APLICACIÓN DEL MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD EN MOTORES DE COMBUSTION INTERNA DE LAS EMBARCACIONES PESQUERAS DE LA SERIE INTRÉPIDO DE UNA EMPRESA PESQUERA

Esther Berger Vidal ¹, Anwar Julio Yarin Achachahua ², Carmela Velásquez Pino ³, Ines Gambini Lopez ⁴, Lucy De la Cruz Cuadros ⁵, Luis Miguel Nuñez Ramirez ⁶, Rodolfo José Gálvez Pérez ⁷, Humberto Gálvez Pérez ⁸

(Recibido: 26/5/2014 - Aceptado: 25/7/2014)

Resumen: El uso de la metodología del Mantenimiento Centrado en la Confiabilidad (MCC o RCM) contempla no solamente el estudio del equipo como tal sino de los subsistemas que lo conforman y la interacción con el entorno físico que lo rodea. En este proyecto primero se realizó una adecuada identificación de los problemas que dificultan la maximización de la función de los motores de combustión interna de las Embarcaciones Pesqueras (E/P) de la serie "Intrépido", a través del análisis de modo, fallas, causas y efectos (AMEF). Al definirse los modos y las causas de las fallas fue posible establecer la criticidad de cada una ellas y el impacto en las metas de operación, mantenimiento, salud y medio ambiente así como su priorización. El objetivo del estudio es aplicar la metodología con la finalidad de incrementar la vida útil de los componentes de los equipos, así como la disponibilidad de los mismos al disminuir las fallas y sus consecuencias, incrementando así, las ventas de harina de pescado a un menor costo de mantenimiento.

Palabras clave: Mantenimiento centrado en la confiabilidad. Fallas. Critica de fallas.

IMPLEMENTATION OF RELIABILITY CENTERED MAINTENANCE IN INTERNAL COMBUSTION ENGINES OF FISHING VESSELS SERIES OF FISHING COMPANY INTREPIDO

Abstract: Using the methodology of Reliability Centered Maintenance (RCM or MCC) provides not only the study team as such but of the subsystems that comprise it and the interaction with the physical environment that surrounds it. In this project first proper identification of the challenges to maximizing the role of the internal combustion engines of Fishing Vessels (E/P) of the "Bold" series was conducted through the analysis mode, faults, causes and effects (FMEA). When the modes and causes of failure defined was possible to establish the criticality of each of them and the impact on the goals of operation, maintenance, health and environment and their prioritization. The objective of the study is to apply the methodology in order to increase the life of equipment components and the availability of data to minimize errors and their consequences, increasing sales of fishmeal less maintenance cost.

Key words: Reliability-Centered Maintenance, Failure, Critical fault.

¹UNMSM, Facultad de Ciencias Matemáticas, e-mail: esther_berger_v@yahoo.es

²UNAC, Facultad de Ingeniería Mecanica-Energia, e-mail: anwaryarin@gmail.com

 $^{^3 \}mathrm{UNMSM},$ Facultad de Ciencias Matemáticas, e-mail: cvelasquezp@unmsm.edu.pe

⁴UNMSM, Facultad de Ciencias Matemáticas, e-mail: igambinil@unmsm.edu.pe

 $^{^5 \}mathrm{UNMSM},$ Facultad de Ciencias Matemáticas, e-mail: ldelacruzc@unmsm.edu.pe

 $^{^6\}mathrm{UNMSM},$ Facultad de Ciencias Matemáticas, e-mail: l
nunezrc@unmsm.edu.pe

⁷UNMSM, Facultad de Ciencias Matemáticas, e-mail: rgalvezp@unmsm.edu.pe

⁸UNMSM, Facultad de Ciencias Matemáticas, e-mail: hgalvezp@unmsm.edu.pe

1. Introducción

Una empresa pesquera cuenta con 10 de 22 embarcaciones de la Serie Intrépido, todas estas cuentan con SISTEMAS similares como parte importante en el desarrollo de la actividad de extracción de recursos hidrobiológicos: Anchoveta (Engraulis riges), Caballa (Scomber japonicus peruanus), Jurel (Trachurus picturatus murphy).

La finalidad de los motores de combustión interna es la de transmitir la potencia y torque necesarios para la activación de la propulsión del barco y este pueda tener el desplazamiento ideal de operación; pero se debe tener en cuenta que estos equipos trabajan de corrido en temporada de pesca; es decir trabajan las 24 horas del día.

Los motores instalados en las 10 embarcaciones pesqueras del modelo intrépido son motores de combustión interna MAN 8L 23/30 A. No existen cálculos de las características de la vida útil de los motores de combustión interna, así como tampoco los índices de confiabilidad de los mismos. Muchos de estos problemas de mantenimiento, se hubieran podido minimizar o eliminar, si se ejecutara una adecuada estrategia de mantenimiento, un plan de mantenimiento que identifique las fallas más comunes y el modo de solucionarlas efectivamente.

1.1. Mantenimiento Centrado en la Confiabilidad

El Mantenimiento Centrado en Confiabilidad (MCC) fue desarrollado en un principio por la industria de la aviación comercial de los Estados Unidos, en cooperación con entidades gubernamentales como la NASA y privadas como la Boeing (constructor de aviones). Desde 1974, el Departamento de Defensa de los Estados Unidos, ha usado el MCC, como filosofía de mantenimiento de sus sistemas militares aéreos. El éxito del MCC en el sector de la aviación, ha hecho que otros sectores tales como la generación de energía (plantas nucleares y centrales termoeléctricas), petroleros, químicos, gas, refinación e industria de manufactura, se interesen en implantar esta filosofía de gestión de mantenimiento, adecuándola a sus necesidades de operación.

