Traduttore, traditore: Can machines outperform humans in translation accuracy?

Autores/as

DOI:

https://doi.org/10.15381/lengsoc.v23i2.26968

Palabras clave:

Traducción Automática, Traducción Humana, Métrica BLEU, Precisión de Traducción, Análisis Comparativo

Resumen

Este estudio examina la eficacia y precisión de la Traducción Automática (TA) en comparación con la Traducción Humana (TH), para lo cual utiliza la métrica Bilingual Evaluation Understudy (BLEU) en la evaluación. El campo en rápida evolución de la traducción de idiomas, especialmente en el contexto del aprendizaje automático y la inteligencia artificial, requiere una evaluación crítica de la TA versus TH. Se busca comparar la calidad de las traducciones generadas por máquina de Google Translate, DeepL y ChatGPT 3.5 con traducciones humanas en el par lingüístico inglés-español. El estudio utiliza la métrica BLEU, comparando las traducciones máquina y humanas con un estándar profesional. Se utilizan datos de exámenes de estudiantes de traducción para las traducciones generadas por humanos. Nuestros hallazgos indican una mayor correlación estructural en las traducciones generadas por máquina de lo que se había informado anteriormente, sugiriendo una creciente competencia en la TA. Sin embargo, este estudio subraya la necesidad de una evaluación continua a medida que evolucionan las tecnologías de traducción.

Biografía del autor/a

  • Felipe von Hausen, Universidad de Las Américas, Concepción, Chile

    Is a translator of Spanish, German and English from the Universidad de Concepción, Chile. Teacher of German Language from the Universidad de Talca, Chile. He holds a Master’s in Higher Education and a Master’s in Applied Linguistics, both from the Catholic University of the Most Holy Conception, Chile. Academic at the Faculty of Communications and Arts, Universidad de las Américas, Concepción, Chile. His research area is experimental psycholinguistics, with a special emphasis on the processing of syntax and lexicon in L2.

  • Cristóbal Muñoz, Universidad de Concepción, Concepción, Chile

    Is a translator of Spanish, English and German from the Universidad de Concepción, Chile. Japanese Teacher, Master’s in Spanish Language Teaching from the Universidad de Barcelona, Spain, and Software Developer. Independent Translator and Teacher in Australia. His research areas are translation studies and L2 learning.

  • Carlos Contreras, Universidad de Concepción, Concepción, Chile

    Was a distinguished linguist and translator with a diverse academic background. He earned a Bachelor’s degree in Education, a degree in English Language Teaching, and a professional degree in Translation from the University of Concepción (UdeC), specialising in German, French, English, and Spanish. Dr. Contreras pursued advanced studies, obtaining a Master’s and PhD in Linguistics from UdeC. Additionally, he completed postgraduate studies in Italian Language and Culture, and had proficiency in Swedish. He taught Italian and significantly contributed to the field of translation education, particularly in German and French, shaping the curriculum of the Translation and Interpretation Programme at UdeC.

Referencias

Abu-Zahra, M. J., & Shayeb, A. S. (2022). Do mobile translation apps enhance or hinder translation trainees’ linguistic competence: The case study of translation students at Birzeit University. Journal of Language and Linguistic Studies, 18(4).

Ahammad, S. H., Kalangi, R. R., Nagendram, S., Inthiyaz, S., Priya, P. P., Faragallah, O. S., Mohammad, A., Mahmoud, M. A., & Rashed, A. N. Z. (2024). Improved neural machine translation using Natural Language Processing (NLP). Multimedia Tools and Applications, 83(13), 39335-39348.

Ali, M. A. (2020). Quality and machine translation: An evaluation of online machine translation of English into Arabic texts. Open Journal of Modern Linguistics, 10(5), 524-548.

Brownlee, J. (2017, november 20). A Gentle Introduction to Calculating the BLEU Score for Text in Python [Blog post]. Machine Learning Mastery.

Callison-Burch, C., Koehn, P., & Osborne, M. (2006, june). Improved statistical machine translation using paraphrases. In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference (pp. 17-24).

Chesterman, A. (2009). The name and nature of translator studies. HERMES-Journal of Language and Communication in Business, (42), 13-22.

Colman, T., Fonteyne, M., Daems, J., & Macken, L. (2021). It’s all in the eyes: An eye tracking experiment to assess the readability of machine translated literature. 31st Meeting of Computational Linguistics in The Netherlands (CLIN 31).

DeepL Translator. (2017). DeepL Translator.

