REGULARIDAD ESCONDIDA DE LA SOLUCIÓN PARA UNA ECUACIÓN DE ONDA CON EL OPERADOR p-LAPLACIANO

Eugenio Cabanillas Lapa ¹, Willy Barahona Martínez², Luis Macha Collotupa³, Gabriel Rodríguez Varillas⁴, Rocío De La Cruz Marcacuzco ⁵

Resumen: En este trabajo se estudia la Regularidad Escondida de las soluciones de una ecuación de onda con el operador p-Laplaciano

$$u_{tt} - \Delta_p u = f.$$

De hecho, vamos a demostrar que la derivada normal

$$\frac{\partial u}{\partial \nu} \in L^p(\Sigma), \qquad 2$$

Palabras clave: Regularidad escondida, Método de Galerkin, solución débil.

HIDDEN REGULARITY OF SOLUTION FOR A WAVE EQUATION WITH THE p-LAPLACIAN OPERATOR

Abstract: In this paper we study the hidden regularity of solutions for a wave equation with the p-laplacian operator

$$u_{tt} - \Delta_p u = f.$$

Indeed, we will prove that the normal derivative

$$\frac{\partial u}{\partial \nu} \in L^p(\Sigma), \qquad 2$$

Keywords: Hidden regularity, Galerkin method, weak solution.

1. Introducción

Sea Ω un dominio acotado en \mathbb{R}^n con frontera regular Γ . Consideramos el siguiente problema de valores iniciales

$$u_{tt} - \Delta_p u = f$$
 en $Q = \Omega \times]0, T[$
 $u = 0$ sobre $\Sigma = \Gamma \times]0, T[$
 $u(x,0) = u^0(x),$ $u_t(x,0) = u^1(x)$ en Ω (1)

J.L. Lions en [2] estudió la regularidad escondida de la solución del sistema (1) con p=2 agregándole un término no lineal $g(u)=u|u|^{\rho}$ donde $\rho\geq 0$. En [3], Milla Miranda-L.A.

¹UNMSM, Facultad de Ciencias Matemáticas, e-mail: cleugenio@yahoo.com

²UNMSM, Facultad de Ciencias Matemáticas, e-mail:wilbara 73@yahoo.es

³UNMSM, Facultad de Ciencias Matemáticas, e-mail:lmachac@hotmail.com

⁴UNMSM, Facultad de Ciencias Matemáticas, e-mail: grodriguezv@unmsm.edu.pe

⁵UNMSM, Facultad de Ciencias Matemáticas, e-mail: rodema_71@yahoo.es

Medeiros generalizaron el resultado obtenido en [2], obtuvieron la misma regularidad de una ecuación de onda semilineal con una no linealidad general. En [1] F.Araruna y otros investigaron la regularidad escondida para la ecuación de Kirchhoff. El objetivo principal de este trabajo es estudiar la regularidad escondida para la solución del problema dado en (1), con 2 , se demostrará que tiene sentido la traza de la derivada normal y, además vamos a obtener la siguiente regularidad

$$\frac{\partial u}{\partial \nu} \in L^p(\Sigma). \tag{2}$$

2. Teorema Central

En esta sección, mediante el método de Faedo-Galerkin probaremos la existencia de la solución débil, adicionalmente se conseguirá la regularidad escondida.

Teorema 2.1 Sea $\{u^0, u^1, f\}$ un elemento del espacio $W_0^{1,p}(\Omega) \times L^2(\Omega) \times L^2(Q)$. Entonces existe una función $u: Q \to \mathbb{R}$ tal que

$$u \in L^{\infty}(0, T; W_0^{1,p}(\Omega))$$
$$u_t \in L^{\infty}(0, T; L^2(\Omega))$$
$$u_{tt} - \Delta_p u = f \quad \text{en} \quad L^2(0, T; W^{-1,q}(\Omega))$$

donde $p^{-1} + q^{-1} = 1$. Además

$$\frac{\partial u}{\partial \nu} \in L^p(\Sigma)$$

Demostración. Sea r > 0, tal que $H_0^r(\Omega) \hookrightarrow W_0^{1,p}(\Omega)$; como $W_0^{1,p}(\Omega)$ es separable, existe una base de Schauder $\{w_\nu\}_{\nu \geq 1}$.