Un aspecto favorable de la filosofía del MCC, es que la misma promueve el uso de las nuevas tecnologías desarrolladas para el campo del mantenimiento. La aplicación adecuada de las nuevas técnicas de mantenimiento bajo el enfoque del MCC, nos permiten de forma eficiente, optimizar los procesos de producción y disminuir al máximo los posibles riegos sobre la seguridad personal y el ambiente, que traen consigo los fallos de los activos en un contexto operacional específico.

El MCC es también un nuevo método para el planeamiento del mantenimiento que hace uso de las diversas técnicas de mantenimiento existentes, mas exige que las prácticas comunes de mantenimiento preventivo sean modificadas. La metodología del MCC se basa en conceptos de la confiabilidad:

- Preservación de las funciones operacionales del sistema.
- Análisis sistemático de los modos de falla que pueden llevar al sistema a dejar cumplir con las funciones operativas.
- Aplicación de la técnica de Análisis de los Modos de Falla y Efectos-AMEF y del Árbol lógico de decisiones.
- Análisis de las consecuencias de las fallas.
- Definición de los tipos de intervenciones de mantenimiento más eficaces.
- Selección de acciones para la eliminación o disminución de las fallas y sus consecuencias.
- El análisis efectuado por este proceso puede minimizar los costos de mantenimiento con el aumento de la disponibilidad, indicando, por ejemplo cuando la mejor solución y dejar ocurrir una falla y ejecutar una actividad de mantenimiento correctivo, o implantar una actividad preventiva.

2. Metodología

Con la implementación del diseño del MCC en los motores principales de las embarcaciones pesqueras del modelo intrépido, estaremos en la capacidad de identificar y corregir hasta en un 15 % las posibles fallas de los equipos de combustión interna.

La presente investigación pretende analizar la implementación del diseño del MCC de los motores de combustión interna de las embarcaciones pesqueras serie intrépido de la Empresa Pesquera Hayduk S.A. Mediante la aplicación de la Metodología del Mantenimiento Centrado en la Confiabilidad; con respecto a un Marco Referencial que integre: Planeamientos Teóricos relacionados con la Planificación y Programación del Mantenimiento y Mantenimiento Productivo total.

Nuestra Investigación es prospectiva, longitudinal y Analítica por que se ha comprobado que existieron fallas que pudieron ser detectadas y eliminadas con inspecciones, durante el periodo de operación de las embarcaciones y que por no contar con un buen análisis de fallas y confiabilidad del equipo, se incurrió en costos excesivos en cambios de aceite y siniestros por ejemplo tenemos el siniestro del Motor Principal Yagoda B que ha costado alrededor de US\$ 300,000.00, por no haber identificado la falla a tiempo en el sistema de lubricación del motor principal. Por lo tanto utilizaremos el método Deductivo – Inductivo (Planeamiento – Ejecución).

2.1. Población y Muestra

La población que formará parte de esta investigación está conformada por 10 embarcaciones de la Serie Intrépido; a su vez cada embarcación contara con su motor principal; los cuales conformaran la población total del proyecto (10 equipos).

Cuadro 1: Embarcaciones Pesqueras Modelo Intrepido

EMBARCACIONES SERIE INTREPIDO PESQUERA HAYDUK S.A.		m3	МОТ	OR PROP	ULSOR
$\mathcal{N}_{\overline{0}}$	NOMBRES E/P	Cap. Bodega	Marca	Modelo	Pot.(Hp)
1	Mariana B	440	MAN	6L-23/30	1,350
2	BAMAR IV	580	MAN	8L-23/30	1,740
3	IVANA B	580	MAN	8L-23/30	1,740
4	JADRANKA B	580	MAN	8L-23/30	1,740
5	KIARA B	580	MAN	8L-23/30	1,740
6	BAMAR I	600	MAN	8L-23/30	1,740
7	BAMAR II	600	MAN	8L-23/30	1,740
8	CHAVELI II	600	MAN	8L-23/30	1,740
9	MARYLIN II	600	MAN	8L-23/30	1,740
10	YAGODA B	600	MAN	8L-23/30	1,740

Fuente: Pesquera Hayduk S.A.

2.2. Confiabilidad

La confiabilidad de un componente en el instante t, R(t), es la probabilidad de que un elemento no falle en el intervalo (0,t), dado que era nuevo o como nuevo en el instante t=0. Un componente puede presentar diferentes tipos de confiabilidades, asociadas a diferentes funciones.

La confiabilidad se relaciona básicamente con la tasa de fallas o cantidad de fallas por unidad de tiempo, con el tiempo medio de operación y el tiempo de operación. Mientras el número de fallas de un determinado equipo vaya en aumento o mientras el tiempo medio de operación de un equipo disminuya, la confiabilidad del mismo será menor (variable a modelar en tiempos operativos)[4].

2.3. Modelo Probabilístico de Confiabilidad

Los modelos que permiten el estudio de las fallas y confiabilidad son:

Modelo Exponencial

Para el caso de que Z(t) o $\lambda(t)$ sea constante nos encontramos ante una distribución de fallas de tipo exponencial. Matemáticamente podremos escribir la función densidad de probabilidad de falla:

$$f(t) = \lambda e^{(-\lambda t)}$$
, cuando $t \ge 0$

Integrando f(t)

$$F(t) = 1 - e^{(-\lambda t)}$$

Y la confiabilidad tendrá la expresión siguiente:

$$R(t) = 1 - F(t)$$

$$R(t) = e^{(-\lambda t)}$$

La confiabilidad R(t) representa en este caso la probabilidad de que el dispositivo, caracterizado por una tasa de fallas constante, no se averíe durante el tiempo de funcionamiento t.

