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Resumen

La dindmica del desarrollo celular en el timo es afectada por las interacciones de
las diferentes subpoblaciones celulares. Exzperimentos recientes sugieren que las células
maduras T, podrian afectar el crecimiento y diferenciacidn de los timocitos inmaduros.
Aqui se presenta el andlisis y modelamiento matemdtico sostenido con simulaciones
computacionales que muestran el proceso de regulacion celular. Nuestros resultados sug-
ieren que cuando proporcionamos externamente células del tipo CDA™ T, estas afectan
positivamente a la célula simple y positiva CD4TCD8™ (subpoblacion timocita), incre-
mentando la diferenciacion de las células doble positivo y reduciendo las células tipo
CD4+*CDS8~.
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Abstract

The dynamic of cell development in the thymus is affected by the interactions of
the different subpopulations. Recent experiments suggest that mature T cells may affect
the growth and differentiation of immature thymocytes. Here is presented mathematical
analysis and modeling with computer simulations to present the process of regulation.
Our results suggest that when we externally add CD4* T cells affect positively the
single positive CD4TC D8 thymocyte subpopulation, by increasing the differentiation
of double positive cells (CD4TCD8") and reducing CD4+TC D8 cells.
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1. Introduction

The study of the immune system of the human body is critically important to better
overall general health. That is why the thymus gland and its processes are a relevant subject
of research. The thymus gland is located in the chest under the breastbone and its primary
function is processing white blood cells, coming from the bone marrow, into 7" lymphocytes
(T cells). T' cells are distinguished by the presence on their surface of one or the other of
designated glycoproteins CD4 and CD8. These thymic lymphocytes stimulate the produc-
tion and growth of antibodies by other lymphocytes, they stimulate the growth and action
of phagocytes that surround and engulf invading viruses and microbes, and they recognize
and destroy abnormal and foreign tissue.

The generation of T cells in the thymus involves different cell populations from progenitors
to mature cell types. The interactions of these cells affect the development of T' cells and
recent studies suggest feedback effects by which mature cells affect the generation of new T
cells (Fridkis-Hareli et al., 1993, 1994; Eren et al.,1989; Sharp et al., 1991, 1995).

T cell development process begins with lymphohemopoietic cells coming from the bone mar-
row and settling in the thymic cortex. Settled cells are described as ”double negative” (DN)
because they lack the CD4 and CD8 glycoprotein of mature cells. When these cells di-
vide eventually synthesize and express both the C'D4 and C'D8 markers, becoming ”double
positive” (D P) thymocytes. In this stage cells complete the rearrangement and expression of
their specific antigen that will enable them to bind to the T cell receptor (T'C'R). Depending
on the strength and context of the signal the cell receives from such binding, a developing
DP thymocyte may be deleted or develop further into a ”single positive” thymocyte of the
type CD4*CD8~ or CD4~CD8™. These are the precursors of mature T cells of these two
types. Positive and negative selection are the processes responsible for the death of most
thymocytes and maturation of a few.

Previous investigations in this topic presented the dynamics of thymic cell development,
without focusing in the feedback effects of the mature cells and biological experiments with
mature cells. (Feedback Regulation of T Cell Development in the Thymus, Mehr R., et al.,
1996) Then, the question is whether the presence of mature T cells affects thymocyte de-
velopment the thymus. These question is supported with evidence from experiments were
immature T cells (thymocytes) and mature T cells (splenocytes) were seeded onto fetal
thymus explants. The results of these experiments demonstrated elevated levels of CD4*
thymocytes from the progenitor cell origin were obtained when CD4*tCD8~ splenocytes
were seeded with DN thymocytes. Which gives the question of which cell compartment(s)
are most likely affected by the presence of splenocytes, and how this interaction affects the
parameters in the model (for example; growth or death rates).

2. The Model

The model present the dynamics of thymocyte differentiation. The thymic population is
divided in subpopulations defined by the expression of CD4 and CD8 cell surface glycopro-
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teins named double negative (DN), double positive (DP), single positive CD4* and CD8™.

Dynamic of Cell Development in the Thymus

Thymus

S.g’\

Figura 1: Scheme representing T-cell development, interactions between thymic subpopula-
tions.

