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ABSTRACT
Highly repetitive mechanical systems like those pres-
ent in industrial machinery, are prone to undergo 
chaos. To understand this, engineers responsible 
for the operation of machinery systems, must be 
aware of the “Routes to Chaos”. This work presents 
the results  of an investigation carried-out in a Virtual 
Laboratory, created to investigate the transition to 
chaos in oscillating (rotating) systems, immersed in a 
dampening medium (impossible to avoid damping in 
a non ideal situation), under the action of an applied 
force (a motor).

Keywords: Virtual Lab, simulation, non-linear sys-
tems, oscillations, chaos. 

a pragmatiC introduCtion to Chaos theory 
for engineers

RESUMEN
Los sistemas mecánicos altamente repetitivos, como 
aquellos presentes en las máquinas industriales, son 
factibles de experimentar caos. Para entender esto, 
los ingenieros responsables del funcionamiento de 
un sistema de maquinarias deben estar al tanto de 
las “Rutas hacia el Caos”. Este trabajo presenta los 
resultados de una  investigación llevada a cabo en un 
Laboratorio Virtual, creado para estudiar la transición 
al caos en sistemas oscilantes (rotativos) en un me-
dio amortiguador (imposible evitar la amortiguación 
en un medio no ideal), bajo la acción de una fuerza 
aplicada (un motor).  

Palabras clave: Laboratorio virtual, simulación, 
sistema no-lineal, oscilaciones, caos.

INTRODUCTION

Consider the case of a sewing machine, the needle goes up and 
down at a particular frequency, the traction of the cloth takes place 
at another frequency, and the pulling of the thread is made at even 
other frequency. This is just an example of a mechanical system 
where the three mentioned frequencies must operate in harmony 
for a good performance of the machine. According to the theory 
of chaos, systems with competing frequencies are highly prone to 
undergo chaos. Mechanical systems have not been built to experi-
ment chaos and hence, they collapse before reaching that phase.

Repetitive mechanical systems like those present in industrial ma-
chinery, consist of a series of oscillating (rotating) sub-systems, each 
one having its own frequency of oscillation (rotation), and mostly all 
of them (if not all) interacting, hence from the point of view of chaos 
theory, these systems are strong candidates to experience a com-
petence between frequencies, the main ingredient to chaos.

Facing the above described scenario it is very important for an 
engineer to have notions of oscillations and to be aware of their 
extreme behavior, namely, chaos.

The formal study of oscillations is based on models, being the 
simplest ones the swinging pendulum and the oscillating spring, 
both in vacuum (free oscillators). However, free oscillating pen-
dulums and springs are rather ideal linear oscillators. Real life 
oscillatory mechanisms are to some extent non-linear and sub-
ject to some kind of friction (damping). Besides this, usually there 
is also an external force acting upon these systems, so as to 
maintain its motion. Forced oscillating systems include at least 
two oscillating frequencies, one corresponding to the oscillator 
itself (its natural frequency) and another, associated to the exter-
nal applied force. Hence there are —in the simplest case— two 
competing frequencies. It is well-known that after some initial 
time the oscillator winds up oscillating with the frequency of the 
external applied force. It is also known that dissipative systems 
with two competing frequencies exhibit transitions to chaos3,10 

Resonance is common in oscillatory systems and when design-
ing oscillatory mechanisms, engineers try by all means to avoid 
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that so as to keep away from undesired harmful out-
of-control vibrations which may eventually wreak 
havoc.   

Under some conditions non-linear oscillators may 
display irregular and really complex oscillations, be-
ing it impossible to detect its period and amplitude of 
oscillation, in other words, the oscillation becomes 
aperiodical (it never exactly repeats).  

Since the 1980’s researchers have made enormous 
efforts to understand aperiodic motions of oscilla-
tory systems, these endeavors have resulted in the 
Chaos Theory1,10.  Aperiodicity of non-linear dynam-
ical systems is also known as Chaotic Dynamics. 
Chaos theory would had been fathered by Henri 
Poincare in the 1890’s, but he had no computers.

Back in the 1980’s when chaos research started, 
computers were not as powerful and friendly as 
they are today, this author used to work then under 
time-sharing mode in mainframes like IBM 370 and 
IBM 4341, and generating data to make  plots like 
those shown in Figs 2 through 4 was not as easy 
and quick as it is today.

Concerning the organization of this paper, next an 
introduction to chaos is presented, then a descrip-
tion of the created software is exposed and after 
that the application to the case of the damped non-
linear oscillator with variable damping is reported.

COMMON ChAOS VS PhYSICAL ChAOS

While everyday language understands chaos as 
complete disorder, tantamount to total randomness, 
it has a much subtler meaning in physics.

Chaos is the phenomena related to the occurrence 
of randomness and unpredictability in completely 
deterministic systems, it is not to be equated sim-
ply with disorder, it is more appropriate to consider 
Chaos as a kind of order without periodicity2.