Esta fórmula de confiabilidad se aplica correctamente a todos los dispositivos que han pasado un tiempo de funcionamiento apropiado que permita excluir las fallas infantiles o tempranas, y que no estén afectados aún por el desgaste.

Tiempo Medio hasta una Falla (MTTF)

La calidad de funcionamiento de un cierto elemento vendrá dada generalmente por el tiempo que se espera que dicho elemento funcione de manera satisfactoria. Estadísticamente se puede obtener una expectativa de este tiempo hasta que se produzca una falla, que se llama tiempo medio hasta una falla, MTTF. Alternativamente, en sistemas que son reparados continuamente después que se producen fallas y continúan funcionando, la expectativa se llama tiempo medio entre fallas MTBF, en cualquiera de los casos el "tiempo" puede ser tiempo real o tiempo de operación.

Dado que la densidad de fallas es f(t), el tiempo t que se espera que transcurra hasta una falla viene dado por:

$$E(t) = MTTF = \int_0^\infty t \ f(t) \ dt = \int_0^\infty \lambda t \ e^{(-\lambda t)} \ dt$$

$$MTTF = \lambda^{-1}$$

Demostramos que el MTTF y la tasa de fallas son recíprocos.

Tiempo Medio entre Fallas (MTBF)

Se demuestra que para la distribución exponencial el tiempo medio entre fallas o MTBF es igual a la inversa de la tasa de fallas y por lo tanto igual al tiempo medio hasta una falla o MTTF es decir:

$$MBTF = m = \lambda^{-1} = MTTF$$

donde m = probabilidad de supervivencia (esperanza de vida).

Al igual que λ , el parámetro m describe completamente la confiabilidad de un dispositivo sujeto a fallas de tipo aleatorio, esto es, la fiabilidad exponencial. La función de confiabilidad, llamada también "probabilidad de supervivencia" se puede escribir por tanto:

$$R\left(t\right) = e^{\left(-t/m\right)}$$

Si llevamos a un gráfico esta función, con los valores de R(t) en las ordenadas y los valores correspondientes de t en las abscisas, se obtiene la "curva de supervivencia", representada en la siguiente figura.

Figura 1: Curva de Supervivencia $R(t) = e^{-\lambda t} = e^{-t/m}$ 0,6 - 0,4 - 0,2 - 0 m - 2m

La fórmula anterior proporciona la probabilidad de supervivencia del dispositivo para cualquier intervalo de tiempo comprendido dentro del ámbito de la vida útil del mismo, o sea desde el momento 0 al momento t. Se supone que el dispositivo ha superado las misiones precedentes y que no se encuentra al final de su vida útil durante el curso de la misión considerada. Este modelo se aplica cuando los equipos se encuentran dentro de su vida útil.

Modelo Weibull

El modelo probabilístico de Weibull es muy flexible, pues la ley tiene tres parámetros que permiten "ajustar" correctamente toda clase de resultados experimentales y operacionales.

Contrariamente al modelo exponencial, la ley de Weibull cubre los casos en que la tasa de falla λ es variable y permite por tanto ajustar a los períodos de "juventud" y a las diferentes formas de "envejecimiento". Es decir se aplica a equipos en cualquier etapa de su vida. Recordemos la curva de Davies o de la "bañera" de Z(t), para su utilización se precisan los resultados de ensayo de muestras o la toma de datos de funcionamiento (TBF = tiempo entre fallos).

Estos resultados permiten estimar la función de repartición F(t) que corresponde a cada instante t. La determinación de los tres parámetros permite, utilizando tablas, evaluar el tiempo medio entre fallas, MTBF, y la desviación típica. Por otra parte, el conocimiento del parámetro de forma β es un útil de diagnóstico del tipo de fallo cuando el equipo en estudio es una caja negra.

Gráficos de R(t), Z(t), $\lambda(t)$

Los siguientes gráficos muestran el polimorfismo de la ley de Weibull bajo influencia de los parámetros β y η .

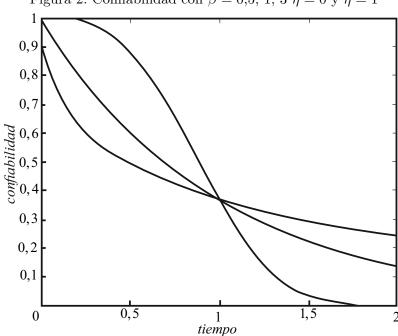


Figura 2: Confiabilidad con $\beta = 0.5, 1, 3 \eta = 0$ y $\eta = 1$

Expresiones matemáticas

Sea la variable aleatoria continua t, distribuida de acuerdo con la ley de Weibull:

a) Densidad de probabilidad f(t)

$$f\left(t\right) = \frac{\beta}{\eta} \left[\frac{t - \gamma}{\eta}\right]^{\beta - 1} e^{-\left[\frac{t - \gamma}{\eta}\right]^{\beta}} \text{ siendo } t \ge \gamma$$

donde β : Parámetro de forma, η : Parámetro de escala.