2.1. Model Description

The model representation with parameters present the subpopulations with the following
variables, N: double negative cells (DN), P: double positive cells (D P) that are not sensitive
to deletion, P;: double positive cells (DP) that are sensitive to deletion, My: maturing single
positive CD4+*C D~ cells, Mg: maturing single positive CD4~CD8% cells. The division in
two compartments of the double positive cells is based on the hypothesis that mature DP
cells are less resistant to deletion by negative selection. Also, there is a maximum number
of cells possible in the thymus, which is based on data indicating that the total number
of thymic cells is autonomously controlled. Since there is lack of information on this con-
trol, all the compartments (except DN) are similarly affected by competition. Only the DN
compartment has a separate upper bound. The parameters s; represent maturation rates, or
rate of passage from one compartment to the next. The parameters 7; represent cell division
rates, and d; represent rates of cell death.

It is important to clarify that for this model there is no input of cells except during the initial
seeding, and there is no output of mature T cells from the thymus since it is not connected
to a blood circulation.
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3. Mathematical Model

Our goal is to arrive at a model that would enable us to study mature T cells effects on
thymic differentiation in a cell population model.

3.1. The Standard Model

This mathematical model is based on a formulation given first for [1] when there is no
consideration of effect due to external influence and on a second work [2] where is taken in
account the mature T cells effects. For the earliest work, the Thymic subpopulations of cells
are represented for the following variables:

N : double negative (DN) cells

P . early double positive (DP) cells not sensitive to deletion
P, : double positive (DP) cells sensitive to deletion

M, : maturing single positive CD4*CD~ cells

Mg : maturing single positive CD4~CD™ cells

S, : externally added CD4T spleen cells

An upper bound, K, for the total number of cells in the thymus is assumed to exist. This
is based on data indicating that the total number of thymocites is autonomously controlled
(Metcalf, 1963). The number of DN cells (V) is subject to a separate upper bound K, < K.
The equation for the time evolution of thymic subpopulations in this model are:

N = ( = ;{—\L) olN — (dy + sn)N
P = s;N+(1-L)r,P—(dp+s)N
P, = 5P+ (1 - %) Tpals = (dps + 84 sg) P

M4 = S4PS+(1—%)7’4M4—d4]\/f4

Mg = SgPS + (1 - %) ’f‘g]\/.[g = dg]\/_[g

where

TEIV+P+PS+M4+M8

For i = n, p, ps, 4,8 , the parameters are given by :

r; . cell division rate
s; : maturation rates or rates of differentiation (passage) from one compartment to the next
d; : cell death rates
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In this model, there is no input of cells except during the initial seeding and there is no
output of mature T cells from the thymus.

3.2. The Model with Effects

By [2] the model verify the experimental results only if it was assumed that the effect of
mature CD4™ T cells on thymocite development is exerted through two separate processes:
negative regulation of the proliferation of early thymocite (DN and DP); and positive reg-
ulation of the DP cells differentiating into the CD4* lineage. These both effects has to be
assumed in the next model and they are given by the introduction of the modifying fucntions :

Sy + My

PSi+ My + K,

which multiplying by r, is used to study effects on proliferation of DP thymocites. And, to
study the effects on death of CD4*SP, dy is multiplied by:

Fp=1+H,

Sy + My
Sy + My + Ky
where for i = rp, d4, H; are the parameters that change the direction and magnitude of the

effects and K is the half-maximum ‘constant’depending on the population size.
To explore these effects , we examined the following model

Fd4 = 1+Hd4

N = (1 — %) TalN — (dn + 80)N
P = s,N+(1-2L)F P —(dy+s,)N
P, = spP + (l - %) TpsPs — (dps + 84 + 83) P;

M4 = S4P5 + (l - %) T4M4 = Fd4d4]\44
Ms = ssPi+ (1— L) rsMg — dsMs

5’4 = (1 == '}Z;-) 7‘554 5 dsS4
where

T=N+P+P,+My+ Mg+ Sy

with
Sy @ externally added CD4%spleen cells and the same variables, constants and parameters
described above.
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3.2.1. Steady State Analysis

We are interesting to find non trivial steady states in the positive orthant by the nature
~ of the problem. We are going to use the quasi steady-state approximation.

To obtain (1 — %) as an explicit function of NV and P we have to solve a sixth order algebraic
equation. Getting conditions to reduce our sixth-equation system of differential equations
to the first two and then finding the steady state of the last system, we can construct a
quasi steady-state for our original system under appropiate conditions and variation of the
parameters. This last is possible because of the conservation of behavior of the steady-states
of our system to study with the quasi steady-state to be constructed in the way above men-

tioned.