Stochasticity, Dynamical Chaos or simply Chaos7-8, 
is the appearance of apparently random motion in 
a deterministic dynamical system, this is, a system 
with no random forcing.

Even at long times chaotic systems include ele-
ments of order, in other words, chaos is not com-
pletely random8-9.

A chaotic system is not a random system, it is de-
terministic.  A chaotic system seems random if the 
beholder fails to recognize that it is chaotic.   In a 

random system it is impossible to determine fu-
ture states from previous states, in deterministic 
systems, that prediction is possible, provided the 
system is not sensitive to small variations in initial 
conditions.

PERIOD DOUBLING ROUTE TO ChAOS  

Several routes to chaos have been observed, how-
ever, the Period Doubling Route to Chaos4-5 is a 
universal and fundamental form of transition from 
periodicity to chaos (Transition to chaos6), observed 
in many mathematical and real systems.

In the Transition to Chaos6, a system evolves to-
ward non periodic time dependence as one or more 
parameters are varied.  

In the Period Doubling6 process, the time it takes 
the system to repeat itself, this is its Period, dou-
bles and then doubles again and again, until the 
period becomes essentially infinitely long, as one 
or more control parameters (temperature, velocity, 
force, etc) are varied. Hence the Period Doubling 
Route to Chaos involves an infinite sequence of 
Bifurcations6, which appears as a Cascade of Bi-
furcations. All systems that become chaotic by the 
period doubling process do so in the same universal 
way. Beyond the period doubling cascade the stable 
periodic orbit disappears and chaos dominates the 
scene. However it is important to mention that not 
all systems evolving to chaos follow the bifurcation 
cascade behavior. 

In mechanical systems, the above mentioned con-
trol parameter is usually, the temperature, whose 
values are not easy to maintain within a convenient 
range, which -to worsen the situation- becomes 
smaller as the machine degrades by its continuous 
use. 

STRANGE ATTRACTOR

A strange attractor6 is the shape (geometrical object) 
depicted in Phase Space (a.k.a. State Space) by a 
chaotic system. These attractors are fractal (have 
non-integer dimension) and consist of an infinitely 
number of closely spaced layers. Nearby trajecto-
ries diverge from each other by an amount that is 
exponential in time rather than proportional to time. 

DEPENDENCE ON INITIAL CONDITIONS

A quality that characterizes chaotic systems is that 
these definitively show a sensitive dependence on 
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initial conditions. Other systems may or may not 
exhibit this sensitivity, but chaotic ones definitively 
do.  Sensitivity to initial conditions however, does 
not automatically entail chaos.

STUDYING ChAOS WIThOUT COMPUTERS

It would be impossible to construct a mechanical 
system capable of going through a cascade of pe-
riod doubling bifurcations; any mechanical system 
would collapse shortly after the first period doubling. 
For this reason the study of the transition to chaos 
must be made with computers. Some researchers 
have attempted the study of chaos by simulating os-
cillators, with electrical circuits.

ThE VIRTUAL LAB

A Virtual Lab to numerically solve by the Runge-
Kutta algorithm a second order non linear diffe-
rential equation has been developed, this software 
can evaluate the equation in up to one million (106 ) 
time steps, it shows the Time Series and the Phase 
Diagram (Phase Space) and detects and plots on 
screen the peaks and valleys of the amplitudes, all 
in a single screen and taking no more than 6 se-
conds in a Dual-Core Processor PC. Additionally a 
pendulum in motion according to the data generated 
in the simulation may be appreciated at the click of 
a button. This pendulum however, is just to visualize 
the oscillations; the problem under study may have 
nothing to do with a pendulum.
   
The two most important products of this software 
are the plotting on screen of the Bifurcation Cas-
cade route to chaos (Fig. 4) of the equation it is sol-
ving and the animated pendulum, in this way, the 
route to chaos and chaos itself are easily and quic-
kly visualized.  

Seeing that dealing with non-linear systems is not 
straightforward at all, determining the parameters 
that generate the transition to chaos for a given 
differential equation is not an easy undertaking, 
and one way of detecting them may be by trial-
and-error. If this program were set to operate on 
a trial-and-error mode search for chaos over ran-
domly generated parameters, it would be able to 
investigate up to 20 to 30 different cases every 
minute (a huge time saving), and by virtue of a 
pattern recognition technique operating on phase 
space, automatically might report chaos when en-
countered.

CONSTRUCTING ThE MAThEMATICAL MODEL 
OF ThE OSCILLATOR

In order to investigate the transition to chaos in the 
Non-Linear Damped and Forced Oscillator, its ma-
thematical model must be constructed.

Consider an oscillator in the form of a pendulum of 
mass m and length L. According to Newton’s second 
law, the equation of motion of the pendulum is

where the second time derivative of the displace-
ment is the tangent acceleration of the pendulum. 
The frequency of oscillation of the free pendulum 

is Lgo =ω which is known as its “Natural Fre-
quency of oscillation”.  In the case of very small os-
cillations (less than 15o), this oscillator executes a 
Simple Harmonic Motion.