 $\beta > 0$ (identifica el ciclo de vida de la máquina)

 $\eta>0$, es una constante, es el periodo de operación durante al menos el 63.2 % de los equipos se espera que falle.

b) Función de repartición

$$F\left(t\right) = 1 - e^{-\left[\frac{t-\gamma}{\eta}\right]^{\beta}}$$

La confiabilidad correspondiente es por lo tanto R(t) = 1 - F(t)

$$R\left(t\right) = e^{-\left[\frac{t-\gamma}{\eta}\right]^{\beta}}$$

Observación: para $\gamma=0$ y $\beta=1$, se vuelve a encontrar la distribución exponencial, caso particular de la ley de Weibull, en este caso:

$$\lambda = \frac{1}{\eta} = \frac{1}{MTBF}$$

c) Tasa instantánea de falla

$$\lambda = \frac{f(t)}{1 - F(t)}$$

$$\lambda = \frac{\beta}{\eta} \left[\frac{t - \gamma}{\eta} \right]^{\beta - 1}$$

Siendo $t \ge 0\beta > 0, \eta > 0$.

Mecanismos de fallas particulares: el mecanismo no tiene duración de confiabilidad intrínseca y

Si β < 1, la tasa de fallas disminuye con la edad sin llegar a cero, por lo que podemos suponer que nos encontramos en la juventud del componente con un margen de seguridad bajo, dando lugar a fallas por tensión de rotura.

Si $\beta=1$, la tasa de fallas se mantiene constante siempre, lo que nosindica una característica de fallas aleatoria o pseudo-aleatoria. En este caso nos encontramos que la distribución de Weibull es igual a la exponencial.

Si $\beta > 1$, la tasa de fallas incrementa con la edad de forma continua lo que indica que los desgastes empiezan en el momento en que el mecanismo se pone en servicio.

Si $1, 5 < \beta < 2, 5$; fenómeno de fatiga.

Si $3 < \beta < 4$, fenómeno de desgaste, de corrosión (iniciado en el tiempo ≥ 0), de sobrepasar un umbral (campo de deformación plástica).

Si $\beta = 3,44$; f(t) es simétrica, la distribución es "Normal".

Este es el modelo a emplear ya que no se posee una fecha límite o de garantía que determine la duración del sistema.

Si β < 1, hay fatiga u otro tipo de desgaste en el que la tasa de fallas disminuye con el tiempo después de un súbito incremento hasta valores de β bajos (aproximadamente 0.5) pueden asociarse con ciclos de fatigas bajos y los valores de β más elevados (aproximadamente 0.8) con ciclos más altos.

Si $\beta > 1$, hay una erosión o desgaste similar en el que la constante de duración de carga disminuye continuamente con el incremento de la carga.

Si $\beta < 0$, indica que el mecanismo fue utilizado o tuvo fallas antes de iniciar la toma de datos, de otro modo:

Si β < 1, podría tratarse de una falla de juventud antes de su puesta en servicio, como resultado de un margen de seguridad bajo.

Si $\beta > 1$ se trata de un desgaste por una disminución constante de la resistencia, iniciado antes de su puesta en servicio, por ejemplo, debido a una vida propia limitada que ha finalizado o era inadecuada [3].

d) Tiempo medio entre fallas (MTBF)

Es el tiempo entre fallas o vida media y se calcula con ayuda mediante la aplicación de una tabla, que nos da los valores de Gamma y lo relaciona de la siguiente manera

$$E(t) = MTBF = \eta \Gamma\left(1 + \frac{1}{\beta}\right)$$

3. Resultados

3.1. Elaboración del AMEF

Previamente a la realización del AMEF, elaboramos los criterios de análisis para la obtención del Número de Prioridad de Riesgo (NPR). Considerando

$NPR = G \times O \times D$

Cuadro 2: Puntajes del AMEF

Gravedad Gravedad	711111111
Descripción	Puntaje
Infima, imperceptible	1
Escasa, falla menor	2-3
Baja, falla inminente	4-5
Media, fallo pero no para el	6-7
sistema	
Elevada, falla crítica	8-9
Muy elevada, con proble-	10
mas de seguridad, no con-	
formidad	
Ocurrencia	
Descripción	Puntaje
1 falla en más de 2 años	1
1 falla cada 2 años	2-3
1 falla cada 1 año	4-5
1 falla entre 6 meses y 1 año	6-7
1 falla entre 1 a 6 meses	8-9
1 falla al mes	10
Detección (dificultad de	detección)
Descripción	Puntaje
Obvia	1
Escasa	2-3
Moderada	4-5
Frecuente	6-7
Elevada	8-9
Muy elevada	10

Las características de análisis del NPR (Número de Prioridad de Riesgo):

 $\begin{array}{ll} NPR > 200 & \text{Inaceptable (I)} \\ 200 > NPR > 125 & \text{Reducción deseable (R)} \\ 125 > NPR & \text{Aceptable (A)} \end{array}$

En los cuadros a continuación se expone el desarrollo del AMEF.

Cuadro 3: Resultados del AMEF

Nombre del equi 8L 23/30A	Nombre del equipo: Motor de combustión interna marca MAN BL 23/30A			Equipo de Diseño:	Pág 1 de 5		№ AMEF: 1		
Sistema: Refrige	ración				Fecha 15/05/2013	<u>L</u>			
					Condiciones	Exi	sten	tes	
Pieza	Función que desem- peña	Modo de Falla Potencial	Efectos potencial de Fallo	Causas Potenciales del Fallo	Controles Actuales	G	О	D	NPR
Tuberias	Traslada el flujo del refrigerante	Fuga de refrigerante	Sobrecalentamiento	Sobre/sub dimensionamiento	Mantto Preventivo	9	6	5	270
		Rotura de tubería	Sobrecalentamiento	Corrosión	Inspección Visual	9	4	2	72
Bomba LT (baja	Refrigera las partes móviles del motor	Fuga de refrigerante	Sobrecalentamiento	Fuga por empaquetadura de bomba	Mantto Preventivo	10	2	3	60
Temperatura)			Rotura de partes móviles	tanque de expansión sin agua de refrigerante	Correctivo	10	4	6	240
Bomba HT (alta Temperatura)	Refrigera el agua LT y aceite de la caja	Fuga de refrigerante	Sobrecalentamiento	Fuga por empaquetadura de bomba	Mantto Preventivo	10	2	6	120
	Enfriar el agua de			Filtro de agua salada tapo- neada	Correctivo	10	4	5	200
D 61 1	refrigerante mediante agua salada en un	Alta temperatura	Reduce la capacidad del	Tubo de aspiración de agua salada taponeado	Correctivo	10	3	5	150
Enfriadores	proceso de	del motor	motor	Enfriar sucio	Mantto Preventivo	10	4	8	320
	transferencia de calor		Motor	Bomba de agua dulce y salada defectuosas	Mantto Preventivo	10	2	5	100
				Ajuste incorrecto de la válvula en el sistema	Mantto Preventivo	10	1	8	80
				Termostato defectuoso	Mantto Preventivo	10	2	6	120