Lemma 3.1 Assuming the following conditions:
[}

PS) A}[‘b MB) 34 ~0

e relazation of the logistic limaits

1-%) ~ 1

] el B
Sa+Ms+Ky

the system (2) will be written in a simpler form in order to approzimate its steady state.

%ﬁr the given conditions , the system (2) takes the following form
N = (1 - %) roN — (dy + Sn)N
P = s,N+ FrpP —(dp+ )N
P, = 8pP + 7psPs — (dps + 84 + 83) Ps

]V:[‘; = S4Ps + 7’4]\/_[4 = Fd4d4M4
Mg = sgP,+rgMs — dgMs

S'4 == TsSAl = dsS4

We can check that we linearize the right-hand side of the last four equations, then the steady
state of the subpopulations Py, My, Mg, Sy will be written in terms of N and P.
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Lemma 3.2 Under the conditions given by Lemma 1 and the following conditions over the
parameters

dps + 84+ 388 > Ty
(1 + Hd4)d4 =i Ty
dg > g
ds > T,
Th > dp+ S,
dp+3sp, > (14 Hpyp)rp

we get a quast steady-state for the system (2).

Proof

By the Lemma 1, we get the steady state of the system (3), solving first the steady state of
the first two differential equation and then expressing the other four variables in terms of
this steady state.

Solving the following algebraic equations

8; P+ Tps Py — (dps + 84+ 83)P; = 0
S4Ps + 7'4]\44 e Fd4d4]\44 = 0
SsPs + 7‘8]\4—8 = (dngg 0
7"584 = d554 0
we get
P o= dps+34s:ss-—rps
My = (1+Hdi)d4"‘7'4 Ps
MS o= dSS_STS Ps
54 = O
with

dps + 5S4+ 83 > Tps
(1 + Hd4)d4 > T3
dg > T
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Now finding the steady state (IV, P) of the first two differential equations we get

N = Za(r,—d,—s,)

B o= SnKn(rn—dn—sn)
7n(dp+sp—(1+Hrp)Tp)

Then we get the quasi steady-state for the system (2) given by

N = Za(r,—dy,—sn)

Tn

_ SnKn("'n‘dn_sn)
L Tn(dp+sp—(1+Hrp)Tp)

P = SpSnK-n(Tn"dn—Sn)
s Tr(dp+8p—(1+Hrp)rp)(dps+54+58—Tps)

A/I _ 54spsnKn(Tn —dn —Sn)
4 (It Ha1)da—74)(dp+sp—(1+Hrp)rp)(dps 54+ 58 —Tps)

M - ssspsnKn(rn—dn—sn)
8 T (dg—78)(1+Haa)d4 —r4)(dp+sp— (14+Hrp)rp)(dps+satss —Tps)

S =0

Proposition 3.3 Under the hypothesis of Lemma 1 and Lemma 2, the quasi steady state of
the system (2) is stable.

Proof
The eigenvalues of the Jacobian matrix ( a diagonal matrix) for the system (3) evaluated in
the quasi-steady state are

M=—(rn—dn—5s) < 0

Moo= 14 Hyp)rp—(dp+38) < 0
A3 + Tps — (dps + 84 + sg) < 0
M=rs— 1+ Hu)dy < 0
ds=1g—dg < O

=rs—ds < 0

then the quasi steady state given by Lemma 2 is stable under the conditions that satisfy the
parameters.
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4. Simulation Results

We used the following values of parameters given by [1].

Parameter Value

K 2 x 10°
o 1,5
a4 0
Sy 1

T 1,25
dp ,6
Sp %)
Tps 0
s ,8
K, T x 10*
S4q ,3
S8 it

T4 0

T8 0
dy ,6
dsg ,6
Ty 0

ds , 12

Fig (1) and fig (2) shows the results of the model with out externally added C'D4* spleen
cells. These results demonstrate that our simple model, eqn (1 — 5), which does not include
any effects of mature 7" cells on the developing thymocytes, is insufficient for explaining the
differences between thymocyte differentiation in the presence and absence of mature T cells.
We conclude from these results that the differences in the experiments are due to some type
of interaction, direct or indirect between the mature splenocytes and DN cells, and not only
due to competition between the various sub populations. We also study the effect of some
parameters on the dynamics of T cells. Figure (3) and (4) shows the results of the model with
externally added C'D4* spleen cells. Figure (3) shows the dynamics of all the populations
on one graph verses time and figure (4) shows the subplots of all the populations against
time. Now we will see the effect of the critical parameters Hyy and H,,. In fig (3) and fig
(4), Hg4 and H,p are both negatives with Hyy = —1 and H,, = —0,5. It is clear that the
dynamics of fig (3) is same as of in fig (1) for first five equations. Now if we change Hyy from
—1 to +1 while keeping Hrp same, then as shown in fig (5) that My changes its dynamics.
First My increases and then decreases before going towards steady state. Also Sy changes by
increasing before going to steady state. But if we change Hrp to 0,5 instead of —0, 5 the there
is no change at all, you can see it in fig (6). If both Hy and H,, are taken to be positive,
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then fig (7) and fig (5) have same dynamics.