De García, J., & Pérez, R. (2011). Reflexiones y recomendaciones sobre buenas prácticas en la traducción científica y técnica. Tecnología y Desarrollo, 9, 1-9.

Dew, K. N., Turner, A. M., Choi, Y. K., Bosold, A., & Kirchhoff, K. (2018). Development of machine translation technology for assisting health communication: A systematic review. Journal of Biomedical Informatics, 85, 56-67.

Dodos, A. (2017). Phrase-based translation model.

Google Translate. (2018). GNMT en acción.

Gouadec, D. (2010). Quality in translation. In Handbook of Translation Studies (pp. 270-275). John Benjamins.

Gouws, S., & Dehghani, M. (2018, august 15). Moving Beyond Translation with the Universal Transformer. Google AI Blog.

Hartley, T. (2007). MT Evaluation – challenges and techniques.

Hernández, R., & Mendoza, C. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw Hill Education.

Hernández-Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6.ᵃ ed.). McGraw Hill.

Inghilleri, M. (2005). The sociology of Bourdieu and the construction of the ‘object’ in translation and interpreting studies. The translator, 11(2), 125-145.

Khoong, E. C., & Rodriguez, J. A. (2022). A research agenda for using machine translation in clinical medicine. Journal of General Internal Medicine, 37(5), 1275-1277.

Lavie, A. (2011). Statistical MT with Syntax and Morphology: with Syntax and Morphology: Challenges and Some Solutions.

Lee, J. (2022). Comparing student self-assessment and teacher assessment in Korean-English consecutive interpreting: Focus on fidelity and language. INContext: Studies in Translation and Interculturalism, 2(3).

Łoboda, K., & Mastela, O. (2023). Machine translation and culture-bound texts in translator education: a pilot study. In G. Massey, M. Piotrowska and M. Marczak (Eds.), (Re-)profiling T&I education: meeting evolution with innovation (pp. 503–525).

Madnani, N. (2011). iBLEU: Interactively Debugging & Scoring Statistical Machine Translation Systems. Proceedings of the Fifth IEEE International Conference on Semantic Computing.

Madnani, N. (2011). Interfaz de la sección de visualización en iBLEU.

Mikros, G., & Boumparis, D. (2022). Cross-linguistic authorship attribution and author profiling. Is machine translation the solution?

Munday, J. (2011). Introducing translation studies. Routledge.

O'Brien, S. (2012). Translation as human–computer interaction. Translation spaces, 1(1), 101-122.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. (2002). BLEU: a method for automatic evaluation of machine translation. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, Pennsylvania, United States.

Pérez, C. (2013). Post-edición en el contexto de la Traducción Controlada.

Popović, M. (2020). Relations between comprehensibility and adequacy errors in machine translation output. Association for Computational Linguistics (ACL).

Snover, M., Dorr, B., Schwartz, R., Micciulla, L. and Makhoul, J. (2006). A Study of Translation Edit Rate with Targeted Human Annotation. In Proceedings of Association for Machine Translation in the Americas.

Tantuğ, A., & Oflazer, K. (2007). BLEU+: a tool for fine-grained BLEU computation. Proceedings of the Sixth International Language Resources and Evaluation, Marrakech, Morocco.

Tantuğ, A. (2007). Interfaz predeterminada de BLEU+.

Uszkoreit, J. (2017). Transformer: A Novel Neural Network Architecture for Language Understanding.

Van Gerven, M. (2017). Computational foundations of natural intelligence. Frontiers in Computational Neuroscience, 11.

Venuti, L. (2017). The translator's invisibility: A history of translation. Routledge.

Vieira, L. N., O’Hagan, M., & O’Sullivan, C. (2021). Understanding the societal impacts of machine translation: a critical review of the literature on medical and legal use cases. Information, Communication & Society, 24(11), 1515-1532.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cap, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gows, S., Kato, Y., Kudo, T., Kazawa, H.,... & Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. ArXiv, 1.

Zappatore, M., & Ruggieri, G. (2023). Adopting machine translation in the healthcare sector: A methodological multi-criteria review. Computer Speech & Language, 84, 1-46. https://doi.org/10.1016/j.csl.2023.101582

Descargas

Publicado

2024-12-30

Número

Sección

Dossier sobre inteligencia artificial, lenguaje y discurso digital

Cómo citar

von Hausen, F., Muñoz, C., & Contreras, C. (2024). Traduttore, traditore: Can machines outperform humans in translation accuracy?. Lengua Y Sociedad, 23(2), 791-805. https://doi.org/10.15381/lengsoc.v23i2.26968