Fuente: Elaborado por los autores

Cuadro 4: Resultados del AMEF

Nombre del equipo 8L 23/30A	fombre del equipo: Motor de combustión interna marca MAN L 23/30A			Equipo de Diseño:	Pág 2 de 5	2 de 5 №AMI		ME	F: 1
Sistema: Combusti	11-				Fecha 15/05/2013	1			
Sistema: Combusti	ible				Condiciones	Exi	sten	tes	
Pieza	Función que desem- peña	Modo de Falla Potencial	Efectos potencial de Fallo	Causas Potenciales del Fa- llo	Controles Actuales	G	0	D	NPR
Manifold de	Permite el ingreso del	Fuga de combustible	Motor no arranca	Válvulas Rotas	Correctivo	10	3	5	150
admisión	petróleo D2 a los	ruga de combustible	Paro inesperado	Mal Mantenimiento	Correctivo	10	3	5	150
	cilindros	Suministro deficiente o	Defectuosos u obstrui- dos	Desgaste	Correctivo	10	7	4	280
		irregular de combustible	Vástago de válvula aga- rrotado	Desgaste	Correctivo	10	4	3	120
			Resorte roto	Desgaste	Correctivo	10	4	3	120
			Tobera obstruida	Mala calidad de combustible	Correctivo	10	7	4	280
			Filtro obstruido	Mala calidad de combustible	Correctivo	10	6	4	240
Bomba de inyección	Suministrar el combustible hacia el motor	Suministro deficiente o irregular de	Válvula reguladora de presión se agarrota, en la posición abierta	Desgaste	Preventivo	9	2	5	90
		combustible	Agua en el combustible	Humedad del Ambiente	Correctivo	9	3	4	108
			Embolo y camisa de bomba desgastados	Desgaste	Preventivo	9	2	5	90
			Motor no arranca	Filtro obstruido	Mantto Preventivo	9	3	6	162
Filtro de Aire	Purifica el aire de	Restricción de	Golpeteo de motor	Filtro obstruido	Inspección visual	7	3	6	126
rintro de Aire	admisión	aire	Combustión incompleta	Filtro obstruido	Inspección visual	5	3	6	90
			Pérdida de potencia	Filtro obstruido	Inspección visual	8	3	6	144
			Alto consumo de aceite	Filtro obstruido	Inspección visual	6	3	6	108

Cuadro 5: Resultados del AMEF

Nombre del equipo: $\frac{N}{23/30A}$	Nombre del equipo: Motor de combustión interna marca MAN 8L 23/30A			Equipo de Diseño:	Pág 3 de 5 №AMI		MEI	r: 1	
Sistema: Lubricación					Fecha 15/05/2013	Ī			
Sistema. Lubricación	Sistema: Eubricación				Condiciones	Exi	sten	tes	
Pieza	Función que desem- peña	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales del Fa- llo	Controles Actuales	G	О	D	NPR
Anillos de Lubrica- ción	Lubrican el cilindro del motor	Humo Azul	Sobrecalentamiento	Desgaste	Mantto Preventivo	9	1	5	45
Conductos del Aceite	Deriva el aceite a las piezas del motor	Taponamiento	Sobrecalentamiento		Mantto Preventivo	9	3	8	216
Nivel de Aceite	Controla la Cantidad de Aceite en el Carter	Osbtrucción de Nivel	Parada de Motor	Aceite Contaminado	Inspección Visual	9	3	6	162
	del motor	Descalibración	Sobrecalentamiento	Error de Montaje	Inspección Visual	6	1	5	30
		Descanbracion	Sobrecalentamiento	Descalibración	Mantto Preventivo	6	2	5	60
Bomba Pre	Efectúa la pre	Falla del Mo-	Parada de Motor	Cortocircuito	Mantto Preventivo	10	1	2	20
Lubricadora	lubricación del Motor	tor Eléctrico							
	antes del Arranque	Fuga de aceite	Parada de Motor	Oring Desgastado	Mantto Preventivo	10	3	5	150
Bomba	Efectúa la lubricación de todas las partes	Falla del Mo- tor Eléctrico	Parada de Motor	Cortocircuito	Mantto Preventivo	10	2	5	100
Lubricadora	móviles del Motor	No hay		Oring Desgastado	Mantto Preventivo	10	5	5	250
	movines dei Motol	bombeo de	Parada de Motor	Aceite Contaminado	Inspección Visual	10	4	6	240
		aceite		Obstrucción de filtro	Inspección Visual	10	3	6	180
Carter	Almacena el aceite	Fuga de aceite	Sobrecalentamiento	Tapón de Carter Roto	Inspección Visual	10	2	2	40
Carter	Annacena el acelte	ruga de aceite Sobrecalentalmento		Carter Roto	Inspección Visual	10	2	2	40