Para cada entero m sea $V_m = span\{w_1, w_2, ..., w_m\}$, el espacio generado por los m primeros elementos de la base. Determinaremos una solución aproximada para el problema (1) de la forma

$$u_m(t) = \sum_{j=1}^{m} g_{jm}(t)w_j$$

tal que satisface

$$(u''_m, w_j) - (\triangle_p u_m, w) = (f, w_j)$$
 (3)

$$u_m(0) = u_{0m} \longrightarrow u^0 \quad \text{en} \quad W_0^{1,p}(\Omega)$$
 (4)

$$u'_{m}(0) = u_{1m} \longrightarrow u^{1} \quad \text{en} \quad L^{2}(\Omega)$$
 (5)

Por la teoría de las EDOs, el sistema (3) - (5) tiene una solución local $u_m(t)$ en un intervalo $[0, T_m]$.

Probaremos que para cualquier T > 0, esta solución puede ser extendida a todo el intervalo [0, T] vía la siguiente estimativa a priori.

En efecto, multiplicando (3) por $g'_{jm}(t)$ luego sumando las ecuaciones resultantes sobre j, e integrando por partes se obtiene.

$$E'_{m}(t) = (f(t), u'_{m}(t)); \forall t \ge 0.$$
(6)

donde

$$E_m(t) = \frac{1}{2} \|u'_m(t)\|_2^2 + \frac{1}{p} \|\nabla u_m(t)\|_p^p.$$
 (7)

Por la desigualdad de Cauchy-Schwarz se sigue que

$$\int_{0}^{t} (f(s), u'_{m}(s))ds \le \int_{0}^{t} \|f(s)\|_{2} \|u'_{m}(s)\|_{2} ds \tag{8}$$

Debido a las convergencias de (4) y (5) y aplicando la desigualdad de Gronwall, obtenemos

$$\|u_m'(t)\|_2^2 + \|\nabla u_m(t)\|_p^p \le C. \tag{9}$$

Con esta estimación podemos extender las soluciones aproximadas $u_m(t)$ al intervalo [0,T]. Además:

$$(u_m)_{m\geq 1}$$
 es acotada en $L^{\infty}(0,T;W_0^{1,p}(\Omega))$ (10)

$$(u'_m)_{m\geq 1}$$
 es acotada en $L^{\infty}(0,T;L^2(\Omega))$ (11)

$$(u'_m)_{m>1}$$
 es acotada en $L^2(0,T;L^2(\Omega))$ (12)

Con cálculos adicionales obtenemos ambos lados

$$(-\triangle_p u_m)_{m\geq 1}$$
 es acotada en $L^{\infty}(0, T; W^{-1,p'}(\Omega)), \quad \frac{1}{p} + \frac{1}{p'} = 1$ (13)

Usando el argumento de la proyección, como en [3], de la ecuación aproximada (3), y las estimaciones (10) - (11), podemos inferir que

$$(u_m'')_{m\geq 1}$$
 es acotada en $L^2(0,T;H^{-r}(\Omega))$ (14)

De (10) - (12), existe u tal que

$$u_m \rightharpoonup u$$
 débil * en $L^{\infty}(0, T; W_0^{1,p}(\Omega))$ (15)

$$u'_m \rightharpoonup u'$$
 débil * en $L^{\infty}(0, T; L^2(\Omega))$ (16)

$$u'_m \rightharpoonup u'$$
 débilmente en $L^2(0,T;L^2(\Omega))$ (17)

$$-\triangle_p u_m \rightharpoonup \chi$$
 débil * en $L^{\infty}(0, T; W^{-1, p'}(\Omega))$ (18)

Aplicando el lema de Lions-Aubin [5], seguimos de (10) y (11) que

$$u_m \to u$$
 fuertemente en $L^2(0, T; L^2(\Omega))$ (19)

$$u'_m \to u'$$
 fuertemente en $L^2(0, T; L^2(\Omega))$ (20)

Con estas convergencias y el paso al límite de la ecuación aproximada tenemos

$$\frac{d}{dt}(u'(t), v) + \langle \chi(t), v \rangle = (f(t), v)$$
(21)

para todo $v \in W_0^{1,p}(\Omega)$ en el sentido de las distribuciones.