If the pendulum were oscillating in a viscous medi-
um offering a resistance proportional to the velocity, 
the equation would become

where the first time derivative of the displacement, 
is the velocity, the minus sign means that the damp-

Fig. 1. An object oscillating in a variable 
damping medium.
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ing force is against the direction of motion, and b is 
a constant of proportionality, related to the viscosity 
of the medium.

If additionally, an external oscillating force Fo, with 
frequencyΩ , drives the pendulum, the equation of 
motion turns out to be  

This equation is usually written as,

which is the equation of motion of a non-linear 
damped and forced oscillator immersed in a viscous 
medium.

Equation (1) which is a second-order  differential 
equation, models a non-linear oscillator2,3 (a pendu-
lum in the simplest case) immersed in a dissipative 
medium of damping factor b and which is connected 
to an external applied sinusoidal force Fo oscillating 

with frequencyΩ , being oω the angular frequency 
of the free linear oscillator (without damping).

In a variable damping medium, one that either be-
comes thicker or thinner with time, the factor b in 
equation (1), changes as 
time passes by.

It is expected that after a transient stage, the oscil-
lator oscillates with the frequency Ω  of the applied 
external force.

In view of the fact that the system under investiga-
tion undergoes dissipation (damping b), and since 
there are two competing frequencies, it is expected 
to observe a transition to chaos3.  In the investiga-
tion reported in this document, the applied force Fo 
was slowly increased, which is equivalent to slowly 
lowering the damping.

Fig. 2. Amplitude peaks vs time: Two bifurcations are clearly seen, before chaotic motion sets in. The 
corresponding Phase Diagram (velocity vs position) is also shown.

Fig. 3. Phase Diagram for the first 530000 (x, 
V) points of the simulation corresponding to 
Fig. 2, before the onset of chaos.
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RESULTS OF ThE INVESTIGATION

Based on both experience and physical intuition, 
the set of parameters where the oscillator under 
study shows a transition to chaos was successfully 
determined with the help of the developed software 
and after just a few trials. The resulting cascade 
of bifurcations is shown in fig. 2, corresponding to 
900,000 time steps. This figure also displays the 
corresponding phase diagram (plot of velocity V 
versus displacement X).  In Fig 2, region (a) corres-
ponds to a period 1, the regular situation. Region 
(b) corresponds to the first bifurcation, with period 
2.  In region (c) a second bifurcation takes place, 
with period 4, and this is followed by region (d) with 
widespread chaos. There must be another bifurca-
tion right after region (c) but it is not evident with the 
plotting resolution used.

Fig. 3 shows the phase diagram for the first 530000 
time steps of the simulation shown in Fig. 2, this is, 

from the start up to the point where the two first 
bifurcations in Fig. 2 are still easily distinguisha-
ble, right before the onset of chaos. It can be seen 
that the graph has self similarity, hence it may be 
a fractal. 

Fig. 4 displays the oscillation amplitude peaks and 
valleys for a simulation with equation (1) along one 
million time steps, as the applied force increases. 
The cascade of bifurcations is clearly seen. 

Mechanical systems are constructed to operate 
under a given frequency, which corresponds to 
region (a) in Fig. 2. This frequency may gradually 
change a little due for example, to an increase 
in temperature. When the system starts to alter-
nate between two different frequencies (region b 
in Fig.2), it is escaping its normal (expected) be-
havior and this must be understood as an alarm 
signal.  A mechanical system, usually collapses 
before reaching region (c) in Fig. 2, this may be 

Fig. 4. Bifurcation cascade of the non-linear damped and forced oscillator. The graph shows 
the oscillation amplitude peaks (top) and valleys (bottom) versus time, for 1000000 time 
steps while applied force increases.
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the reason why chaos is not in fact observed at 
these systems.

Fig 5 shows the Return Map for the case shown 
in Fig. 4. The Return Map is a plotting of Xn+1  as a 
function of  Xn , where X is the oscillation amplitude 
peak.  It can be seen that for some values of Xn 
, there are several possible values of Xn+1  , which 
means that it is impossible to predict an amplitude 
of oscillation.

CONCLUSSIONS

An introduction to Chaos Theory having the non-
linear forced and damped oscillator as a model, 
has been presented. The mathematical model, 
whose construction has been shown, was used 
as a simulation algorithm in a Virtual Lab spe-

cially designed to solve -by means of the Runge-
Kutta method- second order non-linear differential 
equations. The created software allows for a very 
quick simulation and visualization, reporting the 
Bifurcation Diagram, the Return Map, The Phase 
Diagram, and a visualization of the oscillations of 
the system under study.
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Fig. 5. Return Map for the case shown in Fig. 4. 
Notice that it is impossible to predict an amplitude 
of oscillation Xn+1, from the previous amplitude 
Xn, because there are several possible values of 
Xn+1 for most Xn. 