Cuadro 6: Resultados del AMEF

Nombre del equip 23/30A	oo: Motor de combustión ir	iterna marca M	IAN 8L	Equipo de Diseño:	Pág 4 de 5	№ AMEF: 1				
Sistema: Fuerza					Fecha 15/05/2013		†			
Disterna. Puerza					Condiciones Existentes			tes	,	
Pieza	Función que desem- peña	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales del Fa- llo	Controles Actuales	G	О	D	NPR	
		Desbalanceo	Alta vibración	Falla de Montaje	Mantto Preventivo	9	1	8	72	
Cigueñal	Transmite la	Desbaranceo	Aita vibracion	Falla de Mantenimiento	Mantto Mayor	9	1	8	72	
Ciguenai	Potencia al Eje	Detonaciones	Deformación	Mal sincronismo	Mantto Preventivo	10	2	5	100	
		Detonaciones	Pérdida de Poten- cia	Mal sincronismo	Mantto Preventivo	9	2	5	90	
	Efectúa el	Motor no	Motor no arranca	Desgaste de pistón	Mantto Preventivo	8	4	3	96	
Pistón movimiento	movimiento	comprime	Falla al arrancar	Desgaste de pistón	Inspección Visual	8	4	3	96	
I ISTOII	alternativo que		Parada de motor	Desgaste de pistón	Inspección Visual	10	4	3	120	
	transmite la potencia	Baja Compre- sión	Pérdida de Poten- cia	Desgaste de pistón	Inspección Visual	8	4	3	96	
Anillos de Compresión	Mantienen la Presión, no dejan	Baja Compre- sión	Pérdida de Poten- cia	Desgaste de anillos	Mantto Preventivo	9	3	4	108	
Compresion	pasar el aceite al	Motor no	Motor no arranca	Desgaste de anillos	Manto Preventivo	10	3	4	120	
	cilindro	comprime	Falla al arrancar	Desgaste de anillos	Mantto Preventivo	9	3	4	108	
Metales de	Permite el giro	Ruido	Sobrecalentamiento	Desgaste de metales	Mantto Mayor	9	2	4	72	
Bancada	relativo de la	Fricción	Sobrecalentamiento	Desgaste de metales	Mantto Mayor	9	2	6	108	
Dancada	biela en el cigueñal	Fundición de metal	Paro inesperado	Falla de Lubricación	Inspección Visual	10	2	9	180	
	Transmite la	Detonación	Deformación	Mal sincronismo	Mantto Mayor	10	1	6	60	
Biela	potencia al	Detonacion	Alta vibración	Mal sincronismo	Mantto Mayor	7	1	6	42	
	cigueñal	Fricción	Sobrecalentamiento	Desgaste	Mantto Mayor	9	3	6	162	
Camisa	Lugar donde	Baja Compresió	Parada de motor	Desgaste	Mantto Mayor	10	5	3	150	
Camisa	produce la	Daja Compresio	Sobrecalentamiento	Rotura	Mantto Mayor	10	5	3	150	
	combustión Recubre el		Pérdida de Poten- cia	Desgaste de Camisa	Mantto Preventivo	9	2	3	54	
Culata	volumen donde se	Baja Compresió	Parada de motor	Desgaste de Camisa	Inspección Visual	9	3	3	81	
Culata	produce la	Daja Compresio	Parada de motor	Mala refrigeración	Inspección Visual	9	3	3	81	
	combustión		Parada de motor	Deformación de culata	Mantto Preventivo	9	4	3	108	
			Sobrecalentamiento	Deformación de culata	Inspección Visual	9	2	3	54	
			Sobrecalentamiento	Rotura de culata	Mantto Correctivo	10	2	3	60	
	Transmite el		Sobrecalentamiento	Mala Lubricación	Mantto Mayor	9	1	6	54	
Cruceta	desplazamiento	Ruido	Sobrecalentamiento	Suciedad	Mantto Mayor	9	1	6	54	
C. accua	del pistón al	1000	Parada de motor	Rotura de perno	Mantto Mayor	9	1	6	54	
	cigueñal		Ralladuras en ca- misa	Limallas en el aceite	Mantto Mayor	9	1	6	54	

Cuadro 7: Resultados del AMEF

Nombre del equipo: Motor de combustión interna marca MAN 8L $23/30A$				Equipo de Diseño:	Pág 5 de 5 №AME		MAMEF: 1		
Sistema: Arranque				Fecha 15/05/2013 Condiciones Existentes					
Pieza	Función que desem- peña	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales del Fa- llo	Controles Actuales	G	О	D	NPR
Cremallera	Rompe la inercia del volante para	Rotura de dientes	Motor no Arranca	Desgaste de Dientes	Inspección Visual	9	2	2	36
	arrancar	Vibración	Motor no Arranca	Desgaste de Dientes	Inspección Visual	9	2	2	36
Válvula de	Da el punto de	No se acciona la	No amono al	Falla el solenoide	Inspección Visual	9	3	3	81
arranque	salida para cada	válvula		Fallan los compresores de aire	Mantto Preventivo	9	2	3	54
neumático	unidad	varvura	motor	Suciedad	Inspección Visual	9	3	3	81

3.2. Determinación de los factores característicos de la vida útil de los motores de dos tiempos

Para el desarrollo de este punto tomaremos como ejemplo la determinación de los factores de vida útil de algunos de los motores de combustión interna. Puesta en marcha la recolección de datos: 02 de Mayo del 2012, término: 31 de Enero del 2013, correspondiente a dos temporadas de pesca.