Con la teoría de operadores monótonos, no es difícil probar que $\chi(t) = \triangle_p u$.

Para la prueba de (2), usaremos argumentos de perturbación y nos basaremos en dos lemas. Consideramos la siguiente ecuación aproximada

$$w_{tt}^{\epsilon} + A_{\epsilon}w^{\epsilon} + \epsilon \Delta w_{t}^{\epsilon} = 0$$

$$w = 0$$

$$w(0) = w^{0}, \quad w_{t}(0) = w^{1}$$

$$(22)$$

donde

$$A_{\epsilon}w(x) = -div\{(\|\nabla w(x)\|^2 + \epsilon)^{\frac{p-2}{2}}\nabla w(x)\}; \epsilon > 0$$

Probaremos que (22) admite una única solución fuerte.

$$w^{0} \in W_{0}^{1,p}(\Omega) \cap H^{2}(\Omega); w^{1} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$$
 (23)

Lema 2.2 Asumiendo (22). Existe una única solución $w^{\epsilon}(.)$ de (22) con:

- 1. $t \longrightarrow w^{\epsilon}(t)$ es fuertemente continua para $t \ge 0$ en $W_0^{1,p}(\Omega) \cap H^2(\Omega)$ fuertemente continua y diferenciable para t > 0 en $H_0^1(\Omega)$
- 2. $t \longrightarrow w^{\epsilon}(t)$ fuertemente continua y diferenciable para $t \geq 0$ en $L^{2}(\Omega)$ y dos veces fuertemente continua y diferenciable para t > 0 en $L^{2}(\Omega)$
- 3. La desigualdad

$$\|\Delta w^{\epsilon}(t)\|^{2} + \|\Delta w_{t}^{\epsilon}(t)\|^{2} + \int_{\Omega} (\|\nabla w^{\epsilon}(t)\|^{2} + \epsilon)^{\frac{p-2}{2}} dx + \int_{0}^{t} \|\nabla w_{t}^{\epsilon}(s)\|^{2} ds \le C(\|u'\|^{2} + \|\nabla u^{0}\|_{p}^{p}) \quad \forall t \in [0, T]$$

Demostración. La idea de la demostración es la siguiente. Tomamos una solución débil w^{ϵ} de (22) (obtenidas por el análisis de algunos resultados utilizados en el teorema de existencia (1)), y luego, usando la teoría de semigrupos analíticos, se prueba que w^{ϵ} es la solución fuerte requerida.

Para efecto de obtener la regularidad escondida, requerimos de la hipótesis adicional:

$$m(x).\nu \ge r > 0; \quad m(x) = (m_1(x), ..., m_n(x)) = x, \quad \text{para todo } x \in \Gamma.$$
 (24)

Lema 2.3 Asumimos (24). Si u denota la solución de (1) con datos iniciales $\{u^0, u^1\} \in W_0^{1,p}(\Omega) \times L^2(\Omega)$ entonces se tiene que

$$\frac{\partial u}{\partial \nu} \in L^p(\Sigma)$$

Demostración. Sea $\epsilon = \epsilon_j \longrightarrow 0$ para $j \longrightarrow +\infty$ $(\epsilon_j > 0$ para cada j) y $u^{0j} \equiv u^{0\epsilon_j}$, $u^{1j} \equiv u^{1\epsilon_j}$ en $C_0^{+\infty}(\Omega)$ tal que $u^{0j} \longrightarrow u^0$ en $W_0^{1,p}(\Omega)$; $u^{1j} \longrightarrow u^1$ en $L^2(\Omega)$.

Denotando $u_j = u_{\epsilon_j}$ las funciones correspondientes a $\epsilon = \epsilon_j$ de acuerdo al Lema (1), entonces tenemos que

$$u_{j} \in C(0, T; W_{0}^{1,p}(\Omega) \cap H^{2}(\Omega))$$

$$u_{jt} \in C(0, T; H_{0}^{1}(\Omega) \cap H^{2}(\Omega))$$
(25)

En estas condiciones podemos aplicar los resultados en Dinca-Isaia [4], por lo que los cálculos con integración por partes son válidos.