5. Conclusions

So we notice that the parameter Hgy is critical. If we change Hd4 from negative to positive,
we will have different dynamics. Which confirm from the lab results. It proves the system is
more sensitive for the parameter Hyy as compare with H,p. To consider the variation of the
other rates of division cell and/or death , it means the addition of modifying functions, is not
biological realistic. Mathematically, there are more ways to approximate the steady-state of
this sixth differential equations system, they refine this approximation.
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Appendix A: Matlab file used to solve the System
function thymus
K=2x10%rn=15;dn=0;sn=1;rp = 1,25;dp = ,6; sp = ,5; rps = 0;
Kn = 7% 10%dps = ,8;s4 = ,3;s8 = 1;74 = 0;d4 = ,6;78 = 0;dS = ,6;
Hdd = —-1LHrp=—-5ite=0:1:60;7r8=0:ds= 19
[T'1,Y1]=odel5s(@antibioticl,te,[7+10410%10% 10103 10%], [|, K, rn, dn, sn, s, ds,
rp, dp, sp, rps, Kn, dps, s4,s8,r4, r8,d4,d8, Hd4, Hrp);
Total=Y1(:,1)+ Y1(;,2) + Y1(:,3) + Y1(;,4) + Y1(;,5) + Y'1(;,6);
figure(1l),clf for k=1:6
subplot (6,1,k), plot (T1,Y1(:k))
xlabel (’time’)
end figure(2) plot(T1,Total,’—1’,’ lineWidth’,2);
hold on
plot(T1,Y1(:,1),’k’)
hold on
plot(T1,Y1(:,2),’r)
hold on
plot(T1,Y1(:,3),’b’,’ lineWidth’,2) hold on plot(T1,Y1(:,4),’g’)
hold on
plot(T1,Y1(:,5),’~b’) hold on plot(T1,Y1(:,6),’'m’)
hold on ’
legend("T",N’’P’,’Ps’’'M4’ M8’ ’S4’)
function
[Y dot] =antibioticl(t,Y,K,rn,dn,sn,rp,dp,rs,ds,sp,rps,Kn,dps,s4,sS,
r4,r8,d4,d8,Hd4,Hrp)
Ydot=Y;
T=Ydot(1)+Ydot(2)+Ydot(3)+Ydot(4)+Ydot(5)+Ydot(6);
Kd=05%T";
Frp=1+Hrp*(Y(4)+Y(6))/(Y(4)+Y(6)+K4);
Fd4=1+Hd4*(Y(4)4+Y(6))/(Y(4)+Y(6)+K4);
Ydot(1)=(1-Y(1)/Kn)*rn*Y(1)-(dn+sn)*Y(1);

Ydot(2)=sn*Y(1)+(1-T/K)*Frp*rp*Y (2)-(dp+sp) *Y(2);
Ydot(3)=sp*Y (2)+(1-T/K)*rps*Y(3)-(dps+s4+s8)*Y(3);
Yot (4)=s4*Y (3)+(1-T/K)*r4*Y (4)-Fd4*d4*Y (4);
Ydot(5)=s8*Y(3)+(1-T/K)*r8*Y (5)-d8*Y(5);
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Ydot(6)=(1-T/K)*rs*¥Y (6)-ds*Y (6);
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Appendix B: Simulations
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Figura 2: Computer simulation for the system without external added C D4+
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Figura 3: Computer simulation for the system without external added C'D4*
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number of cells
o
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Figura 4: Computer simulation for the system with external added CD4*
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Figura 5: Computer simulation for the system with external added CD4*
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Figura 6: Computer simulation for the system with external added C' D4+
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Figura 7: Computer simulation for the system with external added C'D4*
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Figura 8: Computer simulation for the system with external added CD4*
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