Cuadro 8: MTBF, MTTR y DO Inherente

e dadie et militar, militare y a e innerence							
EMBARCACIONES PESQUERAS SERIE	MOTOR DE COMBUSTIÓN INTERNA						
Intrépido	MTTR	MTBF	DO				
BAMAR I	14:45	964:37	98%				
BAMAR II	00:00	1944:00	100%				
BAMAR IV	00:00	1944:00	100%				
CHAVELLI II	01:15	1220:00	99,9%				
MARYLIN II	02:00	1295:20	99,8%				
YAGODA	72:48	587:20	89,7%				

Fuente: Elaborado por los autores

3.3. Resultados del AMEF

A continuación se muestran los resultados de la clasificación obtenidas a través del AMEF:

Cuadro 9: Resultado de la Clasificación del AMEF

Pieza	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales de Fallo	NPR
Cruceta	Ruido	Parada de motor	Rotura de perno	54
Cruceta	Ruido	Ralladuras en camisa	Limallas en el aceite	54
Válvula de arranque neumático	Nose acciona la válvula	No arranca el motor	Fallan los compresores de aire	54
Anillos de Lubricación	Humo Azul	Sobrecalentamiento	Desgaste	45
Biela	Detonación	Alta vibración	Mal sincronismo	42
Carter	Fuga de aceite	Sobrecalentamiento	Tapón de Carter Roto	40
Carter	Fuga de aceite	Sobrecalentamiento	Carter Roto	40
Cremallera	Rotura de dientes	Motor no Arranca	Desgaste de Dientes	36
Cremallera	Rotura de dientes	Motor no Arranca	Desgaste de Dientes	36
Nivel de Aceite	Descalibración	Sobrecalentamiento	Error de Montaje	30
Bomba Pre lubricadora	Falla del Motor Eléctrico	Parada de Motor	Cortocircuito	20

Cuadro 10: Resultado de la Clasificación del AMEF

Pieza	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales de Fallo	NPR
Enfriadores	Alta temperatura del motor	Reduce la capacidad del mo-	Enfriador sucio	320
		tor		
Inyectores	Suministro deficiente o irregular de combustible	Defectuosos u obstruidos	Desgaste	280
Inyectores	Suministro deficiente o irregular de combustible	Tobera obstruida	Mala calidad de combustible	280
Tuberías	Fuga de refrigerante	Sobrecalentamiento	Sobre/sub dimensionamiento	270
Bomba Lubricadora	No hay bombeo de aceite	Parada de Motor	Oring Desgastado	250
Bomba LT (baja Temperatura)	Fuga de refrigerante	Rotura de partes móviles	Tanque de expansión sin agua de refrigerante	240
Inyectores	Suministro deficiente o irregular de combustible	Filtro obstruido	Mala calidad de combustible	240
Bomba Lubricadora	No hay bombeo de aceite	Parada de Motor	Aceite Contaminado	240
Conductos del Aceite	Taponamiento	Sobrecalentamiento	Obstrucción de conductos	216
Enfriadores	Alta temperatura del motor	Reduce la capacidad del mo-	Filtro de agua salada taponeada	200
		tor		
Bomba Lubricadora	No hay bombeo de aceite	Parada de Motor	Obstrucción de filtro	180
Metales de Bancada	Fundición de metal	Paro inesperado	Falla de Lubricación	180
Filtro de Aire	Restricción de aire	Motor no arranca	Filtro obstruido	162
Nivel de Aceite	Obstrucción de Nivel	Parada de Motor	Aceite Contaminado	162
Biela	Fricción	Sobrecalentamiento	Desgaste	162
Enfriadores	Alta temperatura del motor	Reduce la capacidad del mo-	Tubo de aspiración de agua salada taponeado	150
		tor		
Manifold de admisión	Fuga de combustible	Motor no arranca	Válvulas Rotas	150
Manifold de admisión	Fuga de combustible	Paro inesperado	Mal Mantenimiento	150
Bomba Pre lubricadora	Fuga de aceite	Parada de Motor	Oring Desgastado	150
Camisa	Baja Compresión	Parada de Motor	Desgaste	150
Camisa	Baja Compresión	Sobrecalentamiento	Rotura	150
Filtro de Aire	Restricción de aire	Pérdida de potencia	Filtro obstruido	144
Filtro de Aire	Restricción de aire	Golpeteo de motor	Filtro obstruido	126
Bomba HT (alta temperatura)	Fuga de refrigerante	Sobrecalentamiento	Fuga por empaquetadura de bomba	120
Enfriadores	Alta temperatura de motor	Reduce la capacidad del mo-	Termostato defectuoso	120
		tor		
Inyectores	Suministro deficiente o irregular de combustible	Vástago de válvula agarrotado	Desgaste	120
Inyectores	Suministro deficiente o irregular de combustible	Resorte roto	Desgaste	120
Pistón	Motor no comprime	Parada de motor	Desgaste de pistón	120
Anillos de Compresión	Motor no comprime	Motor no arranca	Desgaste de anillos	120
Bomba de Inyección	Suministro deficiente o irregular de combustible	Agua en el combustible	Humedad del Ambiente	108
Filtro de Aire	Restricción de aire	Alto consumo de aceite	Filtro obstruido	108

