2. Oscillation amplitudes are not symmetric 

Figures 5 and 6 show two of the several chaotic 
events detected in the system under study. These 
images display the Poincare maps for 0o and for 
180°, respectively. These correspond to the period 
bifurcation cascades observed at the mentioned 
angles and, making a parallel with a common 
oscillator, it results evident that the extremes 
of the amplitude oscillations are far from being 
symmetrical at both sides of the equilibrium position 
of the chaotic oscillator. In a regular oscillator the 
oscillation amplitudes are symmetrical about the 
equilibrium position of the oscillator.

Figure 7 displays period bifurcation cascades 
(Poincare maps at θ=0) for some additional chaotic 

events detected in the nonlinear damped and forced 
oscillator. These images make evident the diversity 
of chaotic events in the NLDF Oscillator. 

5.3. The Lyapunov exponents

It has been encountered in this research that chaotic 
events are finite, then the Lyapunov exponents were 
calculated with eq.(2) for the complete events, this 
was made following Sprott’s recommendation [3] of 
rescaling the initial values of the two state space 
orbits after each time-iteration. 

This research has uncovered a diversity of chaotic 
events, and each chaotic event has its own state 
space, then every chaotic event must have its 
own Lyapunov exponent. In fact, this researcher 
has encountered different values of the Lyapunov 
exponent for different chaotic events in the NLDFO.

In this research an initial separation of do = 10-8 
between the original orbit and the test orbit in 
state space was used to calculate the maximum 
Lyapunov exponents λ. 

The chaotic event show in Fig. 5, (event N.° 15), 
has 6 million time-steps, Δt=0.025 s and 

5.4 Decreasing damping implies increasing chaos

It was experimentally discovered that as the damping 
of the system is little by little decreased during 
a chaotic event, there appeared more and more 
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bursts of period bifurcations. This is, as the damping 
was gradually lowered, new bursts of bifurcations 
appeared where there was no bifurcation before. This 
is understandable bearing in mind that more freedom 
(less damping) allows the system to reveal more of 
its chaotic character; a higher damping means more 
restriction to behave chaotically. These observations 
suggest a way to control chaos.

5.5. Chaos after chaos – Serial chaos

In order to find out what happens once a chaotic 
event concludes, an investigation named Chaos 
after chaos [11] was executed by this researcher. 
To achieve this investigation, the simulation time 
after a chaotic event finished was considerably 
extended (extra time), but nothing unexpected was 
encountered once a chaotic event finished. This 
seems to discard the existence of serial chaos, at 
least in the system under study. Bear in mind that 
all this is not definitive, because it may happen that 
a much longer extra time was needed in order to 
detect some interesting behavior.

In general the above described behavior sheds light 
on the expected comportment in other systems 
susceptible to undergo chaos by a period bifurcation 
cascade. It is opportune to mention here that not all 
systems prone to chaos experiment it by a bifurcation 
cascade, this is the case of the Duffing equation, 
where simulations carried out by this researcher 
have never generated a period bifurcation cascade. 

6. CONCLUSIONS

Chaos in the nonlinear damped and forced oscillator 
(NLDFO) has been studied in a virtual lab expressly 
developed to solve its differential equation by 
means of the Runge-Kutta algorithm. It has been 
encountered that: 

1. There is a variety of chaotic occurrences, this is, 
chaos may occur very many times. 

2. Chaotic events do not last forever, they are finite. 

3. The intensity of a chaotic event initially increases 
but after some time it begins to decrease until 
chaos vanishes. 

4. The system abandons chaos with the same 
smoothness it starts that. 

5. When the system transitions towards chaos there is 
a period bifurcation cascade and, when the system 
goes out of chaos, there is a collapse of cascades. 

6. Once the system leaves a chaotic event, the 
system returns to its chaos-free forced oscillators. 

7. During a chaotic event the maximum amplitudes 
of oscillation are far from being symmetrical about 
the equilibrium position of the oscillator. 

8. Once a chaotic event has been detected, a 
decreasing damping triggers more chaos. 

9. It seems to be chaos does not occur in series.
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