Sea $u_j = u$ se multiplican ambos lados de (22), por $m_i \frac{\partial u}{\partial x_i}$ e integrando sobre Q, obtenemos después de algunas simplificaciones

$$\| \int_{\Omega} \{ (\|\nabla u\|^{2} + \epsilon)^{\frac{p-2}{2}} \|\nabla u\|^{2} - (\|\nabla u\|^{2} + \epsilon)^{\frac{p}{2}} \} \| dx$$

$$\leq \int_{\Omega} (\|\nabla u\|^{2} + \epsilon)^{\frac{p}{2}} dx \cdot \epsilon \|\Omega\|^{\frac{2}{p}} + \int_{\Gamma} (\|\nabla u\|^{2} + \epsilon)^{\frac{p-2}{2}} m \cdot \nu d\Gamma$$
(26)

$$\leq \frac{p-2}{2} \int_{\Gamma} (\|\nabla u\|^2 + \epsilon)^{\frac{p}{2}} m.\nu d\Gamma + \frac{2}{p} \int_{\Gamma} (\epsilon)^{\frac{p}{2}} m.\nu d\Gamma \tag{27}$$

Por otro lado es conocido que:

$$\frac{\partial u}{\partial x_i} = \nu_i \frac{\partial u}{\partial \nu}; \qquad \nu = (\nu_1, \nu_2, ..., \nu_n) \qquad \forall u \in W_0^{1,p}(\Omega) \cap H^2(\Omega)$$

luego

$$\|\nabla u\|^p = \|\frac{\partial w}{\partial \nu}\|^p \tag{28}$$

Como consecuencia de (24) - (28), existe una constante positiva C de tal manera que

$$\int_{\Sigma} \|\frac{\partial u}{\partial \nu}\|^p d\Sigma \le C. \tag{29}$$

Del lema (2,3) anterior se deduce que podemos extraer una subsucesión, aún representada con el mismo índice, de tal manera que

$$\frac{\partial u_j}{\partial \nu} \longrightarrow \chi$$
 débilmente en $L^p(\Sigma)$

Ahora, mediante el uso de la regularidad elíptica (ver[6]), la regularidad del problema de Dirichlet y la continuidad de la traza (ver[3], adaptado a nuestro caso), podemos concluir que

$$\chi = \frac{\partial u}{\partial \nu}$$
 en $L^p(\Sigma)$

lo que concluye el teorema.

3. Conclusión

En las condiciones mencionada se ha probado que la derivada normal asociada al operador no lineal Δ_p , que naturalmente habita en un espacio dual, tiene la regularidad escondida:

$$\frac{\partial u}{\partial u}$$
 en $L^p(\Sigma)$

este es, a nuestro modesto conocimiento, el primer resultado de regularidad en la frontera para un operador no lineal.

Este tipo de resultado permite abordar problemas no lineales en teoría de control óptimo y exacto.

REFERENCIAS BIBLIOGRÁFICAS

- [1] ARARUNA, F., MATIAS, O., MATOS, P., SOUZA, M.(2008). Hidden regularity for the Kirchhoff equation, *Comm.Pure App.Anal.* (7)(5)1049-1056.
- [2] LIONS, J.L.(1987). Hidden regularity in some nonlinear hyperbolic equations, *Mat. Apl. Comput.* (6), 7-15.
- [3] MILLA MIRANDA, M., MEDEIROS, L.A.(1988). Hidden regularity for semilinear hyperbolic partial differential equations, Ann. Fac. Sci. Toulouse Math. (IX), 103-120.
- [4] DINCA, G., ISAIA, F.(2009). Generalized Pohozaev identity and non-existence result for the p-laplacian: weak solutions, *Adv. Diff Eq.* (14)(5-6116)497-540.
- [5] LIONS, J.L.(1969). Quelques méthodes de Resolution des Problemes aux limites nonlinéaires, Dunod, Paris.
- [6] MARCELLINI, P.(1991). Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations, (90), 1-30.
- [7] MA, T.F., SORIANO, J.A.(1999). On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Analysis, Holanda (V37)1029-1038.