Cuadro 11: Resultado de la Clasificación del AMEF

Pieza	Modo de Fallo Potencial	Efectos potencial de Fallo	Causas Potenciales de Fallo	NPR
Anillos de Compresión	Baja Compresión	Pérdida de Potencia	Desgaste de anillos	108
Anillos de Compresión	Motor no comprime	Falla al arrancar	Desgaste de anillos	108
Metales de Bancada	Fricción	Sobrecalentamiento	Desgaste de metales	108
Culata	Baja Compresión	Parada de motor	Deformación de culata	108
Enfriadores	Alta temperatura del motor	Reduce la capacidad del mo-	Bomba de agua dulce y salada defectuosas	100
		tor		
Bomba Lubricadora	Falla del Motor Eléctrico	Parada de Motor	Cortocircuito	100
Cigueñal	Detonaciones	Deformación	Mal sincronismo	100
Pistón	Motor no comprime	Motor no arranca	Desgaste de pistón	96
Pistón	Motor no comprime	Falla al arrancar	Desgaste de pistón	96
Pistón	Baja Compresión	Pérdida de Potencia	Desgaste de pistón	96
Bomba de inyección	Suministro deficiente o irregular de combustible	Válvula reguladora de presión	Desgaste	90
		se agarrota en la posición		
		abierta		
Bomba de inyección	Suministro deficiente o irregular de combustible	Embolo y camisa de bomba	Desgaste	90
		desgastados		
Filtro de Aire	Restricción de aire	Combustión incompleta	Filtro obstruido	90
Cigueñal	Detonaciones	Pérdida de Potencia	Mal sincronismo	90
Culata	Baja Compresión	Parada de motor	Desgaste de Camisa	81
Culata	Baja Compresión	Parada de motor	Mala refrigeración	81
Válvula de arranque neumático	Nose acciona la válvula	No arranca el motor	Falla el solenoide	81
Válvula de arranque neumático	No se acciona la válvula	No arranca el motor	Suciedad	81
Enfriadores	Alta temperatura del motor	Reduce la capacidad del mo-	Ajuste incorrecto de la válvula en el sistema	80
		tor		
Tuberías	Rotura de tubería	Sobrecalentamiento	Corrosión	72
Cigueñal	Desbalanceo	Alta vibración	Falla de Montaje	72
Cigueñal	Desbalanceo	Alta vibración	Falta de Manetenimiento	72
Metales de Bancada	Ruido	Sobrecalentamiento	Desgaste de metales	72
Bomba LT (baja temperatura)	Fuga de refrigerante	Sobrecalentamiento	Fuga por empaquetadura de bomba	60
Nivel de Aceite	Descalibración	Sobrecalentamiento	Descalibración	60
Biela	Detonación	Deformación	Mal sincronismo	60
Culata	baja Compresión	Sobrecalentamiento	Rotura de culata	60
Culata	Baja Compresión	Pérdida de Potencia	Desgaste de Camisa	54
Culata	Baja Compresión	Sobrecalentamiento	Deformación de culata	54
Cruceta	Ruido	Sobrecalentamiento	Mala Lubricación	54
Cruceta	Ruido	Sobrecalentamiento	Suciedad	54

4. Discusión

Establecer la adquisición de los repuestos en cantidad y tiempo óptimos de los componentes críticos; efectuando un estudio de stocks mínimos y máximos considerando la criticidad de los repuestos y de la reposición automática de los mismos. Como por ejemplo, de acuerdo a los niveles de consumo de los filtros de aire se puede establecer la cantidad mensual de adquisición de estos componentes y el correcto nivel de stock que permita manejar un correcto mantenimiento sin pérdida de producción. Mediante la aplicación de RCM se establece como prioridad la eliminación de las fallas inaceptables (las cuales ponen en riesgo la continuidad de la operación).

5. Conclusiones

- **5.1** De acuerdo al AMEF y la clasificación obtenida a través del NPR (Número de Prioridad de Riesgo), de los 73 modos de falla analizados, se obtuvo lo siguiente:
 - a) 10 Fallas Inaceptables (13.7%).
 - b) 13 Fallas de reducción deseable (17.8%).
 - c) 50 Fallas Aceptables (68.5%).
- **5.2** La disponibilidad inherente está por encima del 90% de todos los motores de combustión interna de las embarcaciones pesqueras.
- 5.3 Mediante la determinación del Tiempo medio entre Fallas (MTBF) ha sido posible determinar la frecuencia óptima de intervención de cada uno de los motores analizados; esta etapa es de mucha importancia dado que influye directamente en el establecimiento de las tareas de mantenimiento preventivo de cada uno de los motores.

REFERENCIAS BIBLIOGRÁFICAS

- [1] Améndola, Luis José(2002). *Modelos Mixtos de Confiabilidad*. DATASTREAM. España: Valencia. Disponible en Web: http://www.datastream.net/English/Default.aspx .
- [2] Moubray, John. (2004). Mantenimiento Centrado en Confiabilidad. RCM II. Traducción por Ellman Suerios y Asociados. Buenos Aires, Argentina Madrid, España. Edición en español. USA: Lillington, North Carolina.
- [3] Pascual, Rodrigo.(2002). Curso Mantención de Maquinaria, ME57A. Universidad de Chile, Dpto. Ingenieria Mecánica. Chile: Santiago. Apunte Gestión Moderna del Mantenimiento. Versión 2.0. Disponible en Web: http://grupos.emagister.com/documento/manual_del_ingeniero de mantenimiento/1044-40586.
- [4] Reyes, Luis; Ocampo José.(1996). Ingeniería de Mantenimiento. Teoría y Problemas Resueltos. Primera edición. Salvador Editores. Perú: Lima.
- [5] Tavares, Lourival.(2000). Administración Moderna del Mantenimiento. DATASTREAM. Brasil. Disponible en Web: http://www.datastream.net/English/Default.aspx .